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Abstract
The discrete generalized Cesàro matrix At = (ank) is the triangular matrix with nonzero
entries ank = tn–k/(n + 1), where t ∈ [0, 1]. In this paper, boundedness, compactness,
spectra, the fine spectra and subdivisions of the spectra of discrete generalized
Cesàro operator on �p (1 < p <∞) have been determined.
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1 Introduction
The lower triangular matrix At = (cnk) defined by cnk = tn–k/(n + ),  < t ≤  is called a
discrete generalized Cesàro operator. The matrix reduces to the Cesàro matrix by set-
ting t = . In , Rhaly [] showed that the discrete generalized Cesàro operator At on
the � Hilbert space was a bounded compact linear operator and computed its spectrum.
Also in [], lower bounds for these classes were obtained under certain restrictions on �p

( < p < ∞) by Rhoades. In this article, we show that this operator is a compact linear oper-
ator, calculate its spectrum and get two subdivisions of this spectrum on the �p ( < p < ∞)
sequence space.

2 Boundedness of discrete generalized Cesàro operator
In , Rhaly [] showed that the discrete generalized Cesàro operator At on the Hilbert
space � is a bounded linear operator. We will show that At is a bounded linear operator
on �p ( < p < ∞).

Theorem  ([] (Hardy inequalities)) If p > , an ≥ , and An = a + a + · · · + an, then
unless all an’s are ,

∑(
An

n

)p

<
(

p
p – 

)p ∑
ap

n (.)

inequality is provided. This constant is the best possible.
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Theorem  At ∈ B(�p) and ‖At‖B(�p) ≤ p
p– for  < t < , where  < p < ∞.

Proof Using Theorem , since  < t < , we have

‖Atx‖p
p =

∞∑

n=

|yn|p =
∞∑

n=

∣∣∣∣∣


n + 

n∑

k=

tn–kxk

∣∣∣∣∣

p

≤
∞∑

n=

(


n + 

n∑

k=

|t|n–k|xk|
)p

≤
∞∑

n=

(


n + 

n∑

k=

|xk|
)p

≤
(

p
p – 

)p ∞∑

n=

|xn|p =
(

p
p – 

)p

‖x‖p
p.

Hence we get

At ∈ B(�p) and ‖At‖ ≤ p
p – 

. �

3 Compactness of discrete generalized Cesàro operator
Compact linear operators have a great deal of application in practice. For instance, they
play a central role in the theory of integral equations and in various problems of mathe-
matical physics.

Disentangling the historical development of the spectral theory of compact linear oper-
ators is particularly hard because many of the results were originally proved early in the
twentieth century for integral equations acting on particular Banach spaces of functions.
These operators behave very much like familiar finite dimensional matrices without nec-
essarily having finite rank. For a compact linear operator, spectral theory can be treated
fairly completely in the sense that Fredholm’s famous theory of linear integral equations
may be extended to linear functional equations Tx – λx = y with a complex parameter λ.
This generalized theory is called the Riesz-Schauder theory.

Definition  ([]) Let X and Y be normed spaces. An operator T : X → Y is called a
compact linear operator (or completely continuous linear operator) if T is linear and if,
for every bounded subset M of X, the image T(M) is relatively compact, that is, the closure
T(M) is compact.

From the definition of compactness of a set, we readily obtain a useful criterion for the
operator.

Theorem  ([]) Let X and Y be normed spaces and T : X → Y be a linear operator. Then
T is compact if and only if it maps every bounded sequence (xn) in X onto a sequence (Txn)
in Y which has a convergent subsequence.

The following theorem makes it easy to show the compactness of a linear operator over
a normed space.
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Theorem  ([]) Let X and Y be normed spaces and T : X → Y be a linear operator.
Then:

(a) If T is bounded and dim T(X) < ∞, the operator T is compact.
(b) If dim X < ∞, the operator T is compact.

The following is important as a tool for proving compactness of a given operator as the
uniform operator limit of a sequence of compact linear operators.

Theorem  ([]) Let (Tn) be a sequence of compact linear operators from a normed space
X into a Banach space Y . If (Tn) is uniformly operator convergent, say, if ‖Tn – T‖ → ,
then the limit operator T is compact.

