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Abstract
By Cheeger’s isoperimetric constants, some lower bounds and upper bounds of λ1,
the first eigenvalue on a complete surface of constant curvature, are given. Some
Bonnesen-style inequalities and reverse Bonnesen-style inequalities for the first
eigenvalue are obtained. Those Bonnesen-style inequalities obtained are stronger
than the well-known Osserman’s results and the upper bound is stronger than
Osserman’s results (Osserman in Proceedings of the International Congress of
Mathematicians, Helsinki, 1978).
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1 Introduction
The classical isoperimetric problem is to determine a plane figure of largest possible area
whose boundary has a specific length and it was known in Ancient Greece. However, the
first mathematically rigorous proof was obtained only in the nineteenth century and it
was well recognized by Weierstrass though Bernoulli, Euler and Lagrange once claimed
the proof that was found flawed later. Hurwitz published a short proof using the Fourier
series that applies to arbitrary plane domain D whose boundary ∂D was not assumed to
be smooth. An elegant direct proof, based on the comparison of a smooth simple closed
curve with a circle, was given by Schmidt in  by using only the arc length formula,
expression for the area of a plane region from Green’s theorem, and the Cauchy-Schwarz
inequality []. Many other proofs have been found and some of them were stunningly
simple. The isoperimetric problem has been extended in multiple ways, for example, to
domains on surfaces and in higher dimensional spaces, or more generally to integral cur-
rents and analytic manifolds, but the proof is too difficult.

Let D be a domain (subset with nonempty interiors) in the Euclidean plane R
 with the

boundary composing of the simple curve of length L and area A. Then

L – πA ≥ , (.)

the equality holds when and only when D is a disc.
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It is known that the isoperimetric inequality (.) is equivalent to the following Sobolev
inequality (see []):

If f has compact support in D ⊂R
, then

(∫
D

|∇f |
)

– π

∫
D

f  ≥ . (.)

Here ∇ denotes the gradient operator. The equality holds in (.) if and only if f is the
characteristic function of balls.

During s, Bonnesen proved a series of inequalities of the form

L – πA ≥ BD, (.)

where the quantity BD on the right-hand side is a non-negative geometric invariant of
significance and vanishes only when D is a disc.

An inequality of the form (.) is called the Bonnesen-style inequality, and it is stronger
than the classical isoperimetric inequality. The Bonnesen-style inequality has been ex-
tended to surfaces of constant curvature and higher dimensions and many Bonnesen-
style inequalities have been found during the past. Mathematicians are still working on
unknown Bonnesen-style inequalities of geometric significance [–]. The isoperimetric
inequality for domains on surfaces M of constant curvature can be stated as follows.

Let D be a compact domain on the surface M of constant curvature. Let A and L denote
the area and the boundary length of D, respectively. Then

L – πA + MA ≥ ,

the equality holds if and only if D is a geodesic disc.
The Bonnesen-style inequality for domains on surfaces of constant curvature was first

investigated by Santaló [, ]. Klain obtained some new Bonnesen-style inequalities for
domains on surfaces of constant curvature []. By the kinematic formulas in integral ge-
ometry, Xu, Zhou et al. also obtained Bonnesen-style inequalities on a complete surface
of constant curvature (see [, ]). Osserman [] studied the Bonnesen-style inequality
for the domains on surfaces with the bounded Gauss curvature. More Bonnesen-style ho-
mothetic (Wulff) inequalities were obtained in [, , ]. Another important extension
of the isoperimetric problem in analysis is eigenvalues of the Laplacian.

Eigenvalues of the Laplacian. Let D be a domain with smooth boundary ∂D on a compact
Riemannian surface M. The eigenvalue problem

�u + λu =  in D;

u|∂D = ,

is known to have a complete system of eigenfunctions u = φn, with corresponding eigen-
values λn, where

 = λ < λ < λ < · · · < λp < · · · ↗ ∞.
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One would ask naturally a basic question: how are the properties of domain D on a
compact Riemannian surface M, that is, area of D ⊂ M, length and integrals of curvature
of ∂D, reflected in the set of eigenvalues {λn}?

