A generalization of a theorem of Bor

Hikmet Seyhan Özarslan* and Bağdagül Kartal

"Correspondence: seyhan@erciyes.edu.tr Department of Mathematics, Erciyes University, Kayseri, 38039, Turkey

Abstract

In this paper, a general theorem concerning absolute matrix summability is established by applying the concepts of almost increasing and δ-quasi-monotone sequences.

MSC: 26D15; 40D15; 40F05; 40G99 Keywords: matrix transformations; almost increasing sequences; quasi-monotone sequences; Hölder inequality; Minkowski inequality

1 Introduction

A positive sequence $\left(y_{n}\right)$ is said to be almost increasing if there is a positive increasing sequence (u_{n}) and two positive constants K and M such that $K u_{n} \leq y_{n} \leq M u_{n}$ (see [1]). A sequence (c_{n}) is said to be δ-quasi-monotone, if $c_{n} \rightarrow 0, c_{n}>0$ ultimately and $\Delta c_{n} \geq-\delta_{n}$, where $\Delta c_{n}=c_{n}-c_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [2]). Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $T=\left(t_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. At that time T describes the sequence-tosequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $T s=\left(T_{n}(s)\right)$, where

$$
\begin{equation*}
T_{n}(s)=\sum_{v=0}^{n} t_{n v} s_{v}, \quad n=0,1, \ldots \tag{1}
\end{equation*}
$$

Let $\left(\varphi_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\varphi-\left|T, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|\bar{\Delta} T_{n}(s)\right|^{k}<\infty, \tag{2}
\end{equation*}
$$

where

$$
\bar{\Delta} T_{n}(s)=T_{n}(s)-T_{n-1}(s) .
$$

If we take $\varphi_{n}=\frac{p_{n}}{p_{n}}$, then $\varphi-\left|T, p_{n}\right|_{k}$ summability reduces to $\left|T, p_{n}\right|_{k}$ summability (see [4]). If we set $\varphi_{n}=n$ for all $n, \varphi-\left|T, p_{n}\right|_{k}$ summability is the same as $|T|_{k}$ summability (see [5]). Also, if we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $t_{n v}=\frac{p_{v}}{P_{n}}$, then we get $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [6]).

2 Known result

In $[7,8]$, Bor has established the following theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

Theorem 2.1 Let $\left(Y_{n}\right)$ be an almost increasing sequence such that $\left|\Delta Y_{n}\right|=O\left(Y_{n} / n\right)$ and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Assume that there is a sequence of numbers $\left(B_{n}\right)$ such that it is δ-quasimonotone with $\sum n Y_{n} \delta_{n}<\infty, \sum B_{n} Y_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If

$$
\begin{align*}
& \sum_{n=1}^{m} \frac{1}{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } m \rightarrow \infty \tag{3}\\
& \sum_{n=1}^{m} \frac{1}{n}\left|z_{n}\right|^{k}=O\left(Y_{m}\right) \quad \text { as } m \rightarrow \infty \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|z_{n}\right|^{k}=O\left(Y_{m}\right) \quad \text { as } m \rightarrow \infty \tag{5}
\end{equation*}
$$

where $\left(z_{n}\right)$ is the nth $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$.

3 Main result

The purpose of this paper is to generalize Theorem 2.1 to the $\varphi-\left|T, p_{n}\right|_{k}$ summability. Before giving main theorem, let us introduce some well-known notations. Let $T=\left(t_{n v}\right)$ be a normal matrix. Lower semimatrices $\bar{T}=\left(\bar{t}_{n v}\right)$ and $\hat{T}=\left(\hat{t}_{n v}\right)$ are defined as follows:

$$
\begin{equation*}
\bar{t}_{n v}=\sum_{i=v}^{n} t_{n i}, \quad n, v=0,1, \ldots \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{t}_{00}=\bar{t}_{00}=t_{00}, \quad \hat{t}_{n v}=\bar{t}_{n v}-\bar{t}_{n-1, v}, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

Here, \bar{T} and \hat{T} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then we write

$$
\begin{equation*}
T_{n}(s)=\sum_{v=0}^{n} t_{n v} s_{v}=\sum_{v=0}^{n} \bar{t}_{n v} a_{v} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Delta} T_{n}(s)=\sum_{v=0}^{n} \hat{t}_{n v} a_{v} \tag{9}
\end{equation*}
$$

By taking the definition of general absolute matrix summability, we established the following theorem.