In , Rhaly [] showed that the discrete generalized Cesàro operator At on the Hilbert
space � is a compact linear operator. We show that At is a compact linear operator on �p

( < p < ∞).

Theorem  At is a compact linear operator over �p ( < p < ∞) for  < t < .

Proof Let

Ar
t (x) =

(
x,




(tx + x),


(
tx + tx + x

)
, . . . ,


r + 

r∑

k=

tr–kxk , , , . . .

)
.

For ∀r ∈ N, we obtain that dim(Ar) = r +  < ∞. Hence, from Theorem , for all r ∈ N, the
operator Ar is compact on �p. With triangular inequality and Hölder’s inequality, for all
x ∈ �p, we have

∥∥(
Ar

t – At
)
(x)

∥∥p
p =

∞∑

n=r+

∣∣∣∣∣


n + 

n∑

k=

tn–kxk

∣∣∣∣∣

p

≤
∞∑

n=r+

{


n + 

n∑

k=

tn–k|xk|
}p

≤
∞∑

n=r+


(n + )p

{[ n∑

k=

t(n–k)q

] 
q
[ n∑

k=

|xk|p
] 

p
}p

≤ ‖x‖p
p

∞∑

n=r+


(n + )p

[ n∑

k=

t(n–k)q

] p
q

= ‖x‖p
p

∞∑

n=r+


(n + )p

[
 + tq + · · · +

(
tq)n] p

q

= ‖x‖p
p

∞∑

n=r+


(n + )p

[
 – (tq)n+

 – tq

] p
q

. (.)

Then we get

∥∥Ar
t – At

∥∥p
p ≤

∞∑

n=r+


(n + )p

[
 – (tq)n+

 – tq

] p
q

. (.)
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Hence, we obtain

cn+

cn
=

(n + )p

(n + )p

[
 – (tq)n+

 – (tq)n+

] p
q

→ ,

where

cn =


(n + )p

[
 – (tq)n+

 – tq

] p
q

.

After that, we get

n
(

cn+

cn
– 

)

= n
{

(n + )p

(n + )p

[
 – (tq)n+

 – (tq)n+

] p
q

– 
}

, tq =: β

= n
{(

 –


n + 

)p[
 –

βn+ – βn+

 – βn+

] p
q

– 
}

= n
{[

 –
p

n + 
+ o

(


n + 

)][
 +

p
q

βn+ – βn+

 – βn+ + o
(

βn+ – βn+

 – βn+

)]
– 

}
,

that is,

n
(

cn+

cn
– 

)
→ –p < –.

Thus, from the Raabe test,
∑∞

n= cn converges, and therefore
∑∞

k=n ck →  (for n → ∞).
From (.), we have ‖Ar

t – At‖ →  (for r → ∞). Thus, At is the compact linear operator
over �p ( < p < ∞) for  < t <  from Theorem . �

4 Spectrum of discrete generalized Cesàro operator
Definition  Let X 	= {} be a complex normed space and T : D(T) → X be a linear op-
erator with domain D(T) ⊂ X. A number λ ∈ C that provides the following conditions is
called the regular value of T , and the set of all regular values of T will be denoted by ρ(T)
and it is called the resolvent set of T :

(R) Rλ(T) := T–
λ := (T – λI)– resolvent operator exists,

(R) Rλ(T) is bounded, and
(R) Rλ(T) is defined on a set which is dense in X.

Moreover, σ (T) = C – ρ(T) is called the spectrum of T .

Furthermore, the spectrum σ (T) naturally splits into three disjoint sets, some of which
may be empty. The discrete splitting of the spectrum can be defined as the point spectrum,
the continuous spectrum and the residual spectrum as follows.

Definition  ([])
(a) The point spectrum or discrete spectrum σp(T) is the set such that Rλ(T) does not

exist. A λ ∈ σp(T) is called an eigenvalue of T .
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(b) The continuous spectrum σc(T) is the set such that Rλ(T) exists and satisfies (R)

but not (R), that is, Rλ(T) is unbounded.

(c) The residual spectrum σr(T) is the set such that Rλ(T) exists (and may be bounded

or not) but does not satisfy (R), that is, the domain of Rλ(T) is not dense in X .