In this paper, we will investigate the Bonnesen-style inequalities for the first eigenvalue
λ of Laplacian on the complete surface. Let M be a compact Riemannian surface and �

be the Laplacian-Beltrami operator acting on differential functions C∞(M). It is known
that � is an elliptic operator. The first eigenvalue λ on domain D ⊂ M can be also char-
acterized by []

λ(D) = inf
f ∈F

∫
D |∇f |∫

D |f | , (.)

where F is the set of smooth functions in D vanishing on the boundary.
The Laplace operator on a Riemannian manifold, its spectral theory and the relations

between its first eigenvalue and the geometrical data of the manifold, such as curvatures,
diameter, injectivity radius and volume, have been extensively studied in the recent math-
ematical literature. Amazing connections between the isoperimetric inequality and the
first eigenvalue of Laplacian operator have been found during the past decades. One of
the basic results is that Cheeger connected the first eigenvalue λ of the Laplacian on a
manifold to certain isoperimetric constants. For a domain D on a two-dimensional sur-
face, Cheeger considers the quantity

h = inf
D′⊂F

L′

A′ , (.)

where F is the family of relatively compact subdomains of D, A′ and L′ are the area and
the boundary length of subdomain D′ ⊂ D, respectively. Cheeger proved that

λ(D) ≥ 


h. (.)

The upper estimate of the first eigenvalue of Laplacian has been discussed by geometers
and analysts. Hersch [] obtained an upper bound for manifolds homeomorphic to the
two sphere. Cheeger [], Chavel and Feldman [] obtained upper bound for manifolds
with non-negative Ricci curvature. The comparison theorem of Cheng [] gives a sharp
upper bound for general Riemannian manifold in terms of the Ricci curvature and the
diameter of domain.

While the progress has been made on the upper bound, not too much is known about
the lower bound of the first eigenvalue. The best result is due to Lichnerowicz [] who
gives a computable sharp lower bound for manifolds whose Ricci curvature is bounded
from below by a positive constant. Cheeger [] also gives a lower estimate for general
manifolds in terms of some isoperimetric constants. These constants of Cheeger, however,
are not computable. Cheng [] observed that if the manifold is a two-dimensional convex
surface, then the isoperimetric constant has a lower bound in terms of the diameter. Since
, Li and Yau have been trying to obtain the lower bound of the first eigenvalue [, ].
Chen introduced the method in probability theory to improve almost all results proved by
others in []. For more detailed isoperimetric properties and the first eigenvalue, one can
refer to [, , –].
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In [], Osserman considered the first eigenvalue λ on the two-dimensional manifolds
with bounded Gauss curvature and obtained some lower and upper bounds of the first
eigenvalue by using Cheeger’s isoperimetric constant as follows:

Let S be a compact simply connected surface with Gauss curvature K , K ≤ –α, α > .
If D ⊂ S is simply connected and ρ is inradius of D, then

λ(D) –
α


≥ α


csch αρ. (.)

In this paper, we obtain the following lower bound of the first eigenvalue that is stronger
than Osserman’s result (.):

Let S be a simply connected complete surface with Gauss curvature K ≤  everywhere.
For any simply connected domain D ⊂ S, let ρ denote its inradius and R denote its circum-
radius. Let

α = inf
D

(–K), β = sup
D

(–K),  < α ≤ β ,

then

λ(D) –
α


≥ α


csch αρ + B,

where the quantity B is a positive number depending on α, β , ρ , R.
We also obtain the upper bound of the first eigenvalue. By Cheng’s eigenvalue compari-

son theorem ([], Theorem .), we obtain a stronger upper bound of the first eigenvalue
λ (Theorem .).

