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Abstract
The elliptic equations with discontinuous coefficients are often used to describe the
problems of the multiple materials or fluids with different densities or conductivities
or diffusivities. In this paper we develop a partially penalty immersed finite element
(PIFE) method on triangular grids for anisotropic flow models, in which the diffusion
coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart
type finite element space is used on non-interface elements and the piecewise linear
Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface
elements. The piecewise linear functions satisfying the interface jump conditions are
uniquely determined by the integral averages on the edges as degrees of freedom.
The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete
interior penalty discontinuous Galerkin formulation. The solvability of the method is
proved and the optimal error estimates in the energy norm are obtained. Numerical
experiments are presented to confirm our theoretical analysis and show that the
newly developed PIFE method has optimal-order convergence in the L2 norm as well.
In addition, numerical examples also indicate that this method is valid for both the
isotropic and the anisotropic elliptic interface problems.

Keywords: elliptic interface problems; discontinuous coefficients; partially penalty;
immersed finite element method; Crouzeix-Raviart element; optimal-order error
estimates

1 Introduction
The elliptic equations with discontinuous coefficients are often used to describe phenom-
ena appearing in material sciences and fluid dynamics when there are two or more distinct
materials or fluids with different densities or conductivities or diffusivities. Since the so-
lutions of these interface problems are required to satisfy interface jump conditions from
conservation laws, it is difficult to find the exact solutions and construct high accuracy nu-
merical methods. In addition, if the interface is smooth enough, then the solution of the
interface problem is also smooth in individual regions where the coefficient is smooth.
But due to the jump of the coefficient along the interface, the global regularity of the so-
lution is usually low and the solution belongs to H+α(�),  ≤ α < . Therefore, it is dif-
ficult to achieve high accuracy by using standard finite element methods. Several articles
are devoted to developing methods to solve these problems, such as fitted finite element
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methods [–], proposed by Chen and Zou in [], discontinuous Galerkin methods [,
], weak Galerkin finite element methods [, ], proposed by Wang and Ye in [–], im-
mersed boundary methods [, ], the extended/generalized finite element methods [],
immersed interface methods, which are a kind of finite difference methods, proposed by
LeVeque and Li in [], and immersed finite volume methods [, ].

In recent years, the immersed finite element (IFE) methods have been studied and found
to be very effective for solving elliptic interface problems. The method was proposed on
the uniform Cartesian triangular grids in [, ], according to the above mentioned im-
mersed interface methods. Approximation capabilities of the nonconforming IFE spaces
were studied in [] and the convergence analysis of the IFE solutions was developed in
[, ]. But we realize that it is very difficult to achieve an optimal-order H-norm error
estimate due to the strong nonconformity. So, for anisotropic elliptic interface problems,
we presented the partially penalty IFE method in [] by adding two penalty terms on
the common edges of the adjacent interface elements to restrict the function jumps, and
then deriving the optimal-order error estimates. The numerical experiments verify our
theoretical results. Moreover, this idea of partially penalization can also be seen in [],
which is on rectangular grids for solving isotropic elliptic interface problems. And there
are other developed forms [–]. In addition, the penalty idea exists in other unfitted
methods, too. In [], a ghost penalty is added in unfitted finite element methods to re-
cover the condition number of the stiffness matrix. And an unfitted method based on the
symmetric interior penalty discontinuous Galerkin method was proposed to discretize el-
liptic interface problems in []. Moreover, there are other forms of IFE methods, such as
the symmetric and consistent IFE method [] and the augmented IFE method [, ].

Recently, Kwak et al. [] proposed an immersed finite element method based on piece-
wise linear Crouzeix-Raviart type polynomials on a uniform triangular grid. In this refer-
ence, the authors use the integral averages on the edges as degrees of freedom to weaken
their nonconformity on the common edge of two adjacent interface elements. Zhang, in
his thesis [], proposed the nonconforming rotated Q IFE method based on rectangu-
lar grids by using both integral averages and midpoint values on the edges as degrees of
freedom.

However, the optimal convergence is still not very easily obtained. And inspired by
the work of Ji et al. [], a penalty on interface edges is added to ensure that the con-
dition number of the resulting linear system is independent of how the interface cuts
through the mesh. In this paper, we develop the partially penalty immersed finite element
(PIFE) method with the Crouzeix-Raviart type polynomial spaces to solve the anisotropic
flow models in which the diffusion coefficient is a piecewise definite-positive matrix, al-
though we consider isotropic elliptic problems with piecewise scalar coefficients in major
length for simplicity. For the anisotropic elliptic interface problems, the construction of
the Crouzeix-Raviart type IFE spaces is given in our paper []. We prove that the piece-
wise Crouzeix-Raviart type polynomials satisfying the jump conditions on two types of in-
terface elements can be uniquely determined by integral averages on the edges as degrees
of freedom. Then we construct the Crouzeix-Raviart type IFE spaces on interface ele-
ments and give the partially penalty immersed Crouzeix-Raviart finite element schemes.
We prove the solvability of the method and obtain its optimal convergence analysis. Nu-
merical experiments show that our method is valid not only for isotropic elliptic interface
problems but also for anisotropic elliptic interface problems.
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The rest of the paper is organized as follows. In the next section, some preliminaries and
notations are introduced. In Section , we construct IFE spaces based on the Crouzeix-
Raviart elements on triangular grids and investigate properties of these nonconform-
ing IFE spaces. In Section , we are devoted to defining the PIFE method based on the
Crouzeix-Raviart type IFE spaces and prove the solvability of the method. Then we carry
out the optimal convergence analysis. In Section , some numerical experiments are per-
formed to indicate the optimal-order convergence of our PIFE method for both isotropic
and anisotropic elliptic interface problems. Finally, we conclude in the last section.

2 Preliminaries and notations
Consider the second order elliptic interface problem:

⎧
⎨

⎩

(a) –∇ · (β(x)∇u) = f , x ∈ �,

(b) u = , x ∈ ∂�,
(.)

where β(x) is a discontinuous coefficient, f ∈ L(�), x = (x, y). The convex polygonal do-
main � ⊂ R consists of �+ and �–, �+ ∩ �– = ∅; see Figure  (cited from []) for illus-
tration. Assume that the interface � = ∂�– ⊂ � is smooth enough (C) and the solution
u satisfies the following jump conditions across the interface �:

[u] =  and
[
β(x)∇u · n�

]
= , (.)

where the jump value [u] = u|�– –u|�+ and n� denotes the unit normal vector of � pointing
from �– to �+.

For the sake of simplicity and convenience, in the following analysis, we assume β(x) is
a piecewise constant function defined by

β(x) = β =

⎧
⎨

⎩

β–, x ∈ �–,

β+, x ∈ �+,

where β– > , β+ > .
Of course, the coefficient β(x) can also be a symmetric definite-positive matrix as

β(x) = B
l =

(
ml sl

sl nl

)

, x ∈ �l, l = ±, (.)

Figure 1 The geometry of the computational domain �.



An et al. Journal of Inequalities and Applications  (2017) 2017:186 Page 4 of 29

and the corresponding analysis can be performed similarly. In the last section, we also
conduct numerical examples for this case.

Let Th = {T} be the usual regular triangulation of the domain �. T i
h and T n

h denote the
collection of interface elements and the collection of the non-interface elements, respec-
tively. It is also called a non-interface element if � intersects with this triangle but does
not separate its interior into two nontrivial subsets. Assume that the interface meets the
edges of an interface element at no more than two intersections. Such an assumption is
reasonable if the step size is sufficiently small.

Let Eh be the collection of all edges in the triangulation Th = T i
h ∪ T n

h . E◦
h and Eb

h denote
the interior edges and boundary edges, respectively. Moreover, the sets of the interface
edges and non-interface edges are denoted by E i

h and En
h . Obviously, here we have Eh =

E◦
h ∪ Eb

h and also Eh = E i
h ∪ En

h .
In the following, we define the jump and average values of a function u on the edges. For

every interior edge e ∈ E◦
h ,

[u]e = u|Te, – u|Te, , {u}e =



(u|Te, + u|Te, ),

where Te, and Te, are the two elements sharing the common edge e and the unit normal
vector of e is assumed to point from Te, to Te,. For every boundary edge e ∈ Eb

h ,

[u]e = {u}e = u|Te ,

where Te is the element such that e ∈ Eb
h is one of its edges. Usually we omit the subscript

in [·] and {·} if there is no confusion.
For the analysis, we introduce the following spaces on the whole domain �:

H̃(�) =
{

u ∈ H(�) : u ∈ H(�l), l = ±}
,

H̃
int(�) =

{
u ∈ H(�) : u|�l ∈ H(�l), l = ±, [β∇u · n] =  across �

}
,

and for any u ∈ H̃(�),

‖u‖
H̃(�) = ‖u‖

H(�+) + ‖u‖
H(�–), (.)

where H(�) = W ,(�) and H(�l) = W ,(�l) are the usual Sobolev spaces.
For every interface element T ∈ T i

h , we also introduce the following spaces:

H̃(T) =
{

u : u|T∩�l ∈ H(T ∩ �l), l = ±}
,

H̃
int(T) =

{
u ∈ H(T) : u|T∩�l ∈ H(T ∩ �l), l = ±, [β∇u · n] =  across � ∩ T

}
,

and for any u ∈ H̃(T),

‖u‖
,T = ‖u‖

,T∩�+ + ‖u‖
,T∩�– , |u|,T = |u|,T∩�+ + |u|,T∩�– , (.)

where ‖ · ‖,T∩�l is the norm of H(T ∩ �l), l = ±.
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3 The Crouzeix-Raviart type IFE space and its properties
In this section, we introduce the local Crouzeix-Raviart type basis functions for both the
non-interface elements and the interface elements, define the IFE spaces over the whole
domain, and then investigate properties of the nonconforming Crouzeix-Raviart type IFE
spaces.