Spectral theory is an important part of functional analysis. It plays a crucial role in many

branches of mathematics such as function theory, complex analysis, differential and inte-

gral equations, control theory and also in numerous applications as they are intimately

related to the stability of the underlying physical systems. For more information on spec-

trum, see [].

The following theorem tells us that the point spectrum of a compact linear operator is

not complicated. In fact, we also know that each spectral value λ 	=  of a compact lin-

ear operator is an eigenvalue from the next theorem. The spectrum of a compact linear

operator largely resembles the spectrum of an operator on a finite dimensional space.

Theorem  ([]) A compact linear operator T : X → X on a normed space X has the fol-

lowing properties:

(a) The set of the eigenvalues of T is countable (perhaps finite or even empty).

(b) λ =  is the only possible point of accumulation of that set.

(c) Every spectral value λ 	=  is an eigenvalue.

(d) If X is infinite dimensional, then  ∈ σ (T).

4.1 Spectrum of discrete generalized Cesàro operator on �p (1 < p < ∞)

Spectrum of compact Rhaly operator was specified in [] and []. The spectrum of discrete

generalized Cesàro operator At on the Hilbert space � was examined by Rhaly [] in .

We determine the spectrum of At on �p ( < p < ∞). Let S := { 
n : n = , , . . .}.

In this section, we will compute the spectrum of the generalized discrete generalized

Cesàro matrix, the compact linear operator At , where  < t < .

Theorem  σp(At ,�p) = S for  < t < , where  < p < ∞.

Proof Let

Atx = λx for  < p < ∞,
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where x 	= θ . In this case, equations

x = λx,




(tx + x) = λx,



(
tx + tx + x

)
= λx,




(
tx + tx + tx + x

)
= λx,

...


n + 

( n∑

k=

tn–kxk

)
= λxn,

...

(.)

are provided.
(i) From equation ( – λ)x = , if x 	=  then λ = . From (.), we have

⇒ 


(tx + x) = x ⇒ 


tx =



x ⇒ x = tx

⇒ 


(tx + tx + x) = x ⇒ 


tx =



x ⇒ x = tx

⇒ ⇒ xn = tnx, x 	= ,  < t < 

...

Since
∣∣∣∣
xn+

xn

∣∣∣∣
p

= tp → tp < ,

we get
∑

k |xk|p = |x|∑k |tp|k < ∞. Hence, we have (xn) = (tnx) ∈ �p. Therefore, the
eigenvector corresponding to λ = , x = (x, tx, tx, tx, . . .) ∈ �p, that is, we have λ =
 ∈ σp(At ,�p).

(ii) Let x = . Therefore, we obtain




x = λx ⇒
(

λ –



)
x = 

from the second equation in (.). If x 	= , then λ = 
 . Hence, we obtain




(tx + x) =



x ⇒ 


tx =



x ⇒ x = tx,




(tx + tx + x) =



x ⇒ 


tx =



x ⇒ x = tx,




(tx + tx + tx + x) =



x ⇒ 


tx =



x ⇒ x = tx,

... ⇒ xn = ntn–x
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from the other equations in (.). Then, since

∣∣∣∣
xn+

xn

∣∣∣∣
p

=
(

n + 
n

)p

tp → tp < ,

we have
∑

n |xn|p < ∞, that is, x = (xn) ∈ �p. Thus, the eigenvector corresponding to λ = 


is x = (, x, tx, tx, . . .) ∈ �p, i.e., λ = / ∈ σp(At ,�p).
(iii) If xm is the first nonzero component of the sequence x = (xn), then from mth equa-

tion in (.), i.e.,


m + 

( m∑

k=

tm–kxk

)
= λxm,

we get


m + 

xm = λxm ⇒
(

λ –


m + 

)
xm = , xm 	=  ⇒ λ =


m + 

.

In this case, we have

xm+n =
(m + )(m + ) · · · (m + n)

n!
tnxm for all n ≥ 

from other equations in (.). Since t ∈ (, ),

∣∣∣∣
xm+n+

xm+n

∣∣∣∣
p

=
(

m + n + 
n

)p

tp → tp <  (by n → ∞),

the eigenvector corresponding to λ = /(m + ) is

x =
(

, , . . . , xm, (m + )txm,
(m + )(m + )


txm,

. . . ,
(m + )(m + ) · · · (m + n)

n!
tnxm, . . .

