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In this paper, we study the strongly singular integrals
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along homogeneous curves Iy (t). We prove that T, g ,, is bounded on the
o-modulation spaces, including the inhomogeneous Besov spaces and the classical
modulation spaces.
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1 Introduction

The two dimension strongly singular integrals along curves Tj,, are defined by

1 —27i|t| P
Ta ) = pi. [ fla= iy 1@0)
1 t|e|y
where %,y € R, 8,y > 0. Zielinski [1] showed that Ty, is bounded on L*(R?) along the
curve (¢,£2) if and only if 8 > 3y . Later, Chandarana [2] extended the result to the general
curves (t, |t|™) or (¢ sgn(t)|£]™) with m > 2 and showed that T ,, is bounded on I7(R?) for

3y(B+1) BB +1)+(B-3y)

YBBrD -3y P 3+ "

Moreover, Chandarana also studied the strongly singular integrals along curves in R?
(see [2] for details). In [3], Chen et al. considered the operator for high dimension #. Let
0 =(61,6,,...,0,) € R”, and

To(t) = (B11£1%, 0218172, ..., 6,]t1P")
or

To(2) = sgn(t)(611¢7, 021t 172, ..., 6,£1").
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Then the operator T}, is defined as

—2milt| P

1
Typyf(x) = p.v. /-1f(x_ Ty () dt (B>y>0,xeR").

e
Ll
Suppose p1,p2, ..., s o and B are positive numbers. In [3], the authors proved that T, g,

is bounded on L?(R") whenever 8 > (n + 1)y and

28 28
28— (n+1)y <P (m+1)y’

Later, Cheng-Zhang [4] and Cheng [5] extended the results to the modulation space. They
showed that the strongly singular integral 7}, 5,, is bounded on the modulation spaces M, ,
for all p > 0. It is worth to point out that the modulation space is a better substitution to
study the strongly singular integrals because there is no restriction on the index p.

Here we will consider the strongly singular integrals along homogeneous curves T, g,
on the a-modulation spaces. The a-modulation spaces M7 were first introduced by
Grobner in [6]. They contain the inhomogeneous Besov spaces B, , in the limit case o = 1
and the classical modulation spaces M,, , in the case o = 0, respectively. It is proposed as
an intermediate function space; see [6, 7] for more details.

In recent years, there were numerous papers on these spaces and its applications, such as
[7-13] and the references therein. Motivated by the work of Cheng-Zhang [4] on the mod-
ulation spaces, one naturally expects that the strongly singular integral operators T}, 4,
have the boundedness property on the «-modulation spaces for all 0 < « < 1. In this pa-
per, we will affirm this.

This paper is organized as follows. In Section 2, we will recall the definition of the «-
modulation spaces and the Besov spaces. Some lemmas will also be presented in this sec-
tion. In Section 3, we will give the main results and prove the theorems. In addition, we
will consider the strongly singular integrals along a well-curved I'(¢) in R”. Throughout
this paper, we use the notation A < B meaning that there is a positive constant C indepen-
dent of all essential variables such that A < CB. We denote A ~ B to stand for A < B and
B=<A.

2 Preliminaries and lemmas
Before giving the definition of the «-modulation spaces, we introduce some notations fre-
quently used in this paper. Let S = S(R”) be the subspace of C*°(R") of Schwartz rapidly
decreasing functions and &' = §'(R”) be the space of all tempered distribution on R”. For
k = (ki,ks,...,k,) € Z", we denote
1 1

k| = (kf + k5 +---+k2)2, (k)= (1+]k[*)2.
We define the ball

By = {6 eR": |& — (k) Ta k| < r(k)1=a }

and By’ denotes

£ eR":|& — (k) Tak| < 2r(k)1=a ).
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The Fourier transform JF(f) and the inverse Fourier transform F~!(f) are defined by

f(f)(‘;;:) :f(%_) = /H\an(x)e—%rix-g dx,

]:_l(f)(“;‘):f(g):/ F@)eRmE gy,
R"

To define the «-modulation spaces, we introduce the o-decomposition. Let p be a non-
negative smooth radial bump function supported in B(0, 2), satisfying p(§) =1 for || <1
and p(&) =0 for || > 2. For any k = (ky, ka, ..., k,) € Z", we set

wpen (E-(K)Tak
pk(é)—p(ir(k)ﬁ )
and denote
-1
nz<s)=p‘;(5)(2pf@)) :

leZn

It is easy to check that {1} }xez~ satisfy

suppny C BY; (2.1)
ni(€)=c, VEeB (2.2)
D e =1, VeeR” (2.3)
keZ”

and
|7 el = (2.4)

Corresponding to the above sequence {1} }xez#, we can construct an operator sequence
{0O0% Ykezn by

O = Flng F.

