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Abstract
In this paper, we introduce a bivariate Kantorovich variant of combination of Szász
and Chlodowsky operators based on Charlier polynomials. Then, we study local
approximation properties for these operators. Also, we estimate the approximation
order in terms of Peetre’s K-functional and partial moduli of continuity. Furthermore,
we introduce the associated GBS-case (Generalized Boolean Sum) of these operators
and study the degree of approximation by means of the Lipschitz class of Bögel
continuous functions. Finally, we present some graphical examples to illustrate the
rate of convergence of the operators under consideration.
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1 Introduction
In [], Varma and Taşdelen constituted a link between orthogonal polynomials and posi-
tive linear operators. They considered Szász-type operators including Charlier polynomi-
als. The generating functions for these Charlier polynomials are given by

et
(

 –
t
a

)u

=
∞∑

k=

k∑
s=

(
k
s

)
(–u)s

(

a

)s tk

k!
=

∞∑
k=

Ca
k (u)

tk

k!
, |t| < a, ()

where (m) =  and (m)j =
∏j

k=(m + k – ) (j ∈N).
The Charlier polynomials Ca

k (u) for k = , , , ,  are given by

Ca
(u) = , Ca

 (u) =  –
u
a

, Ca
 (u) =  –

u( + a)
a +

u

a ,

Ca
 (u) =  –

u
a

(
a + a + 

)
+

u

a (a + ) –
u

a ,

Ca
(u) =  –

u
a

(
 + a + a + a) +

u

a

(
 + a + a) –

u

a ( + a) +
u

a .

Further, from equation () we note that Ca
k (u) >  for all u ≤  and k = , , , . . . .
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Varma and Taşdelen defined the following Szász-type operators involving Charlier poly-
nomials
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Kajla and Agrawal [–] discussed some generalizations of Szász-type operators based on
Charlier polynomials and obtained some direct results such as Voronovskaja-type asymp-
totic theorem, weighted approximation properties, and approximation of functions having
derivatives of bounded variation. For a detailed account of such kind of results for differ-
ent types of sequences of linear positive operators and their linear combinations, we refer
the readers to a recent book [].

The classical Bernstein-Chlodowsky polynomials are defined as
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where pn,k( x
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( x
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)k( – x

an
)n–k ,  ≤ x ≤ an, and (an) is a sequence of positive num-

bers with limn→∞ an = ∞ and limn→∞ an
n = . There are many investigations devoted to

the problem of approximating continuous functions by classical Bernstein-Chlodowsky
polynomials and their generalization.

Agrawal and Ispir in [] introduced the variant of Szász variant-based Charlier polyno-
mials defined as
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where (bm) and (cm) are increasing sequences of positive numbers such that cm ≥ , bm ≥ ,
limn→∞(/cm) = , and bm/cm =  + O(/cm). Also, Agrawal and Ispir [] introduced bivari-
ate operators by combining the Bernstein-Chlodowsky operators and Szász-Charlier-type
operators as follows:
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for all n, m ∈ N , f ∈ C(Ian ) with Ian = {(x, y) :  ≤ x ≤ an, y ≥ } and C(Ian ) = {f : Ian →
R+ is continuous}. The weighted approximation properties of bivariate modified Szász op-
erators are studied in [–]. Note that the operator Sa

n,m is the tensorial product of xCn and
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ySa
m, that is, Sa

n,m = xCn × ySa
m, where
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In [], the authors introduced a bivariate Kantorovich variant of the combination of
Chlodowsky and Szász-type operators and studied local approximation properties of these
operators. Also, they estimated the approximation order in terms of Peetre’s K-functional
and partial moduli of continuity.

The rest of the paper is as follows. In Section , we construct the bivariate Chlodowsky-
Szász-Kantorovich-Charlier-type operators and the convergence of these operators given
by means of Korovkin’s theorem. Further, some graphical examples to illustrate the rate of
convergence of the operators under consideration are presented. In Section , the order
of approximation is obtained with help of the partial moduli and continuity and Peetre’s
K-functional. In Section , we study some convergence properties of these operators in
weighted spaces with weighted norm on R

+ by using the weighted Korovkin-type theo-
rems. In the last section of the paper, we introduce the associated GBS-case (Generalized
Boolean Sum) of these operators and study the degree of approximation by means of the
Lipschitz class of Bögel continuous functions.

2 The construction of the operators
Our goal is to introduce a new bivariate operators associated with a combination of Kan-
torovich variant of the operators given by () as follows: For all n, m ∈ N and f ∈ C(Ian ),
we define
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where a > , and the sequences (an), (bm), and (cm) are defined as before and satisfy the
following conditions:
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n→∞(an/n) =  and lim
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For operators defined by (), we have
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and

∗
y Sa

m(f ; x, y) = cm
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f (x, s) ds.

Next, the degree of approximation of the operator Ca
n,m given by () will be established

in the space of continuous function on the compact set Ide = [, d] × [, e] ⊂ Ian . For
Ide = [, d] × [, e], let C(Ide), denote the space of all real-valued continuous functions on
Ide, endowed with the norm ‖f ‖C(Ide) = sup(x,y)∈Ide

|f (x, y)|. In what follows, let eij : Ian → R,
eij(x, y) = xiyj, (x, y) ∈ Ian , (i, j) ∈ N × N with i + j ≤ , be the two-dimensional test func-
tions. In the following, we give some lemmas. We observe that there are some slips in the
calculation of the moments in Lemma  of []. We give correct values in the following
lemma.
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Proof By Lemma . we have
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Further,
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and

Ca
n,m(e; x, y) =

ncm

an

n∑
k=

∞∑
j=

Pn,k

(
x

an

)
�m,j(bmy, a)

∫ j+
cm

j
cm

∫ (k+)an
n

kan
n

s dt ds

=
n∑

k=

∞∑
j=

Pn,k

(
x

an

)
�m,j(bmy, a)

(
j

c
m

+
j

c
m

+
j

c
m

+
j

c
m

+


c
m

)

=
b

my

c
m

+
b

my

c
m

(
 +


a – 

)
+

b
my

c
m

(
 +


a – 

+


(a – )

)

+
bmy
c

m

(
 +


a – 

+


(a – ) +


(a – )

)
+


c

m
. �

Remark . By applying Lemma . we have

Ca
n,m

(
(e – x); x, y

)
=

x(an – x)
n

+
a

n
n ;

Ca
n,m

(
(e – y); x, y

)
=

(
bm

cm
– 

)

y +
(

bm

c
m

(
 +


a – 

)
–


cm

)
y +


c

m
.