)
∈ �p,

i.e., λ = /(m + ) ∈ σp(At ,�p). Hence, σp(At ,�p) = S = { 
m : m = , , . . .}. �

We will use the following lemma to find the adjoint on the �p ( < p < ∞) sequence space
of a linear transform.

Lemma  ([], p. ) If A ∈ B(�p) ( < p < ∞), then A can be represented by an infinite
matrix and A∗, which is an element of B(�q), where 

p + 
q = , can be represented by the

transpose of A matrix.

The adjoint matrix of At on �p ( < p < ∞) is as follows:

Lemma  The adjoint operator over �p (p > ) of the matrix At can be given as its trans-
position. That is, the matrix (At)∗ = (a∗

nk) is given by

a∗
nk =

{
tk–n

k+ ,  ≤ n ≤ k,
, n > k.

(.)
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Theorem  σp(A∗
t ,�∗

p
∼= �q) = S for  < t < , where  < p < ∞.

Proof Let x 	= θ and A∗
t x = λx. Then, for all n ≥ , the equations

x +
t


x +
t


x +

t


x + · · · = λx,




x +
t


x +
t


x + · · · = λx,




x +
t


x + · · · = λx,




x + · · · = λx,

...

are realized from Lemma . Therefore  /∈ σp(A∗
t ,�q) because if λ =  then xn =  for all

n = , , , . . . . Hence, we get

xn =

tn

(λ – 
n )(λ – 

n– ) · · · (λ – )
λn x, x 	= 

because x 	= θ . That is, we have

xn =

tn

n∏

k=

(
 –


kλ

)
x for all n ≥ ,

where x 	= . If λ = 
m for an integer m, then we have

∑
n |xn|q < ∞ because xn =  for

every n ≥ m, so that, x = (xn) ∈ �q is obtained. Hence, we get λ = 
m ∈ σp(A∗

t ,�∗
p
∼= �q) for

all integers m. Let λ 	= 
m for all integers m. Since

∣∣∣∣
xn+

xn

∣∣∣∣
q

=

tq

∣∣∣∣ –


λ(n + )

∣∣∣∣
q

→ 
tq >  (n → ∞)

∑
n |xn|q series is divergent. So, there is no other eigenvalue, i.e., we have

σp
(
A∗

t ,�q
)

= S. �

Theorem  σ (At ,�p) = S ∪ {} for  < t < , where  < p < ∞.

Proof Since dim�p = ∞, we have  ∈ σ (At ,�p) from Theorem . Also, since At is a compact
linear operator by Theorem , each nonzero spectral value of At is an eigenvalue from
Theorem . Therefore, σ (At ,�p) = S ∪ {} is obtained from Theorem . �

4.2 The fine spectrum of discrete generalized Cesàro operator on �p (1 < p < ∞)
Let X be a Banach space, B(X) denotes the collection of all bounded linear operators on
X and T ∈ B(X). Then there are three possibilities for R(T), the range of T :

(I) R(T) = X ,
(II) R(T) = X , but R(T) 	= X ,
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Table 1 Goldberg’s decomposition of the spectrum

(1) (2) (3)
R(λ; T) exists and is bounded R(λ; T) exists and is unbounded R(λ; T) does not exists

(I) R(λI – T ) = X λ ∈ ρ(T ) - λ ∈ σp(T )
(II) R(λI – T ) = X λ ∈ ρ(T ) λ ∈ σc(T ) λ ∈ σp(T )
(III) R(λI – T ) 	= X λ ∈ σr (T ) λ ∈ σr (T ) λ ∈ σp(T )

(III) R(T) 	= X ,
and three possibilities for T–:

() T– exists and is continuous,
() T– exists but is discontinuous,
() T– does not exist.
If these possibilities are combined in all possible ways, nine different states are created.

These are labeled by I, I, I, II, II, II, III, III, III. For example, let an operator be
in state III. Then R(T) 	= X and T– exist and T– is unbounded. From the closed graph
theorem, I is empty (see []).