Theorem 3.1 Let $T=\left(t_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
& \bar{t}_{n 0}=1, \quad n=0,1, \ldots, \tag{10}\\
& t_{n-1, v} \geq t_{n v}, \quad \text { for } n \geq v+1, \tag{11}\\
& t_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{12}
\end{align*}
$$

and $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ be a non-increasing sequence. If all conditions of Theorem 2.1 with conditions (4) and (5) are replaced by

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1} \frac{1}{n}\left|z_{n}\right|^{k}=O\left(Y_{m}\right) \quad \text { as } m \rightarrow \infty \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|z_{n}\right|^{k}=O\left(Y_{m}\right) \quad \text { as } m \rightarrow \infty \tag{14}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is $\varphi-\left|T, p_{n}\right|_{k}$ summable, $k \geq 1$.

We need the following lemmas for the proof of Theorem 3.1.

Lemma 3.2 ([7]) Let $\left(Y_{n}\right)$ be an almost increasing sequence and $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. If $\left(B_{n}\right)$ is δ-quasi-monotone with $\sum B_{n} Y_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n, then we have

$$
\begin{equation*}
\left|\lambda_{n}\right| Y_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

Lemma 3.3 ([8]) Let $\left(Y_{n}\right)$ be an almost increasing sequence such that $n\left|\Delta Y_{n}\right|=O\left(Y_{n}\right)$. If $\left(B_{n}\right)$ is δ-quasi monotone with $\sum n Y_{n} \delta_{n}<\infty$, and $\sum B_{n} Y_{n}$ is convergent, then

$$
\begin{align*}
& n B_{n} Y_{n}=O(1) \quad \text { as } n \rightarrow \infty \tag{16}\\
& \sum_{n=1}^{\infty} n Y_{n}\left|\Delta B_{n}\right|<\infty \tag{17}
\end{align*}
$$

4 Proof of Theorem 3.1

Let $\left(I_{n}\right)$ indicate the T-transform of the series $\sum a_{n} \lambda_{n}$. Then we obtain

$$
\begin{equation*}
\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{t}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{t}_{n v} \lambda_{v}}{v} v a_{v} \tag{18}
\end{equation*}
$$

by means of (8) and (9).

Using Abel's formula for (18), we obtain

$$
\begin{aligned}
\bar{\Delta} I_{n}= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{t}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{t}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
= & \sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{t}_{n v}\right) \lambda_{v} z_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{t}_{n, v+1} \Delta \lambda_{v} z_{v} \\
& +\sum_{v=1}^{n-1} \hat{t}_{n, v+1} \lambda_{v+1} \frac{z_{v}}{v}+\frac{n+1}{n} t_{n n} \lambda_{n} z_{n} \\
= & I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4} .
\end{aligned}
$$

For the proof of Theorem 3.1, it suffices to prove that

$$
\sum_{n=1}^{\infty} \varphi_{n}^{k-1}\left|I_{n, r}\right|^{k}<\infty
$$

$$
\text { for } r=1,2,3,4
$$

By Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|\left|\lambda_{\nu}\right|\left|z_{\nu}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{\nu}\left(\hat{t}_{n v}\right)\right|\left|\lambda_{\nu}\right|^{k}\left|z_{\nu}\right|^{k}\right)\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

By (6) and (7), we have

$$
\begin{align*}
\Delta_{v}\left(\hat{t}_{n v}\right) & =\hat{t}_{n v}-\hat{t}_{n, v+1} \\
& =\bar{t}_{n v}-\bar{t}_{n-1, v}-\bar{t}_{n, v+1}+\bar{t}_{n-1, v+1} \\
& =t_{n v}-t_{n-1, v} . \tag{19}
\end{align*}
$$