Hence, for all (x, y) ∈ Ian and sufficiently large n, m, by Lemma ., Remark ., and
condition () we can write

Ca
n,m

(
(e – x); x, y

)
= O

(
an

n

)( ∑
i=

xi

)
, ()

Ca
n,m

(
(e – x); x, y

)
= O

(
an

n

)( ∑
i=

xi

)
, ()

Ca
n,m

(
(e – y); x, y

) ≤ τ (a)
cm

( ∑
i=

yi

)
, ()

and

Ca
n,m

(
(e – y); x, y

) ≤ ω(a)
cm

( ∑
i=

yi

)
, ()

where τ (a) and ω(a) are constants depending on a > . For (x, y) ∈ Ide, by relations () and
() we may write

Ca
n,m

(
(e – x); x, y

) ≤ an(x + x)
n

+
a

n
n ≤ an(d + d)

n
+

a
n

n
+

a
n

n = ρ(d)
an

n
, ()

Ca
n,m

(
(e – y); x, y

) ≤ τ (a)
cm

(
y + y + 

) ≤ τ (a)
cm

(
b + b + 

)
=

γ (a)
cm

, ()

where ρ(d) is a constant depending on d, and γ (a) is a constant depending on a > .
Further, let δn(x) = Ca

n,m((e – x); x, y), δm(y) = Ca
n,m((e – y); x, y), and δn,m(x, y) =

(O( an
n )(

∑
i= xi) + τ (a)

cm
(
∑

i= yi))/.



Agrawal et al. Journal of Inequalities and Applications  (2017) 2017:195 Page 8 of 23

Definition . (See []) For f ∈ C(Ide) and δ > , the complete modulus of continuity for
the function f (x, y) is defined by

ω(f ; δn, δm) = sup
{∣∣f (t, s) – f (x, y)

∣∣ : (t, s), (x, y) ∈ Ide, |t – x| ≤ δn, |s – y| ≤ δm
}

,

and its partial modulus of continuity with respect to x and y is given by

ω()(f ; δ) = sup
≤y≤e

sup
|x–x|≤δ

{∣∣f (x, y) – f (x, y)
∣∣},

ω()(f ; δ) = sup
≤x≤d

sup
|y–y|≤δ

{∣∣f (x, y) – f (x, y)
∣∣}.

Definition . (See []) For f ∈ C(Ide) and δ > , the Peetre’s K-functional and the second
modulus of smoothness are defined respectively as

K(f ; δ) = inf
g∈C(Ide)

{‖f – g‖C(Ide) + δ‖g‖C(Ide)
}

and

ω(f ; δ) = sup√
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∥∥�
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∥∥,
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j=(–)–j(

j
)
f (x + jt, y + js). Here, C(Ide) is the space of functions f

such that ∂ if
∂xi , ∂ if
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It is known that ([], p.) there exists a positive constant, independent of δ and f ,
such that

K(f ; δ) ≤ L
{
ω(f ; δ) + min(, δ)‖f ‖C(Ide)

}
.

To study the convergence of the sequence {Ca
n,m(f ; x, y)}, we shall use the following

Korovkin-type theorem established by Volkov.

Theorem . If f ∈ C(Ide), then the operators Ca
n,m given by () converge uniformly to f on

the compact set Ide as n, m → ∞.

Proof By Lemma ., taking into account the equality (), we find

lim
n,m→∞

∥∥Ca
n,m(eij; x, y) – eij

∥∥
C(Ide) = , i, j = , , ,

and

lim
n,m→∞

∥∥Ca
n,m(e + e; x, y) – e + e

∥∥
C(Ide) = .
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The proof of uniform convergence is then completed by applying the Volkov theo-
rem []. �

Example  For n = m =  and an =
√

n, bm = m, cm = m + √
m , in Table , we have

estimated the absolute difference between the operators Ca
n,m(f ; x, y) defined in () and

the function f (x, y) = xe–x ye–y. Also, we have estimated the absolute difference between
the operators L∗

n,m(f ; x, y) defined by Ispir and Buyukyazici [] and the function f (x, y) =
xe–x ye–y.

For n = m =  and an =
√

n, bm = m, cm = m + √
m the convergence of bivari-

ate Chlodowsky-Szász-Kantorovich-Charlier-type operators Ca
n,m(f ; x, y) to the function

f (x, y) = xe–x ye–y is illustrated in Figure (a). In Table , we have estimated the ab-
solute difference between the operators Ca

n,m(f ; x, y) defined in () and the function
f (x, y) = xe–x ye–y. Also, we have estimated the absolute difference between the opera-
tors S∗

n,m(f ; x, y) defined in [] and the function f (x, y) = xe–x ye–y. It easily can be seen
from Table  that the absolute difference |Ca

n,m(f ; x, y) – f (x, y)| < |Sa
n,m(f ; x, y) – f (x, y)|.

Thus, the rate of convergence of the operators Ca
n,m to the function is faster compared to

the operators defined in [].