3.1 Construction of immersed Crouzeix-Raviart finite element spaces
In this subsection, we develop the nonconforming IFE spaces with integral averages on the
edges as degrees of freedom. To make sure that the flux jump conditions can be weakly
enforced on the smooth interface, we derive the IFE functions on usual elements instead of
the reference elements used in []. The standard nonconforming linear Crouzeix-Raviart
functions are used on non-interface elements. On interface elements, these functions are
locally modified to satisfy the jump conditions.

For a non-interface element T ∈ T n
h , we simply use the standard linear Crouzeix-Raviart

type polynomials as local basis functions, and use Sh(T) to denote spaces spanned by the
three basis functions on T ,

Sh(T) = span

{

φi ∈ P(T);


|ej|
∫

ej

φi ds = δij, i, j = , , 
}

,

where ej, j = , ,  are three edges of T and δ is the Kronecker function.
For the space Sh(T) on non-interface element T ∈ T n

h , we have the well-known approx-
imation property as follows [, ]:

‖u – IT u‖L(T) + h‖u – IT u‖H(T) ≤ Ch‖u‖H(T), ∀u ∈ H(T), (.)

where IT : H(T) → Sh(T) is the interpolation operator defined by
∫

ej

IT u ds =
∫

ej

u ds, j = , , . (.)

To construct the local immersed Crouzeix-Raviart finite element spaces on interface
elements, we consider a typical triangle T ∈ T i

h , in which the three vertices are A(, ),
A(h, ) and A(, h). We assume that the interface curve � intersects T at two different
points D and E. And the segment DE separates T into two subsets T+ and T– with T =
T+ ∪ T– ∪ DE.

There are two types of interface elements depending on the location of the intersection
points D and E. We call an element T a Type- interface element if � intersects with T at
two square edges, or a Type- interface element if � intersects with T at a square edge and
a bevel edge. See Figure  for an illustration of the two different types of interface elements,
where, without loss of generality, we assume that intersection points D, E satisfy

D = (ah, ) ∈ AA, E = (, bh) ∈ AA,

for a Type- interface element with  < a, b ≤ , and

D = (ah, ) ∈ AA, E =
(
( – b)h, bh

) ∈ AA,

for a Type- interface element with  ≤ a < ,  < b < .
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Figure 2 Type-1 (left) and Type-2 (right) interface triangular elements.

There is a small region in these two types of interface elements,

Tr = T\(�+ ∩ T+)\(�– ∩ T–)

whose area is of order O(h) since the interface is a C curve and the interface � ∩ T
is perturbed in a magnitude of O(h) []. Therefore, such a perturbation will only affect
the solution and the interpolation function to an order of O(h), which will not impact
on the convergence accuracy of the method whose approximation spaces are selected as
piecewise linear polynomials in this paper.

On each of these interface triangular elements, T ∈ T i
h , for given values Vi, i = , , , the

piecewise linear function φ can be defined by

φ(x) =

⎧
⎨

⎩

φ+(x) = a + bx + cy, x ∈ T+,

φ–(x) = a + bx + cy, x ∈ T–,
(.)

satisfying

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(a) φei = Vi, i = , , ,

(b) φ+(D) = φ–(D),

(c) φ+(E) = φ–(E),

(d) (β+∇φ+ – β–∇φ–) · nDE = ,

(.)

where φei , i = , ,  denote integral averages of φ on the edges ei, i.e., φei = 
|ei|

∫

ei
φ ds, and

nDE is a unit normal vector to DE.
As for the piecewise linear function φ defined above, we have the following results:

Theorem . For arbitrary diffusion coefficient β and interface location, the piecewise lin-
ear function φ(x) on the interface element T ∈ T i

h defined by (.) and (.) is uniquely
determined by the given three values V, V, V.

Proof We shall prove the theorem on Type- and Type- interface elements. In both cases,
it is proved by involving ai, bi, ci, i = ,  as unknowns into a linear system and then showing
its coefficient matrix is non-singular for arbitrary interface location, reflected by a and b.
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Firstly, we consider the Type- interface elements, where D = (ah, ), E = (, bh) with
 < a, b ≤ . By the definition of φei and (.a) we obtain, through a simple calculation, the
first three equations with respect to unknowns,

a +
h


b +
h


c = V,
(

a +
bh


c

)

b +
[

a +
( + b)h


c

]

( – b) = V,

(

a +
ah


b

)

a +
[

a +
( + a)h


b

]

( – a) = V.

(.)

The continuity conditions (.b) and (.c) imply the fourth and fifth equations,

a + b(ah) = a + b(ah),

a + c(bh) = a + c(bh).
(.)

The last equation is derived from the flux continuity condition (.d) along DE,

(b – ρb) · (bh) + (c – ρc) · (ah) = , (.)

where we used nDE = (bh, ah)/
√

(bh) + (ah) and ρ = β–/β+.
We summarize these six equations and reformulate them into the following matrix form:

AY = F, (.)

where Y = (a, b, c, a, b, c)T , F = (V, V, V, , , )T and the coefficient matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 
 h 

 h   
 – b  

 ( – b)h b  
 bh

 – a 
 ( – a)h  a 

 ah 
 ah  – –ah 
  bh –  –bh
 bh ah  –ρbh –ρah

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the following we will show that the coefficient matrix is non-singular or its determi-
nant is non-zero. Following a tedious calculation, we have

det(A) =



h[ab · b + ab · a + b( – ab) · ρb + a( – ab) · ρa
]

=



h(a + b) · [ρ( – ab) + ab
]
. (.)

By  < a, b ≤ , we have  < ab < . Then ρ >  implies that det(A) >  for this case.
For the Type- interface elements, where D = (ah, ), E = (( – b)h, bh) with  ≤ a < ,

 < b < , by the definition of φei and (.a), we derive the first three equations similarly to
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the derivation of (.),

( – b)
[

a + b
( – b)h


+ c

( + b)h


]

+ b
[

a + b

(

 –
b


)

h + c
bh


]

= V,

a + c
h


= V,

a
(

a + b
ah


)

+ ( – a)
[

a + b
( + a)h



]

= V.

(.)

The continuity conditions (.b) and (.c) imply two equations as below,

a + b(ah) = a + b(ah),

a + b( – b)h + c(bh) = a + b( – b)h + c(bh).
(.)

The last equation is obtained from the flux continuity condition (.d),

(b – ρb) · (bh) + (c – ρc) · (a + b – )h = , (.)

where we used nDE = (bh, (a + b – )h)/
√

bh + (a + b – )h and ρ = β–/β+.
We summarize these six equations and write in the matrix form:

AY = F, (.)

where Y = (a, b, c, a, b, c)T , F = (V, V, V, , , )T and the coefficient matrix

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

 – b (–b)

 h –b

 h b ( – b
 )bh b

 h
  h

   
a a

 h   – a –a

 h 
 ah  – –ah 
 ( – b)h bh – –( – b)h –bh
 bh (a + b – )h  –ρbh –ρ(a + b – )h

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the following we will prove that the coefficient matrix is non-singular. Following a
tedious calculation, we have

det(A) =



h{b( – a) · b + b( – a)(a + b – ) · (a + b – )

+ b
[
 – b( – a)

] · ρb +
[
b( – a) + b – ( – a)

(
 + b)] · ρ(a + b – )

}

=



h{b( – a) + b( – a)( – a – b) + ρb[ – b( – a)
]

+ ρ( – a – b)( – a)
(
 + b) – ρb( – a – b)

[
( – a) + 

]}
. (.)