Applying the Goldberg classification to the operator Tλ := λI – T , we have
(I) Tλ = λI – T is surjective,

(II) R(Tλ) = X , but R(Tλ) 	= X ,
(III) R(Tλ) 	= X ,

and three possibilities for T–
λ :

() Tλ = λI – T is injective and T–
λ is bounded,

() Tλ = λI – T is injective and T–
λ is unbounded, and

() Tλ = λI – T is not injective.
If λ is a complex number such that Tλ = λI – T ∈ I or Tλ = λI – T ∈ II, then λ ∈ ρ(T , X).
All scalar values of λ not in ρ(T , X) comprise the spectrum of T . The further classification
of σ (T , X) gives rise to the fine spectrum of T . That is, σ (T , X) can be divided into the
subsets Iσ (T , X), Iσ (T , X), IIσ (T , X), IIσ (T , X), IIIσ (T , X), IIIσ (T , X), IIIσ (T , X).
For example, if Tλ = λI – T is in a given state, III (say), then we write λ ∈ IIIσ (T , X).

We can summarize the above in Table .
This classification of the spectrum is called the Goldberg classification. Let us give the

theorems that will help the Goldberg classification.

Theorem  ([], p. ) If T∗ has a bounded inverse, then R(T∗) is closed.

Theorem  ([], p. ) T has a dense range if and only if T∗ is -.

Theorem  ([], p. ) R(T∗) = X∗ if and only if T has a bounded inverse.

Theorem  ([], p. ) R(T) = X and T has a bounded inverse if and only if R(T∗) = X∗

and T∗ has a bounded inverse.

The fine spectra of bounded linear operators defined by some particular limitation ma-
trices over some sequence spaces were first discussed in [, –] and [].

Then the spectra and fine spectra of some operators have been studied by various au-
thors [–] and are still being studied.

We will examine the fine spectrum of a discrete generalized Cesàro operator on �p

( < p < ∞), which is compact in this section.
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Theorem   ∈ IIσ (At ,�p) for  < t < , where  < p < ∞.

Proof Since σp(At ,�p) = S, we have  /∈ σp(At ,�p). Thus, (At)– exists. Hence At ∈ () ∪ ().
The operator A∗

t is - because  /∈ σp(A∗
t ,�q). Hence, we have R(At) = �p from Theorem .

If Atx = y, we obtain

yn =


n + 

n∑

k=

tn–kxk .

Therefore, we get

x = y and xn = (n + )yn – tnyn–

from

(n + )yn = tnx + tn–x + · · · + txn– + xn,

tnyn– = t
(
tn–x + tn–x + · · · + xn–

)
.

Then we give the matrix A–
t = (cnk) with

cnk =

⎧
⎪⎨

⎪⎩

n + , k = n,
–tn, k = n – ,
, otherwise.

If we take y = (yn) = ( (–)n

n+ ) ∈ �p ( < p < ∞), then we have

(xn) =
(

(n + )
(–)n

n + 
– (–)n– nt

n

)
=

(
(–)n( + t)

)
/∈ �p.

Hence At is not onto, that is, R(At) 	= �p. Therefore, At ∈ II. As a consequence, At ∈ II

or At ∈ II. We have At /∈ II because  ∈ σ (At ,�p). Then we have At ∈ II, i.e.,  ∈
IIσ (At ,�p). �

Theorem  IIIσ (At ,�p) = S for  < t < , where  < p < ∞.

Proof If λ = 
m , then Tλ = (λI –At) has no inverse because σp(At ,�p) = S = { 

m : m = , , . . .},
that is, we have Tλ ∈ (). Since λ = 

m ∈ σp(A∗
t ,�p), operator T∗

λ = λI –A∗
t is not - for λ = 

m .
Tλ = λI – At does not have a dense image by Theorem . Hence, R(Tλ) 	= �p, i.e., Tλ ∈ III.
Accordingly, T 

m
= 

m I – At ∈ III, and hence, we have λ = 
m ∈ IIIσ (At ,�p). �

5 Subdivision of the spectrum of discrete generalized Cesàro operator on �p

(1 < p < ∞)
Given a bounded linear operator T in a Banach space X, we call a sequence (xk) in X a
Weyl sequence for T if ‖xk‖ =  and ‖Txk‖ →  as k → ∞.