Example  Let us consider the function f : R → R, f (x, y) = xex cos(πy). For n = m =
 and a = , an =

√
n, bm = m, cm = m + √

m , the convergence of bivariate Chlodowsky-

Table 1 Error of approximation for Ca
n,m and L∗

n,m

(x, y) (0.01, 0.01) (0.01, 0.11) (0.01, 0.21) (0.01, 0.31) (0.01, 0.41) (0.01, 0.51)

|Can,m(f ; x, y) – f (x, y)| 0.000011 0.000022 0.000032 0.000043 0.000054 0.000064
|L∗n,m(f ; x, y) – f (x, y)| 0.000036 0.000039 0.000043 0.000046 0.000049 0.000052

Table 2 Error of approximation for Ca
n,m and Sa

n,m

(x, y) (0.01, 0.01) (0.01, 0.11) (0.01, 0.21) (0.01, 0.31) (0.01, 0.41) (0.01, 0.51)

|Can,m(f ; x, y) – f (x, y)| 0.000011 0.000022 0.000032 0.000043 0.000054 0.000064
|San,m(f ; x, y) – f (x, y)| 0.000137 0.000152 0.000167 0.000181 0.000196 0.000210

Figure 1 The convergence of the operators Ca
n;m(f ; x; y) to function f (x; y).
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Szász-Kantorovich-Charlier-type operators Ca
n,m(f ; x, y) to the function f (x, y) is illustrated

in Figure (b).

3 Degree of approximation
Now, we obtain the rate of convergence of the approximation of the bivariate operators
defined in () by means of modulus of continuity of functions.

Theorem . For any f ∈ C(Ide), we have the following inequalities:

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ 
(
ω()(f ; δn) + ω()(f ; δm)

)

and

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ ω(f ; δn,m),

where δn = δn(x), δm = δm(y), and δn,m = δn,m(x, y).

Proof From () by using Lemma . and the definition of partial moduli of continuity of a
function f (x, y) we can write

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ Ca
n,m

(∣∣f (t, s) – f (x, y)
∣∣; x, y

)
≤ Ca

n,m
(∣∣f (t, s) – f (x, s)

∣∣; x, y
)

+ Ca
n,m

(∣∣f (x, s) – f (x, y)
∣∣; x, y

)
≤ Ca

n,m
(
ω()(f ; |t – x|); x, y

)
+ Ca

n,m
(
ω()(f ; |s – y|); x, y

)
≤ ω()(f ; δn)

(
 + δ–

n Ca
n,m

(|t – x|; x, y
))

+ ω()(f ; δm)
(
 + δ–

m Ca
n,m

(|s – y|; x, y
))

.

Then, by the Cauchy-Schwarz inequality we have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ ω()(f ; δn)
(

 +

δn

{
Ca

n,m
(
(e – x); x, y

)}/
)

+ ω()(f ; δm)
(

 +

δn

{
Ca

n,m
(
(e – y); x, y

)}/
)

.

Finally, choosing δn = δn(x) and δm = δm(x), we reach the desired result for all (x, y) ∈ Ide.
To prove the second part of this theorem, we will use relations () and () and well-

known properties of the modulus of continuity. Thus, we have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ Ca
n,m

(
ω

(
f ;

√
(t – x) + (s – y); x, y

))

≤ ω(f ; δn,m)
(

 +


δn,m
Ca

n,m
(√

(t – x) + (s – y); x, y
))

.

Recalling the Cauchy-Schwarz inequality, we obtain

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ ω(f ; δn,m)
(

 +


δn,m

(
Ca

n,m
(
(t – x) + (s – y); x, y

))/
)

≤ ω(f ; δn,m)

(
 +


δn,m

(
O

(
an

n

)( ∑
i=

xi

)
+

τ (a)
cm

( ∑
i=

yi

))/)
.
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Taking δn,m = (O( an
n )(

∑
i= xi) + τ (a)

cm
(
∑

i= yi))/, we obtain the desired result. In what fol-
lows, we introduce the Lipschitz class in the bivariate case. For  < γ ≤  and  < γ ≤ ,
we define the Lipschitz class

LipL(f ;γ,γ) =
{

f :
∣∣f (t, s) – f (x, y)

∣∣ ≤ L|t – x|γ |s – y|γ
}

,

where (t, s), (x, y) ∈ Ide. �

Theorem . Suppose that f ∈ LipL(f ;γ,γ). Then, for every (x, y) ∈ Ide, we have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ L(δn)γ/(δm)γ/,

where δn = δn(x) and δm = δm(y).

Proof Taking into account that f ∈ LipL(f ;γ,γ) and using the monotonicity and linearity
of operators Ca

n,m(f ; x, y), we have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ Ca
n,m

(∣∣f (t, s) – f (x, y)
∣∣; x, y

)
≤ LCa

n,m
(|t – x|γ |s – y|γ ; x, y

)
≤ L · xC∗

n(|t – x|γ ; x, y)∗y Sa
m
(|s – y|γ ; x, y

)
.

For (u, v) = ( 
γ

, 
–γ

) and (u, v) = ( 
γ

, 
–γ

), applying the Hölder inequality, we get

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ L
(

xC∗
n
(
(t – x); x; y

))γ/(
yS∗

n(s – y); x; y
)γ/

≤ (δn)γ/(δm)γ/,

which implies the desired result. �

Theorem . Let f ∈ C(Ide). Then, for every (x, y) ∈ Ide, we have the inequality

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ ∥∥f ′
x
∥∥

C(Ide)

√
δn(x) +

∥∥f ′
y
∥∥

C(Ide)

√
δm(y).

Proof For a fixed point (x, y) ∈ Ide and for f ∈ C(Ide), we obtain

f (u, v) – f (x, y) =
∫ u

x
f ′
t (t, v) dt +

∫ v

y
f ′
z (x, z) dz for (u, v) ∈ Ide.

Applying the operator defined in () to both sides, we obtain

Ca
n,m

(
f (u, v); x, y

)
– f (x, y) = Ca

n,m

(∫ u

x
f ′
t (t, v) dt; x, y

)
+ Ca

n,m

(∫ v

y
f ′
z (x, z) dz; x, y

)
.