To simplify the proof, we let  – a = tb with t > , then det(A) is rewritten as

det(A) =



h[tb + t(t – )b + ρb( – tb)

+ ρt(t – )b( + b) – ρ(t – )b(tb + 
)]
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=



hb[tb + t(t – )b – ρtb + ρt(t – )b – ρt(t – )b

+ ρ + ρt(t – ) – ρ(t – )
]

=



hb[t( – ρ)
(
t – t + 

)
b + ρ

(
t – t + 

)]

=



hb{(t – t + 
) · [t( – ρ)b + ρ

]}

=



hb{[(t – ) + 
] · [tb +

(
 – tb)ρ

]}
.

By  ≤ a < , we have  < tb =  – a ≤ . Also by  < b < , we derive  < tb <  and
 – tb > . Therefore ρ >  implies det(A) >  in this case, which completes the proof. �

Remark . Theorem . tells us that on each interface element, the piecewise linear
function defined by (.) and (.) is continuous across DE and uniquely determined by
its integral averages on the edges as degrees of freedom.

Then, for an interface element T ∈ T i
h , we can define the local Crouzeix-Raviart type IFE

space Ŝh(T) by

Ŝh(T) = span
{
φ̂i(x); φ̂i(x), i = , ,  are uniquely determined by (.) and (.)

}
,

φ̂(x) =

⎧
⎨

⎩

φ̂+
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T+,

φ̂–
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T–,
(.)

φ̂(x) =

⎧
⎨

⎩

φ̂+
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T+,

φ̂–
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T–,
(.)

φ̂(x) =

⎧
⎨

⎩

φ̂+
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T+,

φ̂–
 (x) = A

–(, ) + A
–(, )x + A

–(, )y, x ∈ T–,
(.)

where A
– denotes the inverse matrix of A that is derived in the proof of Theorem ..

Remark . Theorem . also holds if the coefficient β(x) is a symmetric definite-positive
matrix defined by (.) and its proof is provided in another paper [].

Finally, we conclude this subsection by defining the global immersed Crouzeix-Raviart
type finite element spaces Sh(�) and Sh(�) on the whole domain � as

Sh(�) =
{

φh ∈ L(�) : φh|T∈T n
h

∈ Sh(T) and φh|T∈T i
h

∈ Ŝh(T);

if T ∩ T = e, then
∫

e
φh|T ds =

∫

e
φh|T ds

}

,

Sh(�) =
{

φh ∈ Sh(�) :
∫

e
φh ds = ,∀e ∈ Eb

h

}

.

(.)

3.2 Properties of the Crouzeix-Raviart type IFE spaces
In this subsection, we present several properties for the local IFE space Ŝh(T) on the in-
terface element T ∈ T i

h and the global IFE space Sh(�) on the domain �.
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Although for Crouzeix-Raviart type IFE functions in Ŝh(T) the flux jump condition is
enforced on the line segment DE, they actually satisfy a weak flux jump condition along
the actual interface curve � ∩ T , which is stated in the following lemma.

Lemma . For an interface triangle T ∈ T i
h , each linear function φ ∈ Ŝh(T) satisfies the

flux jump condition on � ∩ T in the following weak sense:

∫

�∩T

(
β–∇φ– – β+∇φ+) · n� ds = . (.)

Proof Let φ be a function in Ŝh(T). By Green’s formula we have

∫

�∩T

(
β–∇φ– – β+∇φ+) · n� ds +

∫

DE

(
β–∇φ– – β+∇φ+) · nDE ds

=
∫

Tr

div
(
β–∇φ– – β+∇φ+)

dx

= .

Combining the equality above with the flux continuity of φ along DE

∫

DE

(
β–∇φ– – β+∇φ+) · nDE ds = ,

we reach the conclusion. �

It is well known that the trace inequalities are important for the finite element analysis.
So here we present the trace inequalities stated on p. of [],

‖v‖,e ≤ Ch–/(‖v‖,T + h‖∇v‖,T
)
, ∀v ∈ H(T), (.)

‖∇v · n‖,e ≤ Ch–/(‖∇v‖,T + h
∥
∥∇v

∥
∥

,T

)
, ∀v ∈ H(T). (.)

Noting that Sh(T) ⊂ H(T), the above two inequalities both hold on the non-interface
element T ∈ T n

h . However, Ŝh(T) is a subspace of H(T) only, not a subspace of H(T).
Therefore, we need to establish a trace inequality similar to (.) for the Crouzeix-Raviart
type IFE functions on interface elements.

Theorem . There exists a constant C depending on the diffusion coefficient β only, such
that on any T ∈ T i

h ,

‖β∇φ · n‖,e ≤ Ch–/‖∇φ‖,T , ∀φ ∈ Ŝh(T), (.)

where e is an interface edge of T , and n is the unit outer normal vector of T .

To prove Theorem ., which follows the idea of proof for Theorem . in [], we need
the lemma below.
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Lemma . There exist two constants C ≥ , C ≥ , which are both dependent on the
discontinuous coefficient β but independent of the mesh size h and the interface location
(reflected by a, b), such that, for every function φ defined by (.), we have


C

(|b| + |c|
) ≤ |b| + |c| ≤ C

(|b| + |c|
)
. (.)

Proof We shall prove the lemma on Type- and Type- interface elements, respectively.
Firstly, we consider the Type- interface elements, where D = (ah, ), E = (, bh) with

 < a, b ≤ . According to equations (.) and (.), we have

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ =

⎛

⎜
⎝

 ah 
  bh
 bh ah

⎞

⎟
⎠

– ⎛

⎜
⎝

 ah 
  bh
 ρbh ρah

⎞

⎟
⎠

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ .

By a tedious calculation, we derive

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ =


a + b

⎛

⎜
⎝

a + b ( – ρ)abh ( – ρ)abh
 a + ρb –( – ρ)ab
 –( – ρ)ab b + ρa

⎞

⎟
⎠

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ .

Then, by using ρ >  and ab ≤ a + b, we get the inequality for |b|,

|b| =
∣
∣
∣
∣
a + ρb

a + b b +
–( – ρ)ab

a + b c

∣
∣
∣
∣

≤
∣
∣
∣
∣
a + ρb

a + b

∣
∣
∣
∣ · |b| + | – ρ| ·

∣
∣
∣
∣

ab
a + b

∣
∣
∣
∣ · |c|

≤ max{ρ, } · |b| +


| – ρ| · |c|

≤ max

{

ρ, ,


| – ρ|

}

· (|b| + |c|
)
.

And in the same way, the inequality for |c| is derived:

|c| ≤ max

{

ρ, ,


| – ρ|

}

· (|b| + |c|
)
.

That is to say, we have

|b| + |c| ≤  max

{

,
β–

β+ ,



∣
∣
∣
∣ –

β–

β+

∣
∣
∣
∣

}

· (|b| + |c|
)
� C

(|b| + |c|
)
.

If we express a, b, c by a, b, c by use of (.) and (.), then we get the inequalities
for |b| + |c| similarly:

|b| + |c| ≤  max

{

,
β+

β– ,



∣
∣
∣
∣ –

β+

β–

∣
∣
∣
∣

}

· (|b| + |c|
)
� C

(|b| + |c|
)
.
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Therefore, we derive the conclusion (.) with

C =  max

{

,
β–

β+ ,



∣
∣
∣
∣ –

β–

β+

∣
∣
∣
∣

}

, C =  max

{

,
β+

β– ,



∣
∣
∣
∣ –

β+

β–

∣
∣
∣
∣

}

.

Next we consider the Type- interface elements, where D = (ah, ), E = ((–b)h, bh) with
 ≤ a < ,  < b < .

According to equations (.) and (.), we have

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ =

⎛

⎜
⎝

 ah 
 ( – b)h bh
 bh (a + b – )h

⎞

⎟
⎠

– ⎛

⎜
⎝

 ah 
 ( – b)h bh
 ρbh ρ(a + b – )h

⎞

⎟
⎠

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ .

By a tedious calculation, we obtain

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ =


M

⎛

⎜
⎝

M ( – ρ)abh ( – ρ)ab(a + b – )h
 (a + b – ) + ρb –( – ρ)b(a + b – )
 –( – ρ)b(a + b – ) b + ρ(a + b – )

⎞

⎟
⎠

⎛

⎜
⎝

a

b

c

⎞

⎟
⎠ ,

where M = (a + b – ) + b.
Using ρ >  and (a + b – )b ≤ (a + b – ) + b, we derive the inequality for |b|,

|b| =
∣
∣
∣
∣
(a + b – ) + ρb

(a + b – ) + b b +
–( – ρ)b(a + b – )

(a + b – ) + b c

∣
∣
∣
∣

≤
∣
∣
∣
∣
(a + b – ) + ρb

(a + b – ) + b

∣
∣
∣
∣ · |b| + | – ρ| ·

∣
∣
∣
∣

(a + b – )b
(a + b – ) + b

∣
∣
∣
∣ · |c|

≤ max{ρ, } · |b| +


| – ρ| · |c|

≤ max

{

ρ, ,


| – ρ|

}

· (|b| + |c|
)
.