Thus using (6), (10) and (11)

$$
\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|=\sum_{v=1}^{n-1}\left(t_{n-1, v}-t_{n v}\right) \leq t_{n n}
$$

Hence, we get

$$
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} t_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|\left|\lambda_{\nu}\right|^{k}\left|z_{\nu}\right|^{k}\right)
$$

by using (12)

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|z_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{\nu}\right|^{k}\left|z_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k}\left|z_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right| .
\end{aligned}
$$

Now, using (11) and (19), we obtain

$$
\sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{t}_{n v}\right)\right|=\sum_{n=v+1}^{m+1}\left(t_{n-1, v}-t_{n v}\right) \leq t_{v v}
$$

Thus, by using Abel's formula, we obtain

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 1}\right|^{k} & =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|z_{v}\right|^{k} t_{v v} \\
& =O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|\lambda_{v}\right|\left|z_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k}\left|z_{r}\right|^{k}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k}\left|z_{v}\right|^{k} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| Y_{v}+O(1)\left|\lambda_{m}\right| Y_{m} \\
& =O(1) \sum_{v=1}^{m-1}\left|B_{v}\right| Y_{v}+O(1)\left|\lambda_{m}\right| Y_{m} \\
& =O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of (14) and (15).
Again, using Hölder's inequality, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 2}\right|^{k}= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|z_{v}\right|\right)^{k} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|B_{v}\right|\left|z_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|B_{v}\right|\right)^{k-1} .
\end{aligned}
$$

By means of (6), (7) and (11), we have

$$
\begin{aligned}
\hat{t}_{n, v+1} & =\bar{t}_{n, v+1}-\bar{t}_{n-1, v+1} \\
& =\sum_{i=v+1}^{n} t_{n i}-\sum_{i=v+1}^{n-1} t_{n-1, i} \\
& =t_{n n}+\sum_{i=v+1}^{n-1}\left(t_{n i}-t_{n-1, i}\right) \\
& \leq t_{n n} .
\end{aligned}
$$

In this way, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 2}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1} t_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|B_{v}\right|\left|z_{v}\right|^{k}\right) \\
& =O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|B_{v}\right|\left|z_{v}\right|^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|B_{v}\right|\left|z_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{t}_{n, v+1}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left|B_{v}\right|\left|z_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left|\hat{t}_{n, v+1}\right| .
\end{aligned}
$$

By (6), (7), (10) and (11), we obtain

$$
\left|\hat{t}_{n, v+1}\right|=\sum_{i=0}^{v}\left(t_{n-1, i}-t_{n i}\right) .
$$

Thus, using (6) and (10), we have

$$
\sum_{n=v+1}^{m+1}\left|\hat{t}_{n, v+1}\right|=\sum_{n=v+1}^{m+1} \sum_{i=0}^{v}\left(t_{n-1, i}-t_{n i}\right) \leq 1,
$$

then we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 2}\right|^{k}= & O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} v\left|B_{v}\right| \frac{1}{v}\left|z_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|B_{v}\right|\right) \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k-1} \frac{1}{r}\left|z_{r}\right|^{k} \\
& +O(1) m\left|B_{m}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \frac{1}{v}\left|z_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta B_{v}\right| Y_{v}+O(1) \sum_{v=1}^{m-1}\left|B_{v}\right| Y_{v}+O(1) m\left|B_{m}\right| Y_{m} \\
= & O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

in view of (13), (16) and (17).