Now, using the sup-norm on Ide, we get

∣∣∣∣
∫ u

x
f ′
t (t, v) dt

∣∣∣∣ ≤
∫ u

x

∣∣f ′
t (t, v) dt

∣∣|du| ≤ ∥∥f ′
x
∥∥

C(Ide)
|u – x|
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and

∣∣∣∣
∫ v

y
f ′
z (x, z) dz

∣∣∣∣ ≤
∫ v

y

∣∣f ′
z (x, z)

∣∣|dz| ≤ ∥∥f ′
y
∥∥

C(Ide)
|v – y|.

By using these inequalities we have

∣∣Ca
n,m

(
f (u, v); x, y

)
– f (x, y)

∣∣
≤ Ca

n,m

(∣∣∣∣
∫ u

x
f ′
t (t, v) dt

∣∣∣∣; x, y
)

+ Ca
n,m

(∣∣∣∣
∫ v

y
f ′
z (x, z) dz

∣∣∣∣; x, y
)

≤ ∥∥f ′
x
∥∥

C(Ide)C
a
n,m

(|u – x|; x, y
)

+
∥∥f ′

y
∥∥

C(Ide)C
a
n,m

(|v – y|; x, y
)
. ()

Now, applying the Hölder inequality, the equality Ca
n,m(; x, y) = , and Remark ., we get

Ca
n,m

(|u – x|; x, y
) ≤ {

xC∗
n
(
(u – x); x, y

) ×x C∗
n(; x, y)

}/ ≤ {
δn(x)

}/. ()

Analogously,

Ca
n,m

(|v – y|; x, y
) ≤ {∗

y Sa
m
(
(v – y); x, y

) ×∗
y Sa

m(; x, y)
}/ ≤ {

δm(y)
}/. ()

Combining equations ()-(), we obtain

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ ∥∥f ′
x
∥∥

C(Ide)

√
δn(x) +

∥∥f ′
y
∥∥

C(Ide)

√
δm(y).

This completes the proof. �

Theorem . Let f ∈ C(Ide). Consider the operators

Ĉa
n,m(f ; x, y) = Ca

n,m(f ; x, y) + f (x, y) – f
(

x +
an

n
,

bmy
cm

+


cm

)
. ()

Then, for all g ∈ C(Ide), we have the estimate Ca
n,m(f ; x, y) – f (x, y) ≤ L{ω(f ;

√
χn,m(x, y)) +

min{,χn,m(x, y)}‖f ‖C(Ide)} + ω(f ;
√

( an
n ) + ( bmy

cm
+ 

cm
– y)), where χn,m(x, y) = O( an

n )(x +

x + ) + ( an
n ) + τ (a)

cm
(y + y + ) + ((bm–cm)y+)

c
m

.

Proof From () by Lemma . we have Ĉa
n,m(; x, y) = , Ĉa

n,m(u – x; x, y) = , and
Ĉa

n,m(v – y; x, y) = . By Taylor’s expansion for g ∈ C(Ide), we may write

g(u, v) – g(x, y) =
∂g(x, y)

∂x
(u – x) +

∫ u

x
(u – η)

∂g(η, y)
∂η dη

+
∂g(x, y)

∂y
(v – y) +

∫ v

y
(v – ζ )

∂g(x, ζ )
∂ζ  dζ , ()
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and applying the operators Ĉa
n,m(f ; x, y) to both sides of the equality and using Lemma .,

we obtain

Ĉa
n,m

(
g(u, v); x, y

)
– Ĉa

n,m
(
g(x, y)

)
= Ĉa

n,m

(∫ u

x
(u – η)

∂g(η, y)
∂η dη; x, y

)

+ Ĉa
n,m

(∫ v

y
(v – ζ )

∂g(x, ζ )
∂ζ  dζ ; x, y

)

= Ca
n,m

(∫ u

x
(u – η)

∂g(η, y)
∂η dη; x, y

)

–
∫ x+ an

n

x

(
x +

an

n
– η

)
∂g(x,η)

∂η dη

+ Ca
n,m

(∫ v

y
(v – ζ )

∂g(ζ , x)
∂ζ  dζ ; x, y

)

–
∫ bmy

cm + 
cm

y

(
bmy
cm

+


cm
– ζ

)
∂g(x, ζ )

∂ζ  dζ .

On the other hand, since

∣∣∣∣
∫ u

x
(u – η)

∂g(η, y)
∂η dη

∣∣∣∣ ≤
∣∣∣∣
∫ u

x

∣∣(u – η)
∣∣
∣∣∣∣∂

g(η, y)
∂η

∣∣∣∣dη

∣∣∣∣
≤ ‖g‖C(Ide)

∣∣∣∣
∫ u

x
|u – η|

∣∣∣∣∂
g(η, y)
∂η

∣∣∣∣dη

∣∣∣∣ ≤ ‖g‖C(Ide)(u – x)

and

∣∣∣∣
∫ x+ an

n

x
(x +

an

n
– η)

∂g(η, y)
∂η dη

∣∣∣∣ ≤
(

an

n

)

‖g‖C(Ide)

and, analogously,

∣∣∣∣
∫ v

y
(v – ζ )

∂g(x, ζ )
∂ζ  dζ

∣∣∣∣ ≤ ‖g‖C(Ide)(v – y)

and

∣∣∣∣
∫ bmy

cm + 
cm

y

(
bmy
cm

+


cm
– ζ

)
∂g(x, ζ )

∂ζ  dζ

∣∣∣∣ ≤
(

bmy
cm

+


cm
– y

)

‖g‖C(Ide),

we conclude that

∣∣Ĉa
n,m(g; x, y) – g(x, y))

∣∣ ≤ Ca
n,m

(∣∣∣∣
∫ u

x
(u – η)

∂g(η, y)
∂η dη

∣∣∣∣; x, y
)

+
∣∣∣∣
∫ x+ an

n

x

(
x +

an

n
– η

)
∂g(x,η)

∂η dη

∣∣∣∣
+ Ca

n,m

(∣∣∣∣
∫ v

y
(v – ζ )

∂g(x, ζ )
∂ζ  dζ

∣∣∣∣; x, y
)
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+
∣∣∣∣
∫ bmy

cm + 
cm

y

(
bmy
cm

+


cm
– ζ

)
∂g(x, ζ )