For 0 <o <1,0 <p,q <o0,s € R, using this decomposition, we define the «-modulation

spaces as

Mg (R") = {fe SR <Z<k>fqa Hmzf”;)q < oo}.

keZ

We have the usual modification when p,q = co. We denote MIS;SI =M, . It is the classical
modulation space. Its related decomposition is called uniform decomposition; see [6, 7]
and [14] for details. In order to define the Besov spaces, we introduce the dyadic decom-

position. Let ¢ be a smooth bump function supported in the ball {§ : |£| < %}. We may
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assume Y (§) =1if |§] < %. Denote ¢(&) = ¥(§) — ¥(2§) and a function sequence {97} %0

$i(§) = p(27%), jeN,
Po(§) =1- 377, (&)

Define the Littlewood-Paley (or dyadic) decomposition operators as
Aj=F ¢ F, jeNuU{o0}.

Let 1 < p,q < 00,5 € R. For a tempered distribution f, we define the (inhomogeneous)
Besov space B,  as

B;,q(]Rn) = {f eSS ||'f”B;J'q(Rn) = (Z 2sjq”Alf||zp) < oo=

Jj=0

With the usual modification when p, g = co. Obviously, the «-decomposition is bigger than
the uniform decomposition and thinner than the dyadic decomposition. This decompo-
sition on frequency extends the dyadic and the uniform decomposition.

In order to prove the theorems, we also need some lemmas.

Lemma 2.1 Van der Corput lemma ([15], p.334). Let ¢ and ¢ be real valued smooth func-

tions on the interval (a,b) and k € N. If |®(t)| > 1 for all t € (a,b) and 1) k =1, ¢'(t) is
monotonic on (a, b), or (2) k > 2, then we have

b
f 2O (1) dt

b
<t (|¢<b>| o |¢/(t)|dt).
Lemma2.2 (1) [f0<a<1l,1<p<o9,ss €R keZ" and
108(Tp, )y < KT 1 N,

then, for any 0 < q < 0o, Ty, is bounded from My*" to M52,
(2)Ifl1<p<o00,s8,5 €R,jeZand

| A (T o = 2 W v,
then, for any 0 < g < oo, Ty, is bounded from B;,T;O'a to B;’Z.
Proof (1) It suffices to show that
|55 (Tp) ] < R |
Denote A(k) ={j € Z" : i}, - n;' # 0}. Then by the support condition (2.1), we have

() ~ k), ifj e Ak)
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and
gA(K) = 1.

Recall that the choice of 1 satisfies > _;.;» n = 1. By Minkowski’s inequality, we obtain

5Tl = | ST ]| < SIG T 80
jezn jezn
< ¥ 0o,
jeAw)

< (k)T | ),

Thus, the first part of the lemma holds. The second part of this lemma is similar to the

proof of the first part. Here we omit the details. d

3 Main results and proofs
Theorem 3.1 Let T'(¢) = |t|” or T'(¢) = |t|"sgn(t). f0<a<1,8>3y>0,1<p<00,0<
q <00 ands € R, then Tg,, is bounded from M,'»* to My3.

Proof By checking the following proof, we can only consider the operator

—2rit~P

1
Ta (o) = [ Ss=ty= 7).

It is similar for -1 < ¢ < 0. First, let us choose a C* function 6(¢) with support in [%, 2] on

the real line satisfying

[e¢]

> o(2e) =1.

j=0
Then we can decompose T}, as

_oxit B
e 27 it

[ee) 1 o0
Tpy (x9) =Y /o 0(2t)f (x—t,y - ") P dt:= " Ti(f)(x,). 3.1)
j=0 j=0

Using the Fourier transformation, the operator T; can be written as

T;f(éhé'z) = mj(éhgz)f(fbéz),

where

_omitP
1 e 27 it

N
(€, 62) = /0 L e

Let QF g be the kernel of [1¢ T}, so we have

DR TN @) = F (g (€)my(8)) #f (x) = Q£ ().
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By the Young inequality, we obtain

[DE T = 19285 ] 11

Let 72(2) = ng ({k) % ¢ + k(k) 72 ). Then supp 1% (¢) € B(0,2r). By a simple substitution and
the Fubini theorem, we get