Then the inequality for |c| is derived similarly:

|c| ≤ max

{

ρ, ,


| – ρ|

}

· (|b| + |c|
)
.

That is to say, we have

|b| + |c| ≤  max

{

,
β–

β+ ,



∣
∣
∣
∣ –

β–

β+

∣
∣
∣
∣

}

· (|b| + |c|
)

= C
(|b| + |c|

)
.

If we express a, b, c by a, b, c by applying (.) and (.), then we can get the
inequalities for |b| + |c| similarly,

|b| + |c| ≤  max

{

,
β+

β– ,



∣
∣
∣
∣ –

β+

β–

∣
∣
∣
∣

}

· (|b| + |c|
)

= C
(|b| + |c|

)
.

Therefore, we also derive the conclusion for Type- interface elements. �
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For any interface element T ∈ T i
n , we can divide it into four congruent triangles Tj, j =

, , ,  by connecting the three midpoints of three edges of T . There must exist a subset
Tj which is completely inside of either T+ or T–, and we denote it by T̃ .

If T̃ ⊂ T+, noting that |T̃ | = |T |
 = 

 h, we have

‖∇φ‖
,T̃ =

(
b

 + c

) · |T̃ | =




h(b
 + c


)
.

Applying the left of the estimate (.) in the above lemma, we derive

‖∇φ‖
,T̃ ≥ 

C


h(b
 + c


)
.

So we have the estimate

b
i + c

i ≤ C
 · h–‖∇φ‖

,T̃ , i = , .

If T̃ ⊂ T–, by the right of the estimate (.), we obtain

b
i + c

i ≤ C
 · h–‖∇φ‖

,T̃ , i = , .

Therefore, no matter which part of T the subset T̃ belongs to, we have

b
i + c

i ≤ Ch–‖∇φ‖
,T̃ , i = , . (.)

Now we give the proof for Theorem ..

Proof Without loss of generality, we consider e = AA with e– = AD and e+ = DA. Let
βmax = max{β–,β+}, by the above result (.), we obtain

‖β∇φ · n‖
,e ≤ β

max

(∥
∥∇φ–∥

∥
,e– +

∥
∥∇φ+∥

∥
,e+

)

≤ β
maxh

[(
b

 + c

)

+
(
b

 + c

)]

≤ Cβ
maxh–‖∇φ‖

,T̃

≤ Ch–‖∇φ‖
,T ,

which completes the proof. �

For any u ∈ H̃
int(T), we let IT u ∈ Ŝh(T) be such that

∫

ej

IT u ds =
∫

ej

u ds, j = , , ,

where ej, j = , ,  are three edges of T . We call IT u the interpolant of u in Ŝh(T), and we
have its error estimate which is stated in [],

‖u – IT u‖,T + h‖u – IT u‖,T ≤ Ch‖u‖,T , ∀u ∈ H̃
int(T), (.)

where ‖ · ‖,T is the norm in H̃(T) defined by (.).
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We can naturally extend the interpolation operator such that Ih : H̃
int(�) → Sh(�) and

(Ihu)|T = IT (u|T ).
Then, by (.) and the above estimation (.), we obtain the following result.

Theorem . For any u ∈ H̃
int(�), there exists a constant C >  such that

‖u – Ihu‖,� + h‖u – Ihu‖,h ≤ Ch‖u‖H̃(�),

where ‖ · ‖
,h =

∑

T∈Th

‖ · ‖
,T .

4 The Crouzeix-Raviart PIFE method
We multiply the elliptic equation (.a) by a test function v ∈ Sh(�), integrate over each
element T ∈ Th, and apply the Green’s formula,

∫

T
β∇u · ∇v dx –

∫

∂T
(β∇u · nT )v ds =

∫

T
fv dx, ∀v ∈ Sh(�).

Here, nT is the unit outward normal of T .
Summing the above equation over all elements, we obtain

∑

T∈Th

∫

T
β∇u · ∇v dx –

∑

T∈Th

∫

∂T
(β∇u · nT )v ds =

∫

�

fv dx, ∀v ∈ Sh(�). (.)

Let ne denote the unit normal vector of e, then

∑

T∈Th

∫

∂T
(β∇u · nT )v ds =

∑

e∈E◦
h

∫

e

[
(β∇u · ne)v

]
ds +

∑

e∈Eb
h

∫

e
(β∇u · ne)v ds.

Applying the algebraic identity ac – bd = 
 (a + b)(c – d) + 

 (a – b)(c + d) leads to

∫

e

[
(β∇u · ne)v

]
ds =

∫

e
{β∇u · ne}[v] ds +

∫

e
[β∇u · ne]{v}ds.

Then substituting the second term in (.) by the above two equalities, we obtain

∑

T∈Th

∫

T
β∇u · ∇v dx –

∑

e∈E◦
h

∫

e
{β∇u · ne}[v] ds –

∑

e∈E◦
h

∫

e
[β∇u · ne]{v}ds

–
∑

e∈Eb
h

∫

e
(β∇u · ne)v ds =

∫

�

fv dx, ∀v ∈ Sh(�).

Assume that u is smooth enough, ∇ · (β∇u) = –f ∈ L(�) implies that β∇u ∈ H(div;�)
and thus the normal flux β∇u ·ne is continuous across every interior edge e. Hence, [β∇u ·
ne] = . Therefore the third term in the above equation is zero and the above equation
becomes

∑

T∈Th

∫

T
β∇u · ∇v dx –

∑

e∈Eh

∫

e
{β∇u · ne}[v] ds =

∫

�

fv dx, ∀v ∈ Sh(�), (.)
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where we have used the definition of the jump and average values for functions on bound-
ary edges and the relationship Eh = E◦

h ∪ Eb
h .

In the following, similar to [], we give the partially penalty immersed finite element
method with Crouzeix-Raviart elements and prove the existence and uniqueness of its
discrete solution. In the derivation of the PIFE formulation, we have followed the idea of
the interior penalty discontinuous Galerkin scheme []. The meaning of partially penalty
is that we add penalty terms only to the interface edges in order to restrict the jump of IFE
functions across their interface edges.

Since u is continuous in the interior of �, [u] =  on each interior edge e. We add two
penalty terms whose value is zero for the exact solution u defined only on interface edges
to (.), and obtain

∑

T∈Th

∫

T
β∇u · ∇v dx –

∑

e∈Eh

∫

e
{β∇u · ne}[v] ds + ε

∑

e∈E i
h

∫

e
{β∇v · ne}[u] ds

+
∑

e∈E i
h

σ 
e

|e|β

∫

e
[u][v] ds =

∫

�

fv dx, ∀v ∈ Sh(�). (.)

We assume that on non-interface edges, the quantity
∑

e∈En
h

∫

e{β∇u ·ne}[v] ds is not very
large which suggests to ignore this term in our scheme. Then we have

∑

T∈Th

∫

T
β∇u · ∇v dx –

∑

e∈E i
h

∫

e
{β∇u · ne}[v] ds + ε

∑

e∈E i
h

∫

e
{β∇v · ne}[u] ds

+
∑

e∈E i
h

σ 
e

|e|β

∫

e
[u][v] ds ≈

∫

�

fv dx, ∀v ∈ Sh(�),

where we have used the relationship Eh = E i
h ∪ En

h .
Now we define the PIFE formulation: find uh ∈ Sh(�) such that

aε(uh, vh) = (f , vh), ∀vh ∈ Sh(�), (.)

where

aε(uh, vh) =
∑

T∈Th

∫

T
β∇uh · ∇vh dx –

∑

e∈E i
h

∫

e
{β∇uh · ne}[vh] ds

+ ε
∑

e∈E i
h

∫

e
{β∇vh · ne}[uh] ds +

∑

e∈E i
h

σ 
e

|e|β

∫

e
[uh][vh] ds,

(f , vh) =
∑

T∈Th

∫

T
fvh dx.

In the above formulation, the penalty parameter σ 
e > , the choice of the power β > 

will be discussed later, and the parameter ε may take the value –, , or .
Here, we also call the scheme (.) by the same name as reference [] (shown in Re-

mark .), although the degrees of freedom used are different.
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Remark . If ε = –, the scheme (.) is called the symmetric PIFE method; if ε = +, the
scheme (.) is called the nonsymmetric PIFE method; if ε = , the scheme (.) is called
the incomplete PIFE method.