∂ζ  dζ

∣∣∣∣

≤
{

xC∗
n
(
(u – x); x, y

)
+

(
an

n

)}
‖g‖C

(Ide)

+
{

yS∗
m
(
(v – y); x, y

)
+

(
bmy
cm

+


cm
– y

)}
‖g‖C

(Ide)

≤
{

O
(

an

n

)(
x + x + 

)
+

(
an

n

)

+
τ (a)
cm

(
y + y + 

)
+

((bm – cm)y + )

c
m

}
‖g‖C(Ide)

= χn,m(x, y)‖g‖C(Ide). ()

Additionally, by () and () and Lemma . we have

∣∣Ĉa
n,m(f ; x, y)

∣∣ ≤ ∣∣Ca
n,m(f ; x, y)

∣∣ +
∣∣f (x, y)

∣∣ +
∣∣∣∣f

(
x +

an

n
,

bmy
cm

+


cm

)∣∣∣∣ ≤ ‖f ‖C(Ide). ()

Hence, in view of () and (), we have

∣∣Ĉa
n,m(f ; x, y) – f (x, y)

∣∣ =
∣∣∣∣Ĉa

n,m(f ; x, y) – f (x, y) + f
(

x +
an

n
,

bmy
cm

+


cm

)
– f (x, y)

∣∣∣∣
≤ ∣∣Ĉa

n,m(f – g; x, y)
∣∣ +

∣∣Ĉa
n,m(g; x, y) – g(x, y)

∣∣
+

∣∣g(x, y) – f (x, y)
∣∣ +

∣∣∣∣f
(

x +
an

n
,

bmy
cm

+


cm

)
– f (x, y)

∣∣∣∣
≤ ‖f – g‖C(Ide) +

∣∣Ĉa
n,m(g; x, y) – g(x, y)

∣∣
+

∣∣∣∣f
(

x +
an

n
,

bmy
cm

+


cm

)
– f (x, y)

∣∣∣∣
≤ (

‖f – g‖C(Iab) + χn,n (x, y)
)‖g‖C(Ide)

+ ω

(
f ;

√(
an

n

)

+
(

bmy
cm

+


cm
– y

))

≤ K
(
f ;χn,m(x, y)

)
+ ω

(
f ;

√(
an

n

)

+
(

bmy
cm

+


cm
– y

))

≤ L
{
ω

(
f ;

√
χn,m(x, y)

)
+ min

{
,χn,m(x, y)

}‖f ‖C(Ide)

}

+ ω

(
f ;

√(
an

n

)

+
(

bmy
cm

+


cm
– y

))
.

This completes the proof. �

4 Weighted approximation properties
Let R

+ = {(x, y) : x ≥ , y ≥ }, and Bρ(R
+) be the space of all functions such that |f (x, y)| ≤

Mf ρ(x, y), where (x, y) ∈ R
+, and Mf is a constant depending on a function f only. By Cρ(R

+)
we denote the subspace of all continuous functions belonging to Bρ(R

+). It is clear that
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Cρ(R
+) is a linear normed space with the norm ‖f ‖ρ = sup(x,y)∈R

+
|f (x,y)|
ρ(x,y) . Also, let C∗

ρ(R
+) be

the subspace of all functions f ∈ Cρ(R
+) for which lim√

x+y→∞
f (x,y)

+x+y = kf < ∞.

Lemma . ([, ]) For the sequence of positive linear operators {Kn,m}n,m≥ acting from
Cρ(R

+) to Bρ(R
+), it is necessary and sufficient that inequality

∥∥Kn,m(ρ; x, y)
∥∥

ρ
≤ k

is fulfilled with some positive constant k.

Theorem . [[, ]] If a sequence of positive linear operators Kn,m acting from Cρ(R
+)

to Bρ(R
+) satisfies the conditions

lim
n,m→∞

∥∥Kn,m(e; x, y) – 
∥∥

ρ
= , ()

lim
n,m→∞

∥∥Kn,m(e; x, y) – x
∥∥

ρ
= , ()

lim
n,m→∞

∥∥Kn,m(e; x, y) – 
∥∥

ρ
= , ()

lim
n,m→∞

∥∥Kn,m
(
(e + e); x, y

)
–

(
x + y)∥∥

ρ
= , ()

then, for any function f ∈ Ck
ρ(R

+)

lim
n,m→∞

∥∥Kn,mf – f
∥∥

ρ
= ,

and there exists a function f ∗ ∈ Cρ(R
+) \ Ck

ρ(R
+) for which

lim
n,m→∞

∥∥Kn,mf ∗ – f ∗∥∥
ρ

≥ .

Theorem . ([, ]) Let Kn,m be a sequence of linear operators acting from Cρ(R
+) to

Bρ(R
+), and let ρ(x, y) ≥  be a continuous function for which

lim|v|→∞
ρ(v)
ρ(v)

= 
(
where v = (x, y)

)
. ()

If Kn,m satisfies the conditions of Theorem ., then

lim
n,m→∞‖Kn,mf – f ‖ρ = 

for all f ∈ Cρ(R
+).

Now, we consider the positive linear operators Kn,m defined by

Kn,m(f ; x, y) =

{
Ca

n,m(f ; x, y) for (x, y) ∈ Iandm ,
f (x, y) for (x, y) ∈ R

+ \ Iandm ,
()

where Iandm = {(x, y) :  ≤ x ≤ an,  ≤ y ≤ dm}, and (dm) is a sequence such that
limm→∞ dm = ∞.
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Theorem . Let ρ(x, y) =  + x + y be a weight function, and Kn,m(f ; x, y) be a sequence
of linear positive operators defined by (). Then, for all f ∈ Cρ(R

+), we have

lim
n,m→∞‖Kn,mf – f ‖ρ = ,

where ρ(x, y) is a continuous function satisfying condition ().