—2ritP

1
R2 0 e
1
_ / n%(€) / e—zm'[él(t—x1>+sz(t”’—xz)le—hl‘f“@(2/t)t—1—y dtdé dé&,
R2 0

1 a a o o "
= (k)% / ﬁ]‘:(g)/ e~ 2 il(Ga (k) = ko (k) T=e ) (t=a01 ) + (5 (k) T= e (k) T=et ) (7 =222)]
R2 0
x g 2it” 0(2t)e 7 dtdg di,
o 1 o
(k)l OteZm(k)li x/ e—2m(t ﬂ+k1(k) t+k2<k)mt'”)0(2jt)t—l—y
0
11 (k) 158 (¢ = x1), (K) 150 (£ = x3) ) dit.

Let ¢(¢) = -2 [t + ki (k) T ¢ + ko (k) o £], then
o LA , N
¥ ) = (k) 15 g2tk T f Y0 (28) 6777 0 (k) 750 (& - x1), (k) T (¢ — xy) ) dit
: -
<k> 120,‘1 eZm(k) a kx]}

First, let us estimate I;. We divide it into two cases.
Case 1. If ky > 0, then

0" (t)| = 27 [B(B + DEP2 4 m(m — Dy (k) Ta 2] = ¢7P72 = 242,
By the Van der Corput lemma, we have

[ =27 e (k) (277 ), () T (277 — )|

—j+1
i [?
+27°2

2/-1

M ((k) (27 ), (k) e (277 — )|

d A o
0@ (7% (¢ = ), (k)P (27 - 32) ] it

<2

/Mf 2’9 (o)1 |72 (k) e (= m), (k)T (67 = x2))| dt

/ t-”ln k)5 (= 00), k) 155 (£ = 32) )| e

(6+2) 271

_I\P+ a _

+272 (k)li'a/ £
2

-

M, . .
e (k)% (¢ - ), )15 (£ — )

3961

dt

9+l 24

12757 oy / y2yem| Ok
27/ X2

()T (£ = 3), (k) 75 (£ —x5)) ‘ dt.
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Then, by a substitution and the Fubini theorem, we obtain

oy <22 0% [ g 01 —) s (7 )
2-j+1
/ / _1V| k) @ (t—x1), (k )f(t’”—xz))|dtdx
R2 J2
j(B+2) 21+1 _2— L 2 om
v (k) —a/ / t V|n l—a(t—xl),(k)l—a(t —xz))|dtdx
]R2 2/1
+2_@ —oz
9-j+1
/2/11 £ (k)ﬁ(t—xl),mﬁ(t’"—xz))‘dtdx
r2 J2
+27 2 (k) &

8x2 DLy e - s ) 5 (¢ —xg))‘dtdx

2 —j+1
/ / —2 y+m
R2 J27

(6-2y) 8 27
NP2y 2 1Ly 2 —1-
<2 i s 2 il | e ae

2-j+1 Zo 2-j+1
j(B+2) j(B+2) o || 0
+27 2 / 2 th+2_7<k)m e / 7 de
2771 0%1 |71 Jo-i
2 —j+1
J(B+2) an 27
+27 7 (k)T-= all f LY gy
3962 nJ2J
JB-27) | & jB+2-2y) o ane JB+2m=2y) ane
e b P e e R e
0x1 Il 0% 11
J(B=2y) o
7 (k)T (3.2)

Case 2. If ky < 0, then
" (0)] = | -2 [-B(B + 1)(B + 2)t P> + m(m — 1)(m - 3)ky (k) T %]

> t‘ﬁ_?’ > 2j(ﬂ+3)‘

By the Van der Corput lemma, we have

i (7% (277 ), (1% (277 - )|

2-j+1

j(B+3)
+27°3 /
2--1

-“"‘Tg”|ﬁz<<k>%<z-f“—x1>,<k>ﬁ<2-f’"”"—xz>>|

d . 2 a a
0@ ()T (= ), (k)T (27 - 2))]|

<2
k)ﬁ(tm —xz))|dlf

- t-Z |7 (k)15 (£ — x0), (K) 1% (£7 — x3)) | dt

M)f fl v 26" (V)| ng (k)75 (¢ - x1), ¢
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) 27]41 20(
+ o a o a
w275 it / | 2 () 125 (£ - ), (h) 155 (67— x3)) ‘ dt
2-/-1 0x1