Subsequently, we shall prove the existence and uniqueness of the solution to (.). Define
the energy norm on Sh(�) by

‖v‖ε =
( ∑

T∈Th

∫

T
β∇v · ∇v dx +

∑

e∈E i
h

σ 
e

|e|β

∫

e
[v][v] ds

)/

, ∀v ∈ Sh(�). (.)

It is easy to check that it is indeed a norm on Sh(�).
In the following theorem, the coercivity of the bilinear form aε(·, ·) with respect to the

energy norm ‖·‖ε is stated, which is similar to that in [] although the degrees of freedom
used are different.

Theorem . The coercivity of the bilinear form aε(·, ·):
(I) a+ is coercive on Sh(�), that is, a+(v, v) ≥ k‖v‖

ε , ∀v ∈ Sh(�).
(II) a– and a are coercive if β ≥  and if σ 

e is bounded below by a constant σ ∗
e that

depends on the diffusion coefficient β and the constant in the trace inequality.

Proof Note that the coercivity result is trivial for ε =  and the corresponding coercivity
constant is k = . Indeed,

a+(v, v) = ‖v‖
ε , ∀v ∈ Sh(�).

Hence, we focus on the other two cases ε = – or  below.
For every interface edge e ∈ E i

h shared by the interface elements Te, and Te,, using
Cauchy-Schwarz’s inequality twice and the trace inequality stated in Theorem ., we de-
rive

∫

e
{β∇v · ne}[v] ds

≤ ∥
∥{β∇v · ne}

∥
∥

,e

(|e|β
)/–/∥∥[v]

∥
∥

,e

≤ 

|e|β/(∥∥(β∇v · ne)|Te,

∥
∥

,e +
∥
∥(β∇v · ne)|Te,

∥
∥

,e

) · 
|e|β/

∥
∥[v]

∥
∥

,e

≤ 

|e|β/ · C

(
h–/

Te, ‖√
β∇v‖,Te, + h–/

Te, ‖√
β∇v‖,Te,

) · 
|e|β/

∥
∥[v]

∥
∥

,e

≤ 


C · (hβ–
Te,

+ hβ–
Te,

) 

(‖√

β∇v‖
,Te, + ‖√

β∇v‖
,Te,

) 
 · 

|e|β/

∥
∥[v]

∥
∥

,e,

where hTe, and hTe, are the maximum edge length of Te, and Te,, respectively, and the
common edge e satisfies |e| ≤ hTe, , |e| ≤ hTe, .

If β satisfies the condition β ≥  and we assume, without loss of generality, that h ≤ .
Then, from the above inequality, we obtain

∫

e
{β∇v · ne}[v] ds ≤ C

(‖√
β∇v‖

,Te, + ‖√
β∇v‖

,Te,

)/ · 
|e|β/

∥
∥[v]

∥
∥

,e. (.)
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Summing the above (.) over all the interface edges, and using Cauchy-Schwarz’s in-
equality once more and the Young inequality, for δ > , we get

∑

e∈E i
h

∫

e
{β∇v · ne}[v] ds

≤ C
(∑

e∈E i
h


|e|β

∥
∥[v]

∥
∥

,e

)/(∑

e∈E i
h

(‖√
β∇v‖

,Te, + ‖√
β∇v‖

,Te,

)
)/

= C
(∑

e∈E i
h


|e|β

∥
∥[v]

∥
∥

,e

)/(


∑

T∈T i
h

‖√
β∇v‖

,T

)/

≤
( ∑

T∈Th

‖√
β∇v‖

,T

)/

· √C
(∑

e∈E i
h


|e|β

∥
∥[v]

∥
∥

,e

)/

≤ δ


∑

T∈Th

‖√
β∇v‖

,T +
C

δ

∑

e∈E i
h


|e|β

∥
∥[v]

∥
∥

,e.

Thus, we obtain a lower bound for aε(v, v),

aε(v, v) ≥
∑

T∈Th

∫

T
β∇v · ∇v dx +

∑

e∈E i
h

σ 
e

|e|β

∫

e
[v][v] ds

–( – ε)
(

δ


∑

T∈Th

‖√
β∇v‖

,T +
C

δ

∑

e∈E i
h


|e|β

∥
∥[v]

∥
∥

,e

)

=
(

 –
δ( – ε)



) ∑

T∈Th

‖√
β∇v‖

,T +
∑

e∈E i
h

σ 
e ( – C(–ε)

δσ
e

)

|e|β

∥
∥[v]

∥
∥

,e,

where C is the constant in the trace inequality stated in Theorem ..
Choosing δ and σ 

e in the above inequality such that

δ( – ε) < , σ 
e >

C

δ
( – ε),

then we have the coercivity result for the cases ε = – or  as follows:

aε(v, v) ≥ k‖v‖
ε , k = min

{

 –
δ


( – ε),  –

C

δσ 
e

( – ε)
}

.

For instance, δ =  if ε =  and δ = / if ε = – and choosing σ 
e large enough (for example,

σ 
e ≥ C if ε =  and σ 

e ≥ C if ε = –), then we have the coercivity result with k = /.
Summarizing the results above, we complete the proof. �

Now we are ready to derive the existence and uniqueness of the PIFE solution as we have
done in the paper [] (which takes values at three vertices as degrees of freedom).
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Theorem . Assume that (I) or (II) holds true:
(I) in the nonsymmetric (ε = +) PIFE case, σ 

e >  for all e;
(II) in the symmetric (ε = –) or incomplete (ε = ) PIFE case, β ≥  and σ 

e is bounded
below by a large constant for all e.

Then the PIFE solution of the discrete problem (.) exists and is unique.

Proof Since (.) is a linear problem in finite dimension, existence is equivalent to unique-
ness. We only have to prove the uniqueness of the PIFE solution.

Assuming that there are two solutions u
h and u

h, the difference wh = u
h – u

h satisfies

aε(wh, vh) = , ∀vh ∈ Sh(�).

Taking vh = wh, by the coercivity results stated in Theorem ., we have

‖wh‖ε = .

This implies wh =  since ‖ · ‖ε is a norm on Sh(�), which completes the proof. �

5 The convergence analysis of the PIFE method
In this section, we conduct the error estimate for the PIFE solution in the energy norm
‖ · ‖ε . And we firstly give the interpolant error estimate in the energy norm.

Lemma . For u ∈ H̃
int(�), there exists a constant C independent of h and interface lo-

cation, such that

‖u – Ihu‖ε ≤ C
(
h + h(–β)/)‖u‖H̃(�). (.)

Proof

‖u – Ihu‖
ε =

∑

T∈Th

∫

T
β∇(u – Ihu) · ∇(u – Ihu) dx +

∑

e∈E i
h

σ 
e

|e|β

∫

e
[u – Ihu][u – Ihu] ds

≤ βmax

∑

T∈Th

|u – Ihu|,T + Ch–β
∑

e∈E i
h

∥
∥[u – Ihu]

∥
∥

,e,

where we used that σ 
e is bounded above for any e ∈ E i

h when it is fixed.
By the interpolant error estimates given in (.) and (.) as well as the trace inequality

(.), we obtain

‖u – Ihu‖
ε ≤ C

∑

T∈Th

h‖u‖
,T + Ch–β

∑

T∈Th

h–(‖u – Ihu‖
,T + h|u – Ihu|,T

)

≤ C
∑

T∈Th

h‖u‖
,T + Ch–β

∑

T∈Th

h‖u‖
,T

≤ C
(
h + h–β

)‖u‖
H̃(�),

which completes the proof. �
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Remark . The parameter β in the energy norm (.) should satisfy β ≤  in order to
guarantee that the Crouzeix-Raviart type IFE space Sh(�) has the optimal approximation
property in the energy norm.

Next, we come to derive the error estimate for the PIFE solution in the energy norm. In
the beginning, we give the following lemma which is cited from Lemma  in [], and we
shall need it in the proof of the energy norm estimate.

Lemma . Let e be an edge of T . Then there exists a constant C >  such that for all
φ, v ∈ H(T)

∣
∣
∣
∣

∫

e
φ(v – ve) ds

∣
∣
∣
∣ ≤ Ch|φ|,T |v|,T ,

where ve = 
|e|

∫

e v ds.

Theorem . Let u ∈ H̃
int(�) and uh ∈ Sh(�) be the solutions of the interface problem

(.)-(.) and the discrete formulation (.), respectively. Assume β = , then there exists
a constant C >  independent of h and the location of the interface, such that the following
optimal energy norm estimate holds:

‖u – uh‖ε ≤ Ch‖u‖H̃(�). (.)

Proof The equation (.) implies that the solution u satisfies

aε(u, vh) –
∑

e∈En
h

∫

e
{β∇u · ne}[vh] ds =

∫

�

fvh dx, ∀vh ∈ Sh(�).