Proof First, we show that Kn,m is acting from Cρ(R
+) to Bρ(R

+). Using Lemma ., we can
write

∥∥Kn,m(ρ; x, y)
∥∥

ρ
≤  +

(
 –


n

)
sup

(x,y)∈Iandm

x

ρ(x, y)
+ 

an

n
sup

(x,y)∈Iandm

x
ρ(x, y)

+
a

n
n

+
b

m
c

m
sup

(x,y)∈Iandm

y

ρ(x, y)
+

bm

c
m

sup
(x,y)∈Iandm

y
ρ(x, y)

+


c
m

≤  + ϕn,m + ψn,m,

where ϕn,m = ( – 
n ) + b

m
c

m
and ψn,m = bm

c
m

+  an
n + a

n
n + 

c
m

. Since limn,m→∞ ϕn,m =  and
limn,m→∞ ψn,m = , there exists a positive constant k such that ϕn,m +ψn,m < k for all natural
numbers n and m. Hence, we have

∥∥Kn,m(ρ; x, y)
∥∥

ρ
≤  + k.

From Lemma . we have Kn,m : Cρ(R
+) → Bρ(R

+). If we can show that the conditions of
Theorem . are satisfied, then the proof of Theorem . is completed. Using Lemma .,
we can obtain ()-(). Finally, using Lemma ., we get

∥∥Kn,m(e + e; x, y) –
(
x + y)∥∥

ρ
≤ ψn,m +


n

+
∣∣∣∣b

m
c

m
– 

∣∣∣∣ = ηn,m,

and since limn,m→∞ ηn,m = , we obtain the desired result. �

Theorem . Let {Kn,m} be a sequence linear positive operators defined by (). Then, for
each function f ∈ Cρ(R

+), we have

lim
n,m→∞‖Kn,mf – f ‖ρ = .

Proof From ()-() we have

lim
n,m→∞

∥∥Ka
n,m(eij; x, y) – eij

∥∥
ρ

= , i, j ∈ {, },

and

lim
n,m→∞

∥∥Ka
n,m(e + e; x, y) – (e + e)

∥∥
ρ

= ,

and using Theorem ., we obtain the desired result.
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Now we compute the order of approximation of the operators Ca
n,m in terms of the

weighted modulus of continuity �(f ; δn, δm) (see []) defined by

�(f ; δn, δm) = sup
(x,y)∈R

+

sup
|h|≤δ,|h|≤δ

|f (x + h, y + h) – f (x, y)|
ρ(x, y)ρ(h, h)

, f ∈ C∗
ρ

(
R+)

. ()

By the properties of weighted modulus of continuity �(f ; δn, δm) (see [], p.) we have
inequality

∣∣f (t, s) – f (x, y)
∣∣ ≤ �(f ; δn, δm)

(
 + x + y)g(t, x)g(s, y), ()

where g(t, x) = (( + |t–x|
δn

)( + (t – x))) and g(s, y) = (( + |s–y|
δm

)( + (s – y))). �

Theorem . For each f ∈ C∗
ρ(R+), there exists a positive constant M, independent of n,

m, such that

∥∥Ca
n,m(f ; x, y) – f (x, y)

∥∥
ρ ≤ M�(f ; δn, δm)

for sufficiently large n,m, where δn = an
n and δm = v(a)

n .

Proof By the linearity and monotonicity of Ca
n,m applied to inequality () we obtain

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ 
n
an

cm�(f ; δn, δm)
(
 + x + y)

×
n∑

k=

pn,k

(
x

an

)∫ k+
n an

k
n an

g(t, x) dt

×
∞∑
j=

�m,j(bmy, a)
∫ j+

cm

j
cm

g(s, y) ds.

Using the basic result obtained in []

g(t, x) ≤ 
(
 + δ

n
)(

 + δ–
n (t – x)) and g(s, y) ≤ 

(
 + δ

m
)(

 + δ–
m (s – y)),

we have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ �(f ; δn, δm)
(
 + x + y) ×

{
 +


δn

Ca
n,m

(
(e – x); x, y

)}

×
{

 +

δm

Ca
n,m

(
(e – y); x, y

)}
.

Hence, by conditions () and () we immediately have

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ �(f ; δn, δm)
(
 + x + y) ×

{
 +


δn

O
(

an

n

)( ∑
i=

xi

)}

×
{

 +

δm

ω(a)
cm

( ∑
i=

yi

)}
.
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Choosing δn = an
n and δm = v(a)

n , there exists a positive constant M, independent of n, m,
such that the following inequality is satisfied:

∣∣Ca
n,m(f ; x, y) – f (x, y)

∣∣ ≤ M�(f ; δn, δm)
(
 + x + y) ×

{
 +

∑
i=

xi

}
×

{
 +

∑
i=

yi

}
.

For sufficiently large n, m, we obtain

∥∥Ca
n,m(f ; x, y) – f (x, y)

∥∥
ρ ≤ M�(f ; δn, δm),

which implies the desired result. �

5 Approximation in the space of Bögel continuous functions
In this section, we give a generalization of the operators defined in () for the B-continuous
functions. First, we need to introduce a GBS operator related to bivariate Chlodowsky-
Szasz-Kantorovich-Charlier-type operators and investigate some of its smoothness prop-
erties. The concepts of B-continuity and B-differentiability were initiated by Bögel [, ].
To provide uniform approximation of B-continuous functions, GBS operators are used.
For the first time, the term GBS operators were introduced by Badea et al. [, ]. A well-
known theorem for approximation of B-continuous and B-differentiable functions was
presented and proved by Bögel et al. []. Recently, Agrawal and Ispir [] established the
degree of approximation for bivariate Chlodowsky-Szász-Charlier-type operators. In [],
GBS operators of Lupas-Durrmeyer type based on Polya distribution are defined. The de-
gree of approximation is also discussed by means of the mixed modulus of smoothness and
the mixed K-functional. Further, Agrawal and Sidharth [] introduced the approximation
of Bögel continuous functions by GBS operators and discussed the degree of approxima-
tion by means of the Lipschitz class of Bögel continuous functions, mixed modulus of
smoothness, and the mixed K-functional. Significant contribution in the area of approx-
imation theory are done by several researchers [, –]. Inspired by the above work,
we propose the GBS operators with the operator defined by relation (). Now, we recall
some basic definitions and notation. The details can be found in [, ].