(B+3) o 27 8 o
+2705 (ke / g2y K () 175 (¢ - xy), (k)lu(t’”—xg))‘dt.
91 0%y
Thus, similar to (3.2), we get
My e 85,‘2’
Q. +2 k)T-a || —=
g 0 =275 g w38
j(B+3m-3y) @ 320‘
+ 27 gy e | Dk
axz 2!
i(B-3y) o
2775 (k) e, (3.3)

Combining (3.2) and (3.3), we have
J(B=3y) o

” Qk}”L1 <27 5 (k)m

Therefore, noticing 8 > 3y and combining with (3.1), we get

(k)T ||f | r < (k)T |f || o

587301, = IO, <32
j=0 Jj=0

So, by Lemma 2.2(1), we have

|75, ) Mg = 1 llaggseer

We finished the proof of Theorem 3.1. O

Theorem 3.2 Let '(¢) = [t|™ or T'(¢) = |t|"sgn(t). If B>y >0,1 < p < 00,0 <q < 00 and
s € R, then Tp,, is bounded from B} to B;, .

Proof As the proof of Theorem 3.1, using the Fourier transformation, the operator Ty,
can be written as

m(gl’&) = mﬂ,y(élréz)f@béz),

where

—2mitP

1
p my €
mp,y (§1,6) = / e Pmant) ——— g,
0

ty+1
Let Q; 4, be the kernel of A; Ty ,,, so we have
AjTp, () %) = FH(¢(E)mp,, (5)) (%) = Qi +f ().

Using the Young inequality, we obtain

18T, 1o < 126 12 1 120
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First, let us estimate €2; 4, . By a substitution and integrating by parts, we have

—27'[1[ B

Qo= [ @t [ e S0 g
R2

= / ¢}($)/ e—2ﬂi[$1(!—x1)+Ez(tm—x2)]e—2ﬂit'ﬂ £ dt d&, de,
R2

0

1 i i og—
_ 22;/2 ¢(;)‘/ o2V Qx4 Y 0o (" —x)] -2t ﬁt—l—y dtde de,
R 0

2j ) )
- 22/; | p)ematm e gt ey L g
TPpL JRr2
2% 1 ‘ N _
- / ¢(§)/ eizmt_ﬂ d[tﬂ*)fe*Zﬂz[ZJQ(tfx1)+21;2(t’"—x2)]]dé.
27T,3l R2 0
22j h(2 j —27i
= 27‘[,Bi¢(2 (1-x),2(1 —xz))e
22‘ 1 orit=P 1 —owilde (¢ o £ (7
(B - V)f (;“)/ e 2mit P by —lgmamil G (=) + 0" =) gy g1
271,31 0
3j i
,3 ¢(§-)‘/ —27 it ﬁtﬂ Ve—27rz[?/t1(t—x1)+2/§2(t —x2)] (Cl + Comt"™ 1) dtdc.

Then, using the Fubini theorem, we get

|25, @] < 2%[¢(2(1 - 1), 2 (1 - x,))|

1
+22j/ 6‘2””ﬁtﬂ‘y‘1$(2’(t—x1)»2’(fm_xz))dt'
0

1
+29 / g2t f’tﬂ 2 ¢ (2](1' x1), 21( —xg))dt‘
0 8x

~

1
+ 0¥ / ot ﬂtﬁ y+m— 1§¢ (2I(t x1), 21( —xz))dt‘.
0

Thus, using a substitution and the Minkowski inequality, it follows that

19 1 < 2% / 1B/ -2, 20~ x) | d
R

1
+ 22i/ / e—2m’t’ﬁ tﬂ_y_l(jA)(Zj(t —x1),2 (tm — xz)) dt| dx
R2|Jo

~

1
+23// / o 2mit ™ yp- Vg('b (2’(t x1), 2]( _x2)) at
R2

0

dx

~

1
, ad
+23// ] g 2mit P oy rm-1 ¢ — (Yt —x0), 2 (t" — x5)) dt | dx
R2|Jo 9x2
] | 94 ¢
<lélp +2 T .
X1 Ja! 8x2 11

<,
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Therefore, we get

” AjTﬂ:V(f)HLp <Y|fllzr.

Thus, following Lemma 2.2(2), we have

175 P, = Wl
We finished the proof of Theorem 3.2. .

Theorem 3.3 If0 <o <1,B8>n+1)y,1<p<00,0<g=<o0andseck,then T,p, is
bounded from M, to My7.