In what follows, we call the set

σap(T) := {λ ∈K : there exists a Weyl sequence for λI – T} (.)
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the approximate point spectrum of T . Moreover, the subspectrum

σδ(T) := {λ ∈K : λI – T is not surjective} (.)

is called the defect spectrum of T .
The two subspectra (.) and (.) form a (not necessarily disjoint) subdivision

σ (T) = σap(T) ∪ σδ(T) (.)

of the spectrum. There is another subspectrum

σco(T) =
{
λ ∈K : R(λI – T) 	= X

}
(.)

which is often called compression spectrum in the literature and which gives rise to an-
other (not necessarily disjoint) decomposition

σ (T) = σap(T) ∪ σco(T) (.)

of the spectrum. Clearly, σp(T) ⊆ σap(T) and σco(T) ⊆ σδ(T). Moreover, comparing these
subspectra, we note that

σr(T) = σco(T) \ σp(T) (.)

and

σc(T) = σ (T) \ [
σp(T) ∪ σco(T)

]
. (.)

It can sometimes be useful to establish a relationship between the spectra of a bounded
linear operator and its adjoint.

Proposition  ([], Proposition .) The spectra and subspectra of an operator T ∈ B(X)
and its adjoint T∗ ∈ B(X∗) are related by the following relations:

(a) σap(T∗) = σδ(T);
(b) σδ(T∗) = σap(T);
(c) σp(T∗) = σco(T);
(d) σ (T) = σap(T) ∪ σp(T∗) = σp(T) ∪ σap(T∗).

By the definitions given above, we can write Table .
This separation of the spectrum of some operator has been studied by various authors

in [, –, ] and is still being studied.

Theorem  For  < t <  and  < p < ∞, we have
(a) σap(At ,�p) = S ∪ {};
(b) σδ(At ,�p) = S ∪ {};
(c) σco(At ,�p) = S.
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Proof (a) We have IIIσ (At ,�p) = ∅ from Table  because σ (At ,�p) = S ∪ {} by Theo-
rem , IIIσ (At ,�p) = S by Theorem  and IIσ (At ,�p) = {} by Theorem . Hence, we
get

σap(At ,�p) = σ (At ,�p) \ IIIσ (At ,�p) = S ∪ {}

by Table .
(b) Since σ (At ,�p) = S ∪ {}, IIIσ (At ,�p) = S and IIσ (At ,�p) = {} from respectively

Theorems ,  and , we have Iσ (At ,�p) = ∅ by Table . Therefore, we obtain

σδ(At ,�p) = σ (At ,�p) \ Iσ (At ,�p) = S ∪ {}

by Table .
(c) Since σ (At ,�p) = S ∪ {}, IIIσ (At ,�p) = S and IIσ (At ,�p) = {} from Theorems ,

 and  respectively, we obtain IIIσ (At ,�p) = ∅ from Table . As a result,

σco(At ,�p) = IIIσ (At ,�p) ∪ IIIσ (At ,�p) ∪ IIIσ (At ,�p) = S

by Table . �

Lemma  For  < t <  and  < p < ∞, we have
(a) σap(A∗

t ,�q) = S ∪ {};
(b) σδ(A∗

t ,�q) = S ∪ {}.

Proof Since σap(A∗
t ,�q) = σδ(At ,�p) and σδ(A∗

t ,�q) = σap(At ,�p) from Proposition , the
proof is clear. �

6 Conclusions
The spectra of summability methods, the Goldberg classification of the spectrum and the
non-discrete spectral separation of this summability methods were discussed by various
authors earlier. Still, a lot of mathematicians work on this subject. The spectrum of the
discrete generalized Cesàro operator on a Hilbert space � was calculated by Rhaly [] in
. In this article, we have obtained the spectra and various spectral separations of this
operator over �p ( < p < ∞) sequence spaces. In [], Yildirim et al. gave the spectra and
spectral division of this operator over the c and c sequence spaces. Also, a Mercerian

Table 2 Separations of the spectrum [24]

(1) (2) (3)
R(λ; T) exists and is bounded R(λ; T) exists and is unbounded R(λ; T) does not exists

(I) R(λI – T ) = X λ ∈ ρ(T ) - λ ∈ σp(T )
λ ∈ σap(T )

(II) R(λI – T ) 	= X
R(λI – T ) = X

λ ∈ ρ(T ) λ ∈ σc(T )
λ ∈ σap(T )
λ ∈ σδ (T )