Subtracting (.) from the above equation, we obtain

aε(u – uh, vh) =
∑

e∈En
h

∫

e
{β∇u · ne}[vh] ds, ∀vh ∈ Sh(�). (.)

Let u – uh = (u – Ihu) – (uh – Ihu) � η – ξ , then we have

aε(ξ , vh) = aε(η, vh) –
∑

e∈En
h

∫

e
{β∇u · ne}[vh] ds, ∀vh ∈ Sh(�).

Choosing the test function vh = ξ ∈ Sh(�) and using the coercivity of the bilinear form
aε(·, ·) in Theorem ., we get

k‖ξ‖
ε ≤ aε(ξ , ξ ) = aε(η, ξ ) –

∑

e∈En
h

∫

e
{β∇u · ne}[ξ ] ds

≤
∣
∣
∣
∣

∑

T∈Th

∫

T
β∇η · ∇ξ dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∑

e∈E i
h

∫

e
{β∇η · ne}[ξ ] ds

∣
∣
∣
∣

+
∣
∣
∣
∣ε

∑

e∈E i
h

∫

e
{β∇ξ · ne}[η] ds

∣
∣
∣
∣



An et al. Journal of Inequalities and Applications  (2017) 2017:186 Page 20 of 29

+
∣
∣
∣
∣

∑

e∈E i
h

σ 
e

|e|β

∫

e
[η][ξ ] ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∑

e∈En
h

∫

e
{β∇u · ne}[ξ ] ds

∣
∣
∣
∣

� T + T + T + T + T. (.)

Using Cauchy-Schwarz’s inequality and Young’s inequality, we have the estimate for T,

T ≤ β/
max

∑

T∈Th

‖√
β∇ξ‖,T‖∇η‖,T

≤ β/
max

( ∑

T∈Th

‖√
β∇ξ‖

,T

)/( ∑

T∈Th

‖∇η‖
,T

)/

≤ k


∑

T∈Th

‖√
β∇ξ‖

,T +
βmax

k
∑

T∈Th

‖∇η‖
,T

≤ k


‖ξ‖
ε +

βmax

k
∑

T∈Th

|η|,T .

The approximation results (.) and (.) give the estimate for T,

T ≤ k


‖ξ‖
ε + Ch‖u‖

H̃(�).

Now we bound the term T. By the Cauchy-Schwarz inequality, we have

T ≤ |ε|
(∑

e∈E i
h

∥
∥{β∇ξ · ne}

∥
∥

,e

)/(∑

e∈E i
h

∥
∥[η]

∥
∥

,e

)/

≤ C
(∑

e∈E i
h

(∥
∥(β∇ξ · ne)|Te,

∥
∥

,e +
∥
∥(β∇ξ · ne)|Te,

∥
∥

,e

)
) 



×
(∑

e∈E i
h

(‖η|Te,‖
,e + ‖η|Te,‖

,e
)
) 


,

where Te, and Te, share the common edge e.
Using the trace inequality stated in Theorem . for the IFE function ξ , we have

∥
∥(β∇ξ · ne)|Te ,j

∥
∥

,e ≤ Ch–‖∇ξ‖
,Te,j

≤ C
βmin

h–‖√
β∇ξ‖

,Te,j

� Ch–‖√
β∇ξ‖

,Te,j
, j = , ,

where βmin = min{β–,β+}.
And by the trace inequality (.) for the H function η, we obtain

‖η|Te,j‖ ≤ Ch–(‖η‖
,Te,j

+ h‖∇η‖
,Te,j

)
, j = , . (.)
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Then combining with Young’s inequality and approximation result (.), we have

T ≤ Ch–
( ∑

T∈T i
h

‖√
β∇ξ‖

,T

)/( ∑

T∈T i
h

(‖η‖
,T + h|η|,T

)
)/

≤ k


∑

T∈T i
h

‖√
β∇ξ‖

,T + Ch–
( ∑

T∈T i
h

(‖η‖
,T + h|η|,T

)
)

≤ k


‖ξ‖
ε + Ch‖u‖

H̃(�).

The term T can simply be bounded using Cauchy-Schwarz’s and Young’s inequalities:

T ≤
(∑

e∈E i
h

σ 
e

|e|β

∥
∥[ξ ]

∥
∥

,e

)/(∑

e∈E i
h

σ 
e

|e|β

∥
∥[η]

∥
∥

,e

)/

≤ k


∑

e∈E i
h

σ 
e

|e|β

∥
∥[ξ ]

∥
∥

,e +


k
∑

e∈E i
h

σ 
e

|e|β

∥
∥[η]

∥
∥

,e

≤ k


‖ξ‖
ε + Ch–β

∑

e∈E i
h

(‖η|Te,‖
,e + ‖η|Te,‖

,e
)
.

Assume β ≤ . Using the estimate (.) and the approximation result (.), we derive

T ≤ k


‖ξ‖
ε + Ch–β–

∑

T∈T i
h

(‖η‖
,T + h|η|,T

)

≤ k


‖ξ‖
ε + Ch–β‖u‖

H̃(�)

≤ k


‖ξ‖
ε + Ch‖u‖

H̃(�).

Next, we come to bound T.
From the definition of the Crouzeix-Raviart type IFE space in (.), for ξ ∈ Sh(�), we

have
∫

e
[ξ ] ds = , ∀e ∈ Eh, (.)

which also implies (ξ |Te, )e = (ξ |Te, )e for any edge e shared by Te, and Te,.
Note that ξ |T ∈ H(T), applying Lemma . by choosing φ = ξ |Te,j – (ξ |Te,j )e, v = ξ |Te,j ,

j = , , we obtain

∥
∥[ξ ]

∥
∥

,e = ‖ξ |Te, – ξ |Te,‖,e

=
∥
∥
(
ξ |Te, – (ξ |Te, )e

)
+

(
(ξ |Te, )e – ξ |Te,

)∥
∥

,e

≤ ∥
∥ξ |Te, – (ξ |Te, )e

∥
∥

,e +
∥
∥(ξ |Te, )e – ξ |Te,

∥
∥

,e

≤ Ch/(|ξ |,Te, + |ξ |Te,

)
.
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Therefore, applying the above estimate and (.), combining with the observation that
β∇u · ne is continuous across any interior edge e ∈ E◦

h , we obtain

T =
∣
∣
∣
∣

∑

e∈En
h

∫

e
(β∇u · ne)[ξ ] ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∑

e∈En
h

∫

e

(
β∇u · ne – (β∇u · ne)e

)
[ξ ] ds

∣
∣
∣
∣

≤
∑

e∈En
h

∥
∥
(
β∇u · ne – (β∇u · ne)e

)∥
∥

,e

∥
∥[ξ ]

∥
∥

,e

≤ Ch
∑

T∈Th

|β∇u|,T |ξ |,T

≤ Ch
∑

T∈Th

‖u‖,T‖∇ξ‖,T .

Then by using Cauchy-Schwarz’s and Young’s inequalities, we derive

T ≤ Ch
( ∑

T∈Th

‖u‖
,T

)/( ∑

T∈Th

‖√
β∇ξ‖

,T

)/

≤ k


‖ξ‖
ε + Ch‖u‖

H̃(�).

In order to conclude, it remains to bound the term T. Similarly to what we did to the
above terms, applying Cauchy-Schwarz’s inequality and Young’s inequality, we have

T ≤
∑

e∈E i
h

( |e|β

σ 
e

)/∥
∥{β∇η · ne}

∥
∥

,e

(
σ 

e
|e|β

)/∥
∥[ξ ]

∥
∥

,e

≤
(∑

e∈E i
h

|e|β

σ 
e

∥
∥{β∇η · ne}

∥
∥

,e

)/(∑

e∈E i
h

σ 
e

|e|β

∥
∥[ξ ]

∥
∥

,e

)/

≤ k


∑

e∈E i
h

σ 
e

|e|β

∥
∥[ξ ]

∥
∥

,e +


k
∑

e∈E i
h

|e|β

σ 
e

∥
∥{β∇η · ne}

∥
∥

,e

≤ k


‖ξ‖
ε +


k

∑

e∈E i
h

|e|β

σ 
e

∥
∥{β∇η · ne}

∥
∥

,e

≤ k


‖ξ‖
ε + C

∑

e∈E i
h

|e|β

σ 
e

(∥
∥(β∇η · ne)|Te,

∥
∥

,e +
∥
∥(β∇η · ne)|Te,

∥
∥

,e

)
.