Also, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left|I_{n, 3}\right|^{k} \leq & \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|}{v}\right)^{k} \\
\leq & \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v}\right)\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right| \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
\leq & \sum_{n=2}^{m+1} \varphi_{n}^{k-1} t_{n n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v}\right)\left(\sum_{v=1}^{n-1} \frac{\left|\lambda_{v+1}\right|}{v}\right)^{k-1} \\
= & O(1) \sum_{n=2}^{m+1} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v}\right) \\
= & O(1) \sum_{n=2}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left(\sum_{v=1}^{n-1}\left|\hat{t}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v}\right) \\
= & O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v} \sum_{n=v+1}^{m+1}\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)^{k-1}\left|\hat{t}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m}\left(\frac{\varphi_{v} p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v} \sum_{n=v+1}^{m+1}\left|\hat{t}_{n, v+1}\right| \\
= & O(1) \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1}\left|\lambda_{v+1}\right| \frac{\left|z_{v}\right|^{k}}{v} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v+1}\right| \sum_{r=1}^{v} \varphi_{r}^{k-1}\left(\frac{p_{r}}{P_{r}}\right)^{k-1} \frac{-1}{r}\left|z_{r}\right|^{k} \\
& +O(1)\left|\lambda_{m+1}\right| \sum_{v=1}^{m} \varphi_{v}^{k-1}\left(\frac{p_{v}}{P_{v}}\right)^{k-1} \frac{-}{v}\left|z_{v}\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|B_{v+1}\right| Y_{v+1}+O(1)\left|\lambda_{m+1}\right| Y_{m+1} \\
= & O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

in view of (3), (12), (13) and (15).
Finally, as in $I_{n, 1}$, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \varphi_{n}^{k-1}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} t_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|z_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|z_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \varphi_{n}^{k-1}\left(\frac{p_{n}}{P_{n}}\right)^{k}\left|\lambda_{n} \| z_{n}\right|^{k}=O(1) \quad \text { as } m \rightarrow \infty,
\end{aligned}
$$

in view of (12), (14) and (15). Finally, the proof of Theorem 3.1 is completed.

5 Corollary

If we take $\varphi_{n}=\frac{P_{n}}{p_{n}}$ and $t_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1, then we get Theorem 2.1. In this case, conditions (13) and (14) reduce to conditions (4) and (5), respectively. Also, the condition ' $\left(\frac{\varphi_{n} p_{n}}{P_{n}}\right)$ is a non-increasing sequence' and the conditions (10)-(12) are clearly satisfied.

6 Conclusions

In this study, we have generalized a well-known theorem dealing with an absolute summability method to a $\varphi-\left|T, p_{n}\right|_{k}$ summability method of an infinite series by using almost increasing sequences and δ-quasi-monotone sequences.

Acknowledgements

This work was supported by Research Fund of the Erciyes University, Project Number: FBA-2014-3846.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions
All authors contributed equally to the manuscript and read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 3 May 2017 Accepted: 18 July 2017 Published online: 02 August 2017

References

1. Bari, NK, Stečkin, SB: Best approximations and differential properties of two conjugate functions. Tr. Mosk. Mat. Obŝ. 5, 483-522 (1956)
2. Boas, RP: Quasi-positive sequences and trigonometric series. Proc. Lond. Math. Soc. 14A, 38-46 (1965)
3. Özarslan, HS, Keten, A: A new application of almost increasing sequences. An. Ştiinţ. Univ. 'Al.I. Cuza' laşi, Mat. 61, 153-160 (2015)
4. Sulaiman, WT: Inclusion theorems for absolute matrix summability methods of an infinite series. IV. Indian J. Pure Appl. Math. 34, 1547-1557 (2003)
5. Tanovič-Miller, N: On strong summability. Glas. Mat. Ser. III 14, 87-97 (1979)
6. Bor, H: On two summability methods. Math. Proc. Camb. Philos. Soc. 97, 147-149 (1985)
7. Bor, H: An application of almost increasing and δ-quasi-monotone sequences. JPAM. J. Inequal. Pure Appl. Math. 1(2), Article ID 18 (2000)
8. Bor, H: Corrigendum on the paper 'An application of almost increasing and δ-quasi-monotone sequences' published in JIPAM, Vol.1, No.2. (2000), Article 18. JIPAM. J. Inequal. Pure Appl. Math. 3(1), Article ID 16 (2002)
```
Submit your manuscript to a SpringerOpen`
journal and benefit from:
- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article
    Submit your next manuscript at $ springeropen.com
```