2 The Bonnesen-style isoperimetric inequalities
Let DM

r denote the geodesic disc of radius r on the complete simply connected surface of
constant Gauss curvature K ≡ M. Let AM

r , LM
r be, respectively, the area and the length of

boundary of DM
r . Then the explicit expressions for these quantities are

M = –α < : LM
r = π

sinhαr
α

, AM
r = π

sinh αr


α = π
coshαr – 

α ;

M = : LM
r = πr, AM

r = πr;

M = α > : LM
r = π

sinαr
α

, AM
r = π

sin αr


α = π
 – cosαr

α .

For the geodesic disc, the following equation can be easily verified in all three cases:

(
LM

r
) – πAM

r + M
(
AM

r
) = . (.)

The isoperimetric inequality on a surface of constant curvature K ≡ M is

L – πA + MA ≥ . (.)

Namely, given a domain D of area A, if r is chosen so that AM
r equals A, then (.) and (.)

imply L ≥ LM
r , so that the disc DM

r has minimum boundary length among all domains of
the same area.



Fang and Zhou Journal of Inequalities and Applications  (2017) 2017:190 Page 5 of 11

Osserman considered the isoperimetric inequality of two-dimensional complete surface
with bounded Gauss curvature [].

Let D be a simply connected domain whose Gauss curvature K satisfies K ≤ M. Let L
and A be the boundary length and the area of D, respectively. Then

L – πA + MA ≥ , (.)

where the equality holds if and only if K ≡ M and D is a geodesic disc.
Osserman also obtained the following Bonnesen-style isoperimetric inequalities.

Theorem A ([]) Let D be a simply connected domain whose Gauss curvature K satisfies
K ≤ M. Let ρ be the inradius of D, A be the area of D and L be the length of its boundary.
Then the following inequalities are equivalent:

LLM
ρ + MAAM

ρ ≥ π
(
A + AM

ρ

)
, (.)

L – πA + MA ≥
(

L –
LM

ρ

AM
ρ

A
)

, (.)

L – πA + MA ≥ (
L – LM

ρ

) + M
(
A – AM

ρ

). (.)

Moreover, if MA < π , then these inequalities are equivalent to

L – πA + MA ≥
(

π

LM
ρ

(
A – AM

ρ

))

. (.)

Osserman estimated lower bounds of the first eigenvalue by Cheeger’s isoperimetric
constants as follows.

Theorem B ([]) Let S be a simply connected complete surface with Gauss curvature K ,
K ≤ –α, α > . Then, for any domain D ⊂ S of circumradius R,

λ(D) –
α


≥ α


(cschαR). (.)

If D is simply connected and ρ is its inradius, then

λ(D) –
α


≥ α


(cschαρ). (.)

3 The lower bound of λ1

In this section, we give some lower bounds of the first eigenvalue λ by Cheeger’s isoperi-
metric constants and Bonnesen-style isoperimetric inequalities. We need the following
lemmas.

Lemma . Let f (r) be continuously differentiable on the interval  ≤ r ≤ r. Suppose that,
except at a finite number of the points in the interval, f ′′(r) exists and satisfies

f ′′(r) + cf (r) ≤ , f () = , f ′() = a (.)
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for some constants a, c. Let h(r) be the unique solution of

h′′(r) + ch(r) = , h() = , h′() = . (.)

Let s be any number such that h(r) >  for  < r < s, and let r = min{r, s}. Then

f (r) ≤ ah(r) (.)

for  ≤ r ≤ r.

Proof Let φ(r) = f (r)
h(r) . Then by (.) and (.)

(
hφ′)′ =

(
f ′h – fh′)′ = f ′′h – fh′′ ≤ ,

except at the singular points. By the mean value theorem, hφ′ is a weakly monotone de-
creasing function, and hence

(
hφ′)(r) ≤ (

hφ′)() = ,  ≤ r ≤ r.