Let I and J be compact real intervals, and A = I ×J . For any f : A → R and any (t, s), (x, y) ∈
A, let �(t,s)f (x, y) be the bivariate mixed difference operators defined as

�(t,s)f (x, y) = f (t, s) – f (t, y) – f (x, s) + f (x, y).

A function f : A → R is called a B-continuous (Bögel-continuous) at (x, y) ∈ A if

lim
(t,s)→(x,y)

�(t,s)f (x, y) = .

If f is B-continuous at any (x, y) ∈ A, then f is B-continuous on A. We denote by Cb(A) =
{f |f : A → R, f B-bounded on A}, the space of all B-continuous functions on A. A func-
tion f : A → R is called B-differentiable on (x, y) ∈ A if the following limit exists and is
finite:

lim
(t,s)→(x,y)

�(t,s)f (x, y)
(t – x)(s – y)

= DBf (x, y) < ∞.
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We denote by Db(A) = {f |f : A → R, f B-differentiable on A} the space of all B-
differentiable functions.

The function f : A → R is B-bounded on D if there exists K >  such that |�(t,s)f (x,y)| ≤ K
for all (t, s), (x, y) ∈ A. Here, if A is a compact subset, then each B-continuous function is a
B-bounded function on A. We denote by Bb(A) the space of all B-bounded functions on A
equipped with the norm ‖f ‖B = sup(x,y),(t,s)∈A |�(t,s)f (x, y)|.

To evaluate the approximation degree of a B-continuous function using linear posi-
tive operators, an important tool is the mixed modulus of continuity. Let f ∈ Bb(Ian ).
The mixed modulus of continuity of f is the function ωB : [,∞) × [,∞) → R defined
by

ωB(f ; δ, δ) = sup
{�(t,s)f (x, y) : |t – x| ≤ δ, |s – y| ≤ δ

}

for (t, s), (x, y) ∈ A.
For Ide = [, d] × [, e], let Cb(Ide) denote the space of all B-continuous functions on Ide,

and let C(Ide) be the space of all ordinary continuous functions on Ide.
We define the GBS operators of the Ca

n,m given by (), for any f ∈ C(Ide) and n, m ∈ N , by

Sa
n,m

(
f (t, s); x, y

)
= Ca

n,m
(
f (t, y) + f (x, s) – f (t, s); x, y

)
()

for all (x, y) ∈ Ide.
More precisely, for any f ∈ C(Ide), the GBS operator of Chlodowsky-Szász-Kantorovich-

Charlier operators is given by

Sa
n,m(f ; x, y) =

n
an

cm

n∑
k=

∞∑
j=

pn,k

(
x

an

)
�m,j(bmy, a)

×
∫ j+

cm

j
cm

∫ k+
n an

k
n an

(
f (t, y) + f (x, s) – f (t, s); x, y

)
dt ds.

Theorem . If f ∈ Cb(Ide), then for any (x, y) ∈ Ide and any m, n ∈ N , we have

∣∣Sa
m,n

(
f (t, s); x, y

)
– f (x, y)

∣∣ ≤ ωB(f ; δn, δm),

where δn = (ρ(a) an
n )/ and δm = ( ς (a)

cm
)/.

Proof By using the properties of ωB we obtain

∣∣�(x,y)f (t, s)
∣∣ ≤ ωB

(
f ; |t – x|, |s – y|) ≤

(
 +

|t – x|
δn

)(
 +

|s – y|
δm

)
ωB(f ; δn, δm) ()

for all (x, y), (t, s) ∈ Ide and δn, δm > . Hence, from the monotonicity and linearity of
the operators Sa

n,m(f (t, s); x, y), using the Cauchy-Schwarz inequality, we get from ()
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that

∣∣Sa
n,m

(
f (t, s); x, y

)
– f (x, y)

∣∣
≤ Ca

n,m
(∣∣�(x,y)f (t, s)

∣∣; x, y
)

≤
(

Ca
n,m(e; x, y) +


δn

(
Ca

n,m
(
(e – x); x, y

))/

+

δm

(
Ca

n,m
(
(e – y); x, y

))/ +

δn

(
Ca

n,m
(
(e – x); x, y

))/

× 
δm

(
Ca

n,m
(
(e – y); x, y

))/
)

ωB(f ; δn, δm).

Using inequalities () and (), we have

∣∣Sa
n,m

(
f (t, s); x, y

)
– f (x, y)

∣∣

≤
{

 +

δn

(
ρ(a)

an

n

)/

+

δm

(
ς (a)
cm

)/

+


δnδm

(
ρ(a)

an

n

)/(
ς (a)
cm

)/}
,

from which the desired result is immediate by choosing δn = (ρ(a) an
n )/ and δm =

( ς (a)
cm

)/. �

In the following, the approximation of Lipschitz class of B-continuous functions. For
 < γ ≤ , let

LipL γ =
{

f ∈ C(Ian ) :
∣∣�(x,y)f [t, s; x, y]

∣∣ ≤ L‖r – s‖γ
}

,

where r = (u, v), s = (x, y) ∈ Ian , and ‖r – s‖ = {(u – x) + (v – y)}/ is the Euclidean norm, be
the Lipschitz class of B-continuous functions. The next result gives the rate of convergence
of the operator Sa

n,m(f (t, s); x, y) in terms of the Lipschitz class.

Theorem . If f ∈ LipL γ , then for every (x, y) ∈ Ide, we have

∣∣Sa
n,m

(
f (t, s); x, y

)
– f (x, y)

∣∣ ≤ L
{
δn(x) + δm(y)

}γ /

for L >  and γ ∈ (, ].