Assume β ≥ , then we obtain the estimate for T,

T ≤ k


‖ξ‖
ε + Ch+β‖u‖

H̃(�)

≤ k


‖ξ‖
ε + Ch‖u‖

H̃(�),
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where we used ‖(β∇η · ne)|Te,j‖
,e ≤ Ch‖u‖

,Te,j
, j = , , which can be obtained similarly to

Lemma . in [] by using the approximation result (.).
Combining these five bounds above, we derive

k


‖ξ‖
ε ≤ Ch‖u‖

H̃(�),

which implies the energy norm error estimate for ξ , that is, ‖ξ‖ε ≤ Ch‖u‖H̃(�).
In addition, Remark . tells us that, for β ≤ ,

‖η‖ε ≤ Ch‖u‖H̃(�).

Finally, we complete the proof by the triangle inequality

‖u – uh‖ε ≤ ‖η‖ε + ‖ξ‖ε . �

Remark . The error estimate in H-seminorm can be derived as follows:

|u – uh|,h =
∑

T∈Th

|u – uh|,T ≤ 
βmin

‖u – uh‖
ε ≤ Ch‖u‖

H̃(�),

that is to say,

|u – uh|,h ≤ Ch‖u‖H̃(�). (.)

To guarantee the optimal-order energy norm estimate (.) of the PIFE solutions, the
parameter β in our PIFE schemes (.) and the energy norm (.) should be chosen as
β = . Hence, we assume β =  for the numerical experiments in the next section.

6 Computational results
In this section, two kinds of numerical experiments are presented to illustrate the validity
of our PIFE schemes with Crouzeix-Raviart elements. One kind is for the isotropic elliptic
interface problems with piecewise constant coefficients, which we apply to verify our the-
oretical findings about the error estimate in the energy norm as well as to show the optimal
convergence in L norm. And the other is for the anisotropic elliptic interface problems
in which the diffusion coefficients are piecewise symmetric definite-positive matrices. We
conduct this kind of numerical experiments to show that the PIFE method proposed in
this paper can also be applied to the problems with discontinuous tensor-coefficients, al-
though we only analyze the problems with discontinuous scalar-coefficients for simplicity.

We consider the elliptic interface problem defined by (.a) and (.) with � = [–, ] ×
[–, ], � being a circle centered at origin (, ) with radius r = π/.. Then the interface
curve � separates � into two sub-domains �– and �+ with

�– =
{

(x, y) : x + y ≤ r
}.

In our numerical experiments, we use the triangular grids, which are formed by parti-
tioning � by N × N congruent squares and then cutting every square along its two diago-
nals. Thus we derive our triangulation (illustrated in Figure ) with mesh size /N , which
is the maximum length of edges. The number of triangles in this partition is N × N × .
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Figure 3 The triangular partition with N = 8.

6.1 Numerical results for the isotropic elliptic interface problem
In this subsection, we conduct the numerical experiment with piecewise constant-
coefficients to verify our theoretical findings about the PIFE method in symmetric, non-
symmetric and incomplete forms defined in Remark ..

Taking the example from [], the boundary condition function g(x, y) and the source
term f (x, y) are chosen such that the following function u is the exact solution:

u(x, y) =

⎧
⎨

⎩


β– (x + y)/, (x, y) ∈ �–,


β+ (x + y)/ + ( 
β– – 

β+ )( π
. ), (x, y) ∈ �+.

In our computation, we select the penalty parameter σ 
e in the discrete formulation as

σ 
e =  for the nonsymmetric PIFE scheme, σ 

e =  max{ β–

β+ , β+

β– } for the incomplete PIFE
scheme and σ 

e =  max{ β–

β+ , β+

β– } for the symmetric PIFE scheme.
Then we present the numerical results for (β–,β+) = (, ,) and (β–,β+) = (,, )

solved by these three different PIFE schemes, which are reflected by different ε, in Table 
and Table , respectively.

The data in Table  and Table  illustrate that, for each scheme, the PIFE solution con-
verges to the exact solution with convergence order O(h) in the L norm and O(h) in
the H-seminorm, which supports our theoretical findings stated in (.) and verifies the
robustness and validity of this method.

6.2 Numerical results for the anisotropic elliptic interface problem
To show that the PIFE method proposed in this paper can also be applied to anisotropic
elliptic interface problems, we provide a numerical example in this subsection, whose dif-
fusion coefficients are piecewise symmetric definite-positive matrices Bl , l = ± satisfying
B

+ = tB–, t > , t �= .
The boundary condition function g(x, y) and the source term f (x, y) are chosen such that

the exact solution is

u(x, y) =

⎧
⎨

⎩

t(x + y)/, (x, y) ∈ �–,

(x + y)/ + (t – )( π
. ), (x, y) ∈ �+,

which can easily be checked to satisfy the jump conditions (.).
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Table 1 Numerical results for (β–,β+) = (1, 1,000) with different PIFE schemes

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 4.9337E–3 - 8.0908E–2 -
16× 16 1.1162E–3 2.1441 4.3830E–2 0.8844
32× 32 2.9009E–4 1.9440 2.2917E–2 0.9355
64× 64 6.5676E–5 2.1431 1.1502E–2 0.9946
128× 128 1.8919E–5 1.7955 5.7744E–3 0.9941
256× 256 4.4585E–6 2.0852 2.8965E–3 0.9954

Incomplete PIFE (ε = 0) 8× 8 5.5911E–3 - 8.1187E–2 -
16× 16 1.3044E–3 2.0997 4.4172E–2 0.6087
32× 32 3.2578E–4 2.0014 2.3182E–2 0.9301
64× 64 6.9110E–5 2.2369 1.1552E–2 1.0048
128× 128 1.8967E–5 1.8654 5.7761E–3 1.0000
256× 256 4.4796E–6 2.0820 2.8974E–3 0.9953

Symmetric PIFE (ε = –1) 8× 8 6.0212E–3 - 8.1462E–2 -
16× 16 1.3636E–3 2.1426 4.4097E–2 0.8854
32× 32 3.3744E–4 2.0147 2.3284E–2 0.9214
64× 64 7.1179E–5 2.2451 1.1612E–2 1.0037
128× 128 1.8993E–5 1.9060 5.7769E–3 1.0073
256× 256 4.4914E–6 2.0802 2.8981E–3 0.9952

Table 2 Numerical results for (β–,β+) = (1,000, 1) with different PIFE schemes

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.0678E–2 - 4.7925E–1 -
16× 16 2.4087E–3 2.1483 2.3967E–1 0.9997
32× 32 5.7775E–4 2.0597 1.1989E–1 0.9993
64× 64 1.4172E–4 2.0274 5.9947E–2 1.0000
128× 128 3.5894E–5 1.9812 2.9981E–2 0.9996
256× 256 8.8877E–6 2.0139 1.4993E–2 0.9998

Incomplete PIFE (ε = 0) 8× 8 1.0510E–2 - 4.7886E–1 -
16× 16 2.3468E–3 2.1630 2.3937E–1 1.0004
32× 32 5.7093E–4 2.0393 1.1983E–1 0.9982
64× 64 1.4131E–4 2.0144 5.9947E–2 0.9992
128× 128 3.5885E–5 1.9775 2.9982E–2 0.9996
256× 256 8.8873E–6 2.0136 1.4993E–2 0.9998

Symmetric PIFE (ε = –1) 8× 8 1.0501E–2 - 4.7883E–1 -
16× 16 2.3443E–3 2.1633 2.3935E–1 1.0004
32× 32 5.7071E–4 2.0383 1.1984E–1 0.9981
64× 64 1.4128E–4 2.0142 5.9948E–2 0.9993
128× 128 3.5883E–5 1.9772 2.9983E–2 0.9996
256× 256 8.8910E–6 2.0129 1.4993E–2 0.9998

In our computation, we select the parameter σ 
e in the discrete formulation as σ 

e =  for
the nonsymmetric PIFE scheme, σ 

e =  max{t, /t} for the incomplete PIFE scheme and
σ 

e =  max{t, /t} for the symmetric PIFE scheme.
Firstly, we present the numerical results for t = ., B– = [, ; , ] and t = , B– =

[, ; , ] solved by all the three PIFE schemes in Table  and Table , respectively. We can
see the optimal-order accuracy in both the L norm and the H-seminorm, which implies
that our PIFE method is valid for the anisotropic interface problem. In addition, we present
the figures of the numerical solutions in these two numerical examples (the left one is for
B

+ = .B– = [, ; , ] and the right one is for B+ = B– = [, ; , ]), solved by the
nonsymmetric (ε = ) PIFE scheme under the triangular grid with N =  (see Figure ).