That is, φ′(r) ≤ , and hence

f (r)
h(r)

= φ(r) ≤ φ() = lim
r→

f (r)
h(r)

= a

for  ≤ r ≤ r. �

Lemma . Let Dρ be a geodesic disc of radius ρ , and let Aρ be the area of Dρ . If M ≤ K ≤ 
on Dρ , then

Aρ ≤ AM
ρ , (.)

where equality holds if and only if K ≡ M on Dρ .

Proof We introduce geodesic polar coordinates in Dρ . The metric can be written as ds =
dr + g(r, θ ) dθ, where for each θ , the function f (r) = √g(r, θ ) satisfies f () = , f ′() = .
Since K ≤ , the geodesic disc of radius ρ always exists. Then with the fact K = – √g

∂

∂r
√g

and the condition M ≤ K ≤ , f (r) satisfies (.), with a = , c = M, r = ρ . By (.), we have

Aρ =
∫ π



∫ ρ



√
g(r, θ ) dr dθ ≤ π

∫ ρ


h(r) dr = AM

ρ . (.)

Since h(r) can be written explicitly as h(r) = 
π

LM
ρ , it satisfies (.) and Aρ =

∫ ρ

 L(r) dr.
The equality holds if and only if √g(r, θ ) ≡ h(r), hence K ≡ M. �

Theorem . Let S be a simply connected complete surface with Gauss curvature K ≤ 
everywhere. For any simply connected domain D ⊂ S, let A, L, R be the area, the boundary
length and the circumradius of D, respectively. Let

α = inf
D

(–K), β = sup
D

(–K),  < α ≤ β , (.)
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then

λ(D) –
α


≥ β



(
csch

βR


)

. (.)

Proof By Lemma . and (.), we have

A–β

R ≥ AR ≥ A. (.)

Via (.), the isoperimetric inequality (.) can be rewritten as

(
L
A

)

≥ π

A

+ α.

Then, by (.), we have

(
L
A

)

≥ π

A

+ α

≥ π


A–β
R

+ α

= β
(

csch
βR


)

+ α. (.)

By (.) and (.), then

λ(D) –
α


≥ β



(
csch

βR


)

.

We complete the proof. �

Since x
sinh x is monotonically decreasing for x ≥ , hence (.) is stronger than (.) if


β < α. By (.) we obtain a lower bound of λ that is stronger than the one in (.).

Theorem . Let S be a simply connected complete surface with Gauss curvature K ≤ 
everywhere. For any simply connected domain D ⊂ S, let A, L, ρ , R be the area, the boundary
length, the inradius and the circumradius of D, respectively. Let

α = inf
D

(–K), β = sup
D

(–K),  < α ≤ β , (.)

then

λ(D) –
α


≥ α


(cschαρ) + B, (.)

where

B =



(
β sinh αρ



α sinh βR


)(
α

sinhαρ

)

+



(
β sinh αρ



α sinh βR


)
α cothαρ

sinhαρ
.



Fang and Zhou Journal of Inequalities and Applications  (2017) 2017:190 Page 8 of 11

Proof By (.) and (.), we have

L
A

L–α
ρ ≥ π

(
 +

A–α
ρ

A

)
+ αA–α

ρ ,

and hence,

L
A

≥ A–α
ρ

A
α

sinhαρ
+ α cothαρ. (.)

By (.) and (.), (.) can be rewritten as

L
A

≥ A–α
ρ

A
α

sinhαρ
+ α cothαρ

≥ A–α
ρ

A–β
R

α

sinhαρ
+ α cothαρ

=
(

β sinh αρ



α sinh βR


)
α

sinhαρ
+ α cothαρ.