λ ∈ σp(T )
λ ∈ σap(T )
λ ∈ σδ (T )

(III) R(λI – T ) 	= X λ ∈ σr (T )
λ ∈ σδ (T )
λ ∈ σco(T )

λ ∈ σr (T )
λ ∈ σap(T )
λ ∈ σδ (T )
λ ∈ σco(T )

λ ∈ σp(T )
λ ∈ σap(T )
λ ∈ σδ (T )
λ ∈ σco(T )



Yıldırım and Durna Journal of Inequalities and Applications  (2017) 2017:193 Page 13 of 13

theorem was given in []. The spectra and spectral separation of this operator over the
other sequence spaces are left as clear problems.

Acknowledgements
Our research was partially supported by the grant of Cumhuriyet University Scientific Research Project (F-522).

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
The authors have already had many joint publications. This work was carried out in collaboration between all authors.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 April 2017 Accepted: 3 August 2017

References
1. Rhaly, HCJR: Discrete generalized Cesàro operator. Proc. Am. Math. Soc. 86(3), 405-409 (1982)
2. Rhoades, BE: Lower bounds for some matrices, II. Linear Multilinear Algebra 26(1-2), 49-58 (1990)
3. Hardy, GH, Littlewood, JE, Polya, G: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1967)
4. Kreyszing, E: Introductory Functional Analysis with Applications. Wiley, New York (1978)
5. Yildirim, M: The spectrum and fine spectrum of the compact Rhaly operator. Indian J. Pure Appl. Math. 27(8), 779-784

(1996)
6. Yildirim, M: The spectrum of Rhaly operator on �p . Indian J. Pure Appl. Math. 32(2), 191-198 (2001)
7. Taylor, RB: Introduction to Functional Analysis. Wiley, New York (1980)
8. Goldberg, S: Unbounded Linear Operator. McGraw-Hill, Mew York (1966)
9. Wenger, RB: The fine spectra of the Hölder summability operator. Indian J. Pure Appl. Math. 6(6), 695-712 (1975)
10. González, M: The fine spectrum of the Cesàro operator in �p (1 < p <∞). Arch. Math. (Basel) 44(4), 355-358 (1985)
11. Rhoades, BE: The fine spectra for weighted mean operator in B(�p). Integral Equ. Oper. Theory 12(1), 82-98 (1989)
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24. Başar, F, Durna, N, Yildirim, M: Subdivisions of the spectra for generalized difference operator over certain sequence

spaces. Thai J. Math. 9(2), 285-295 (2011)
25. Amirov, R, Durna, N, Yildirim, M: Subdivisions of the spectra for Cesàro, Rhaly and weighted mean operator on �p , c

and �p . Iran. J. Sci. Technol., Trans. A, Sci. 3, 175-183 (2011)
26. Das, R: On the spectrum and fine spectrum of the upper triangular matrix U(r1, r2; s1, s2) over the sequence space c0 .

Afr. Math. (2017). doi:10.1007/s13370-017-0486-8
27. Yildirim, M, Mursaleen, M, Durna, N: The spectrum and fine spectrum of generalized Rhaly-Cesàro matrices on c0

and c. J. Inequal. Appl. (submitted)
28. Durna, N: Subdivision of the spectra for the generalized upper triangular double-band matrices 	uv over the

sequence spaces c and c. Adıyaman Univ. J. Sci. 6(1), 31-43 (2016)

http://dx.doi.org/10.1007/s13370-017-0486-8

	The spectrum and some subdivisions of the spectrum of discrete generalized Cesaro operators on lp (1<p<infty)
	Abstract
	MSC
	Keywords

	Introduction
	Boundedness of discrete generalized Cesàro operator
	Compactness of discrete generalized Cesàro operator
	Spectrum of discrete generalized Cesàro operator
	Spectrum of discrete generalized Cesàro operator on lp ( 1<p<infty)
	The ﬁne spectrum of discrete generalized Cesàro operator on lp ( 1<p<infty)

	Subdivision of the spectrum of discrete generalized Cesàro operator on lp ( 1<p<infty)
	Conclusions
	Acknowledgements
	Competing interests
	Authors' contributions
	Publisher's Note
	References