An et al. Journal of Inequalities and Applications  (2017) 2017:186 Page 26 of 29

Table 3 Numerical results for B+ = [1, 2; 2, 5], B– = [10, 20; 20, 50]

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.2388E–1 - 2.3454 -
16× 16 3.1375E–2 1.9812 1.1815 0.9892
32× 32 7.9027E–3 1.9892 5.9497E–1 0.9898
64× 64 1.9817E–3 1.9956 2.9851E–1 0.9950
128× 128 4.9509E–4 2.0010 1.4946E–1 0.9980
256× 256 1.2382E–4 1.9994 7.4772E–2 0.9992

Incomplete PIFE (ε = 0) 8× 8 1.2234E–1 - 2.3267 -
16× 16 3.1249E–2 1.9690 1.1786 0.9812
32× 32 7.8952E–3 1.9848 5.9442E–1 0.9875
64× 64 1.9834E–3 1.9930 2.9841E–1 0.9942
128× 128 4.9591E–4 1.9998 1.4941E–1 0.9980
256× 256 1.2407E–4 1.9989 7.4762E–2 0.9989

Symmetric PIFE (ε = –1) 8× 8 1.2175E–1 - 2.3184 -
16× 16 3.1205E–2 1.9640 1.1778 0.9771
32× 32 7.8917E–3 1.9834 5.9433E–1 0.9867
64× 64 1.9836E–3 1.9923 2.9840E–1 0.9940
128× 128 4.9598E–4 1.9997 1.4939E–1 0.9981
256× 256 1.2411E–4 1.9986 7.4760E–2 0.9988

Table 4 Numerical results for B+ = [10, 20; 20, 50], B– = [1, 2; 2, 5]

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.8010E–1 - 3.5464 -
16× 16 5.1864E–2 1.7960 2.1268 0.7377
32× 32 1.4329E–2 1.8558 1.1824 0.8469
64× 64 3.6979E–3 1.9541 6.1435E–1 0.9446
128× 128 9.5226E–4 1.9573 3.1524E–1 0.9626
256× 256 2.3939E–4 1.9920 1.5897E–1 0.9877

Incomplete PIFE (ε = 0) 8× 8 1.7212E–1 - 3.3852 -
16× 16 5.0836E–2 1.7595 2.0585 0.7177
32× 32 1.4025E–2 1.8578 1.1467 0.8440
64× 64 3.6820E–3 1.9295 6.0852E–1 0.9141
128× 128 9.5061E–4 1.9536 3.1442E–1 0.9526
256× 256 2.3906E–4 1.9915 1.5868E–1 0.9865

Symmetric PIFE (ε = –1) 8× 8 1.7172E–1 - 3.3561 -
16× 16 5.0887E–2 1.7547 2.0499 0.7112
32× 32 1.4029E–2 1.8589 1.1439 0.8416
64× 64 3.6839E–3 1.9291 6.0784E–1 0.9122
128× 128 9.5104E–4 1.9537 3.1429E–1 0.9516
256× 256 2.3912E–4 1.9918 1.5865E–1 0.9862

Figure 4 Numerical solutions under the triangular grid with N = 32.
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Table 5 Numerical results for B+ = [1, –2; –2, 5], B– = [100, –200; –200, 500]

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.2304E–1 - 2.3400 -
16× 16 3.1217E–2 1.9788 1.1799 0.9878
32× 32 7.8667E–3 1.9885 5.9443E–1 0.9891
64× 64 1.9740E–3 1.9946 2.9836E–1 0.9944
128× 128 4.9317E–4 2.0010 1.4940E–1 0.9979
256× 256 1.2335E–4 1.9993 7.4752E–2 0.9990

Incomplete PIFE (ε = 0) 8× 8 1.2054E–1 - 2.3118 -
16× 16 3.1041E–2 1.9572 1.1770 0.9739
32× 32 7.8555E–3 1.9824 5.9417E–1 0.9862
64× 64 1.9738E–3 1.9927 2.9834E–1 0.9939
128× 128 4.9332E–4 2.0004 1.4937E–1 0.9981
256× 256 1.2343E–4 1.9988 7.4746E–2 0.9988

Symmetric PIFE (ε = –1) 8× 8 1.2010E–1 - 2.3060 -
16× 16 3.1019E–2 1.9530 1.1767 0.9707
32× 32 7.8549E–3 1.9815 5.9414E–1 0.9858
64× 64 1.9737E–3 1.9927 2.9833E–1 0.9939
128× 128 4.9330E–4 2.0004 1.4936E–1 0.9981
256× 256 1.2343E–4 1.9988 7.4746E–2 0.9987

Table 6 Numerical results for B+ = [100, –200; –200, 500], B– = [1, –2; –2, 5]

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.0816 - 23.4214 -
16× 16 3.9033E–1 1.4704 16.6163 0.4952
32× 32 1.1628E–1 1.7470 9.8040 0.7612
64× 64 3.1365E–2 1.8904 5.3068 0.8855
128× 128 8.2005E–3 1.9354 2.7690 0.9385
256× 256 2.0732E–3 1.9839 1.4017 0.9822

Incomplete PIFE (ε = 0) 8× 8 1.0751 - 23.1839 -
16× 16 3.9068E–1 1.4603 16.5401 0.4872
32× 32 1.1601E–1 1.7518 9.7531 0.7620
64× 64 3.1393E–2 1.8857 5.2968 0.8808
128× 128 8.2042E–3 1.9360 2.7677 0.9364
256× 256 2.0726E–3 1.9849 1.4011 0.9821

Symmetric PIFE (ε = –1) 8× 8 1.0738 - 23.1231 -
16× 16 3.9080E–1 1.4582 16.5280 0.4844
32× 32 1.1596E–1 1.7528 9.7468 0.7619
64× 64 3.1392E–2 1.8852 5.2953 0.8802
128× 128 8.2055E–3 1.9357 2.7674 0.9362
256× 256 2.0730E–3 1.9848 1.4011 0.9820

Then we come to verify that our PIFE method can derive the same optimal-order accu-
racy even if the entries sl of the tensors Bl (l = ±) are negative. We conduct the numerical
experiment for t = ., B– = [, –; –, ] and t = , B– = [, –; –, ] and
give the error results in Table  and Table , respectively.

Finally, we would like to point out that, even for a larger jump of the diffusion coefficient,
our PIFE method is also valid and possesses optimal-order convergence properties. We
present numerical results for t = ., B– = [,, ,; ,, ,] in Table  as an
example for illustration.

7 Conclusions
In this paper, on non-body fitted triangular meshes, we have developed a partially penalty
immersed Crouzeix-Raviart finite element method for both isotropic and anisotropic el-
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Table 7 Numerical results for B+ = [1, 2; 2, 5], B– = [1,000, 2,000; 2,000, 5,000]

Scheme Grid ‖u – uh‖0,� Order |u – uh|1,h Order

Nonsymmetric PIFE (ε = 1) 8× 8 1.2074E–1 - 2.3185 -
16× 16 3.1092E–2 1.9573 1.1779 0.9769
32× 32 7.8627E–3 1.9835 5.9427E–1 0.9871
64× 64 1.9738E–3 1.9940 2.9834E–1 0.9942
128× 128 4.9306E–4 2.0011 1.4939E–1 0.9979
256× 256 1.2335E–4 1.9991 7.4748E–2 0.9990

Incomplete PIFE (ε = 0) 8× 8 1.1978E–1 - 2.3039 -
16× 16 3.1017E–2 1.9492 1.1766 0.9695
32× 32 7.8636E–3 1.9798 5.9412E–1 0.9858
64× 64 1.9749E–3 1.9934 2.9833E–1 0.9939
128× 128 4.9317E–4 2.0016 1.4936E–1 0.9981
256× 256 1.2339E–4 1.9989 7.4745E–2 0.9987

Symmetric PIFE (ε = –1) 8× 8 1.1967E–1 - 2.3025 -
16× 16 3.1010E–2 1.9482 1.1765 0.9687
32× 32 7.8665E–3 1.9790 5.9412E–1 0.9857
64× 64 1.9752E–3 1.9937 2.9833E–1 0.9938
128× 128 4.9317E–4 2.0018 1.4936E–1 0.9981
256× 256 1.2337E–4 1.9991 7.4745E–2 0.9987

liptic interface problems. For the theoretical analysis, we restrict ourselves to the isotropic
interface problems for simplicity. The solvability and optimal error estimates are obtained.
Then numerical experiments for both isotropic and anisotropic problems are conducted
to illustrate the validity of our schemes.

In this method, edge averages on three edges are used as degrees of freedom, which
makes it more advantageous for solving anisotropic interface problems than the use of val-
ues at three vertices. From numerical examples in the above section, we can observe that
it works well for the anisotropic problems, even if the entries sl of the tensor-coefficients
B

l (l = ±) are negative, while in [], by three counter-examples, it is pointed out that,
for some specially selected entries of the definite-positive diffusion matrix and the inter-
section points of the interface with the edges on the interface elements, the piecewise
linear Lagrange-nodal-polynomial satisfying the jump conditions cannot be uniquely de-
termined by its values at three vertices.
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