Proof When « =1, it is similar to the proof of Theorem 3.2. Thus, we only prove the case
of 0 < & < 1. Checking the proof of this theorem, we only need to show the case, 0 < ¢ <1.
When -1 < t < 0, the proof is similar. For convenience, we rewrite the operator as follows:

—2nn ﬂ

wmx/fxmw

As in Theorem 3.1, choose a C*™ function W(¢£) with support in [%, 2] on the real line sat-
istying

oo
> w2 =1
j=0
Then we can decompose T}, 5, as
—Znn ﬂ
MNW%Z/ W) (x - To(0) an

Using the Fourier transformation, the operator T},; can be written as

T, f (€) = m,,(6)f (&),

where

1
, . _ 1
mM@z/W@ﬂfmmmwm——ﬁ
0

ty+1
Therefore, we have
O T (f) () = f"l(nﬁmw) * f(x).

By the Young inequality, we get

|0 T ()] o < | F 7 (0 Oy ) | 1 1 Do
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Now, we estimate ||]-"1(7],‘§(~)m,,,j(~))||L1. By scaling, we can assume 6 = (1,1,...,1) in the
definition of T'¢(¢). Let 7% (¢) = ng ((k) el +k(k)Ta). By a simple substitution and the Fu-

bini theorem, we obtain

F (g m) ()
1
- / eI () / W (2)e O 1y gy g
R” 0
1
_ / 2 g () / i (€20 =62 ) o2 g iy
0 R”

o 1 o
— 627:1 2mixyky (k) I-o <k> % / e—ZJTi[fﬁ+Z;':1 ky (k) I-o tpl]t—l—]/ V7, (2]t)
0

X / ﬁg(;)e_Z”iZ;l:l(tpl—xl){[(k) T-a dé‘ dt
R”l

2—j+1

- eZ}ll 2mixyk; (k) I'a (k) =% / 0 -1-y \IJ(2it)
2

—j-1

x 7% ((k) e (71 = 1), (k) T (82 = x3),....., (k) T (2 —x,,) ) dt.
Denote ¢(t) = -2 [t + Y., ki(k) a 1], By a normal computation, we get
¢ (t) = 2w (-1 [B(B+1) -+ (B +m -1t + (-1)"AS ()],

where

n

AN @) =Y k)T pypr=1) -+ (pr = m+ DI,

I=1

Set K, = {t: (-1)"A% (¢) > 0}. Checking the proof in [3], when ¢ € K,,, we get
9" (8)| = Cpt P

Then, using the ideas in [3] and following the proofs in Theorem 3.1, we obtain Theo-

rem 3.3. Here we omit the details. O

Remark 3.4 In Theorems 3.1 and 3.3, if we take « = 0, we will get the sufficient results
in [4]. Unlike [4], we use the discrete definition of modulation spaces. So, our method is
different from [4]. Unfortunately, if 0 < & <1, for the scaling property of the decompo-
sitions(see Section 2 for details), we will lose the regularity of the space by our method.

Maybe we need some new ideas to overcome this limitation.

Remark 3.5 In [16], the authors mention the fact that the «-modulation space cannot be
obtained by interpolation between modulation spaces & = 0 and Besov spaces « = 1. Thus,

it shows that our proofs for 0 < @ <1 in Theorems 3.1 and 3.3 are meaningful.
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Remark 3.6 We can extend this result to the well-curved y in R”. Let y (¢) be a smooth
mapping such that y(0) = 0 and

d*y(t)
dik =0’

k=1,2,...

spanR” (smooth mappings of finite type in a small neighborhood of the origin). Then
we call y(¢) well curved. See [17, 18] for details. According to [17] (Proposition 3.1), to
every smooth well-curved y (¢) there exists a constant nonsingular matrix M such that
7(t) = My (t) is of standard type; that is, approximately homogeneous, taking the form

ag
Vi(t) = — + higher order terms
aj.

for k=1,2,...,nwith1 <a; <ay <--- <a,y() = (1), y),..., (). Following the
ideas in [17], combining with Theorem 3.3, we can get

Theorem 3.7 Let T'y(t) be well-curved. If 0 <a <1,B8>n+1)y,1<p <00,0<g <0
and s € R, then T, is bounded from M, " to My7.

4 Conclusions

In this paper, using the equivalent discrete definition of «-modulation spaces, combin-
ing the Fourier transform and Van der Corput lemma, we obtained the strongly singu-
lar integrals along homogeneous curves are bounded on the «-modulation spaces for all
0 < o < 1. Our results extend the main results in [4]. Our method is also different from [4].
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