Proof Using the definition of the operators Sa
n,m(f (t, s); x, y), we can write

Sa
n,m

(
f (t, s); x, y

)
= Ca

n,m
(
f (x, s) + f (t, y) – f (t, s); x, y

)
= Ca

n,m
(
f (x, y) – �(x,y)f (t, s); x, y

)
= f (x, y)Ca

n,m(e; x, y) – Ca
n,m

(
�(x,y)f (t, s); x, y

)
.

By the hypothesis we get

∣∣Sa
n,m

(
f (t, s); x, y

)
– f (x, y)

∣∣ ≤ Ca
n,m

(∣∣�(x,y)f (t, s)
∣∣; x, y

) ≤ LCa
n,m

(‖r – s‖γ ; x, y
)
.
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For u = 
γ

and v = 
–γ

, applying the Hölder inequality and Remark ., we get

∣∣Sa
n,m

(
f (t, s); x, y

)
– f (x, y)

∣∣ ≤ L
{

Ca
n,m

(‖r – s‖, x, y
)}γ /

≤ L
{

Ca
n,m

(
(u – x), x, y

)
+ Ca

n,m
(
(v – y), x, y

)}γ /,

which leads us to the required result. �

Theorem . If f ∈ Db(Ide) and DBf ∈ B(Ide), then, for each (x, y) ∈ Ide, we get

∣∣Sa
n,m(f ; x, y) – f (x, y)

∣∣ ≤ C
{

‖DBf ‖∞ + ωmixed(f ; δn, δm)
√

x + x
√

y + y + 
}
δnδm

+
{
ωmixed(f ; δn, δm)

(
δm

√
x + x + x + x

√
y + y + 

+ δn
√

y + y + y + y + 
√

x + x
)}

,

where δn =
√

an
n , δm =

√
η(a)
cm

, η(a) = max{τ (a),ω(a)}, and C is a constant depending on n, m
only.

Proof By our hypothesis,

�(x,y)f (t, s) = (t – x)(s – y)DBf (α,β), with x < α < t; y < β < s.

Clearly,

DBf (α,β) = �(x,y)DBf (α,β) + DBf (α, y) + DBf (x,β) – DBf (x, y).

Since DBf ∈ B(Ide), from the above equalities we have

∣∣Sa
n,m

(
�(x,y)f (t, s); x, y

)∣∣
=

∣∣Sa
n,m

(
(t – x)(s – y)DBf (α,β); x, y

)∣∣
≤ Sa

n,m
(|t – x||s – y|∣∣�(x,y)DBf (α,β)

∣∣; x, y
)

+ Sa
n,m

(|t – x||s – y|(∣∣DBf (α, y)
∣∣ +

∣∣DBf (x,β)
∣∣ +

∣∣DBf (x, y)
∣∣); x, y

)
≤ Sa

n,m
(|t – x||s – y|ωmixed

(
DBf ; |α – x|, |β – y|); x, y

)
+ ‖DBf ‖∞Sa

n,m
(|t – x||s – y|; x, y

)
. ()

By the properties of mixed modulus of smoothness ωmixed we can write

ωmixed
(
DBf ; |α – x|, |β – y|) ≤ ωmixed

(
DBf ; |t – x|, |s – y|)

≤ (
 + δ–

n |t – x|)( + δ–
m |s – y|)ωmixed(DBf ; δn, δm). ()

Combining () and () and using the Cauchy-Schwarz inequality, we find

∣∣Sa
n,m(f ; x, y) – f (x, y)

∣∣ =
∣∣Sa

n,m�(x,y)f (t, s); x, y
∣∣

≤ ‖DBf ‖∞
√

Sa
n,m

(
(t – x)(s – y); x, y

)
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+
(
Sa

n,m
(|t – x||s – y|; x, y

)
+ δ–

n Sa
n,m

(
(t – x)|s – y|; x, y

)
+ δ–

m Sa
n,m

(|t – x|(s – y); x, y
)

+ δ–
n δ–

m Sa
n,m

(
(t – x)(s – y); x, y

))
ωmixed(DBf ; δn, δm)

≤ ‖DBf ‖∞
√

Sa
n,m

(
(t – x)(s – y); x, y

)

+
(√

Sa
n,m

(
(t – x)(s – y); x, y

)

+ δ–
n

√
Sa

n,m
(
(t – x)(s – y); x, y

)

+ δ–
m

√
Sa

n,m
(
(t – x)(s – y); x, y

)

+ δ–
n δ–

m Sa
n,m

(
(t – x)(s – y); x, y

))
ωmixed(DBf ; δn, δm). ()

For (x, y), (t, s) ∈ Ide and i, j ∈ {, }, we have

Sa
n,m

(
(t – x)i(s – y)j; x, y

)
= xBn

(
(t – x)i; x

)
yP∗

m
(
(s – y)j; y

)
. ()

Since, by Remark .,

xBn
(
(t – x); x

)
= O

(
an

n

)(
x + x

)
,

xBn
(
(t – x); x

)
= O

(
an

n

)(
x + x + x + x

)
,

yP∗
m
(
(s – y); y

) ≤ τ (a)
cm

(
y + y + 

)
,

yP∗
m
(
(s – y); y

) ≤ ω(a)
cm

(
y + y + y + y + 

)
,

combining () and () and choosing δn =
√

an
n , δm =

√
η(a)
cm

, and η(a) = max(τ (a),ω(a)),
we get the required result. �

6 Conclussion
The purpose of this paper is to provide a better error estimation of convergence by mod-
ification of Szász operators. We have defined a Szasz-Kantorovich-Chlodowsky gener-
alization of these modified operators by using Charlier polynomials. This type of mod-
ification enables better error estimation for a certain function in comparison to the
Szász-Kantorovich-Chlodowsky operators and Szasz-Chlodowsky-type operators based
on Charlier polynomials. We obtained some approximation results via the well-known
Korovkin-type theorem. We have also calculated the rate of convergence of operators by
means of Peetre’s K-functional and partial moduli of continuity. Lastly, we discussed the
degree of approximation for Bögel continuous and Bögel differentiable functions by means
of the Lipschitz class and mixed modulus of smoothness.
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