By (.) and (.), we have

λ(D) ≥ 


{(
β sinh αρ



α sinh βR


)
α

sinhαρ
+ α cothαρ

}

=
α


(cothαρ) + B

=
α


+

α


(cschαρ) + B,

and

B =



(
β sinh αρ



α sinh βR


)(
α

sinhαρ

)

+



(
β sinh αρ



α sinh βR


)
α cothαρ

sinhαρ
. �

Since B ≥ , hence inequality (.) is stronger than inequality (.). Let R = ρ in Theo-
rem ., that is, let D be a geodesic disc with radius ρ on S. Then let ρ → ∞ in (.), we
immediately obtain the following.

Corollary . Let S be a simply connected complete surface with K ≤ –α, α >  every-
where, then

λ(S) ≥ α


.

Next, we give a lower bound of the first eigenvalue λ.

Theorem . Let D be a complete simply connected surface and A denote the area of D.
Then

λ(D) ≥ π

A
.
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Proof By Sobolev inequality (.) and Hölder’s inequality, we have

π

∫
D

f  dx ≤
(∫

D
|∇f |dx

)

≤
∫

D
 dx

∫
D

|∇f | dx

= A
∫

D
|∇f | dx,

that is,
∫

D |∇f | dx∫
D f  dx

≥ π

A
.

By (.), we have

λ = inf
f =

∫
D |∇f | dx∫

D f  dx
≥ π

A
. �

By Lemma ., we obtain a lower bound of λ.

Corollary . Let S be a simply connected complete surface with Gauss curvature K ,
–β ≤ K ≤  everywhere. Suppose D ⊂ S, then

λ(D) ≥ β
(

csch
βR


)

.

Here R is the circumradius of D.

4 The upper bound of λ1

In this section, we consider the upper bound of the first eigenvalue λ. We start with
the following eigenvalue comparison theorem proved by Cheng in []. Denote the open
geodesic ball of radius r with center x by D(x; r). Denote by Vn(M; r) the geodesic ball of
radius r in the n-dimensional simply connected space form with constant sectional cur-
vature M. We write λ(D(x; r)) as λ(D(x; r)).

Theorem C Suppose that S is a complete Riemannian manifold and Ricci curvature of
S ≥ (n – )M, n = dim S. Then, for x ∈ S, we have

λ
(
D(x; r)

) ≤ λ
(
Vn(M; r)

)

and equality holds if and only if D(x; r) is isometric to Vn(M; r).

In particular, the eigenvalue comparison theorem is also valid when S is a two-
dimensional complete simply connected surface.

Corollary . Suppose that S is a complete simply connected surface with Gauss curvature
K ≥ M. Let Dr be a geodesic disc with radius r on S, then

λ(Dr) ≤ λ
(
DM

r
)
,

where equality holds if and only if K ≡ M on S.
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The next lemma will be needed in proving our theorem.

Lemma . ([]) Suppose that S is a simply connected complete surface with Gauss cur-
vature K ≤  everywhere. Let Dρ be a geodesic disc of radius ρ . If

α = inf
Dρ

(–K), β = sup
Dρ

(–K),  < α ≤ β , (.)

then

λ(Dρ) ≤
(

β

α cothαρ

)

+
(

π

ρ

)

. (.)

Combining Corollary . and Lemma . immediately yields the following.

Theorem . Suppose that S is a simply connected complete surface with Gauss curvature
K , –β ≤ K ≤  everywhere. Let Dρ be a geodesic disc of radius ρ , then

λ(Dρ) ≤
(

β

 cothβρ

)

+
(

π

ρ

)

. (.)

Proof Since D–β
ρ satisfies the hypotheses of Lemma . when α = β , hence

λ
(
D–β

ρ

) ≤
(

β

 cothβρ

)

+
(

π

ρ

)

.

By Corollary ., we immediately obtain (.). We complete the proof of Theorem ..
�

Since the function x coth x is monotonically increasing for x ≥ , hence inequality (.)
is stronger than (.). Let ρ → ∞ in (.), we can easily have the following corollary.

Corollary . Let S be a simply connected complete surface with Gauss curvature K ,
–β ≤ K ≤  everywhere. Then

λ(S) ≤ β


.
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