
Özarslan and Kartal Journal of Inequalities and Applications  (2017) 2017:179 
DOI 10.1186/s13660-017-1455-3

R E S E A R C H Open Access

A generalization of a theorem of Bor
Hikmet Seyhan Özarslan* and Bağdagül Kartal
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Abstract
In this paper, a general theorem concerning absolute matrix summability is
established by applying the concepts of almost increasing and δ-quasi-monotone
sequences.
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1 Introduction
A positive sequence (yn) is said to be almost increasing if there is a positive increasing
sequence (un) and two positive constants K and M such that Kun ≤ yn ≤ Mun (see []).
A sequence (cn) is said to be δ-quasi-monotone, if cn → , cn >  ultimately and �cn ≥ –δn,
where �cn = cn – cn+ and δ = (δn) is a sequence of positive numbers (see []). Let

∑
an be

a given infinite series with partial sums (sn). Let T = (tnv) be a normal matrix, i.e., a lower
triangular matrix of nonzero diagonal entries. At that time T describes the sequence-to-
sequence transformation, mapping the sequence s = (sn) to Ts = (Tn(s)), where

Tn(s) =
n∑

v=

tnvsv, n = , , . . . ()

Let (ϕn) be any sequence of positive real numbers. The series
∑

an is said to be summable
ϕ – |T , pn|k , k ≥ , if (see [])

∞∑

n=

ϕk–
n

∣
∣�̄Tn(s)

∣
∣k < ∞, ()

where

�̄Tn(s) = Tn(s) – Tn–(s).

If we take ϕn = Pn
pn

, then ϕ – |T , pn|k summability reduces to |T , pn|k summability (see []).
If we set ϕn = n for all n, ϕ – |T , pn|k summability is the same as |T |k summability (see []).
Also, if we take ϕn = Pn

pn
and tnv = pv

Pn
, then we get |N̄ , pn|k summability (see []).
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2 Known result
In [, ], Bor has established the following theorem dealing with |N̄ , pn|k summability fac-
tors of infinite series.

Theorem . Let (Yn) be an almost increasing sequence such that |�Yn| = O(Yn/n) and
λn →  as n → ∞. Assume that there is a sequence of numbers (Bn) such that it is δ-quasi-
monotone with

∑
nYnδn < ∞,

∑
BnYn is convergent and |�λn| ≤ |Bn| for all n. If

m∑

n=


n

|λn| = O() as m → ∞, ()

m∑

n=


n

|zn|k = O(Ym) as m → ∞, ()

and

m∑

n=

pn

Pn
|zn|k = O(Ym) as m → ∞, ()

where (zn) is the nth (C, ) mean of the sequence (nan), then the series
∑

anλn is summable
|N̄ , pn|k , k ≥ .

3 Main result
The purpose of this paper is to generalize Theorem . to the ϕ – |T , pn|k summability.
Before giving main theorem, let us introduce some well-known notations. Let T = (tnv) be
a normal matrix. Lower semimatrices T̄ = (t̄nv) and T̂ = (t̂nv) are defined as follows:

t̄nv =
n∑

i=v

tni, n, v = , , . . . ()

and

t̂ = t̄ = t, t̂nv = t̄nv – t̄n–,v, n = , , . . . ()

Here, T̄ and T̂ are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then we write

Tn(s) =
n∑

v=

tnvsv =
n∑

v=

t̄nvav ()

and

�̄Tn(s) =
n∑

v=

t̂nvav. ()

By taking the definition of general absolute matrix summability, we established the follow-
ing theorem.
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Theorem . Let T = (tnv) be a positive normal matrix such that

t̄n = , n = , , . . . , ()

tn–,v ≥ tnv, for n ≥ v + , ()

tnn = O
(

pn

Pn

)

, ()

and ( ϕnpn
Pn

) be a non-increasing sequence. If all conditions of Theorem . with conditions
() and () are replaced by

m∑

n=

ϕk–
n

(
pn

Pn

)k– 
n

|zn|k = O(Ym) as m → ∞ ()

and

m∑

n=

ϕk–
n

(
pn

Pn

)k

|zn|k = O(Ym) as m → ∞, ()

then the series
∑

anλn is ϕ – |T , pn|k summable, k ≥ .

We need the following lemmas for the proof of Theorem ..

Lemma . ([]) Let (Yn) be an almost increasing sequence and λn →  as n → ∞. If (Bn)
is δ-quasi-monotone with

∑
BnYn is convergent and |�λn| ≤ |Bn| for all n, then we have

|λn|Yn = O() as n → ∞. ()

Lemma . ([]) Let (Yn) be an almost increasing sequence such that n|�Yn| = O(Yn). If
(Bn) is δ-quasi monotone with

∑
nYnδn < ∞, and

∑
BnYn is convergent, then

nBnYn = O() as n → ∞, ()
∞∑

n=

nYn|�Bn| < ∞. ()

4 Proof of Theorem 3.1
Let (In) indicate the T-transform of the series

∑
anλn. Then we obtain

�̄In =
n∑

v=

t̂nvavλv =
n∑

v=

t̂nvλv

v
vav ()

by means of () and ().
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Using Abel’s formula for (), we obtain

�̄In =
n–∑

v=

�v

(
t̂nvλv

v

) v∑

r=

rar +
t̂nnλn

n

n∑

r=

rar

=
n–∑

v=

v + 
v

�v(t̂nv)λvzv +
n–∑

v=

v + 
v

t̂n,v+�λvzv

+
n–∑

v=

t̂n,v+λv+
zv

v
+

n + 
n

tnnλnzn

= In, + In, + In, + In,.

For the proof of Theorem ., it suffices to prove that

∞∑

n=

ϕk–
n |In,r|k < ∞

for r = , , , .
By Hölder’s inequality, we have

m+∑

n=

ϕk–
n |In,|k = O()

m+∑

n=

ϕk–
n

( n–∑

v=

∣
∣�v(t̂nv)

∣
∣|λv||zv|

)k

= O()
m+∑

n=

ϕk–
n

( n–∑

v=

∣
∣�v(t̂nv)

∣
∣|λv|k|zv|k

)( n–∑

v=

∣
∣�v(t̂nv)

∣
∣

)k–

.

By () and (), we have

�v(t̂nv) = t̂nv – t̂n,v+

= t̄nv – t̄n–,v – t̄n,v+ + t̄n–,v+

= tnv – tn–,v. ()

Thus using (), () and ()

n–∑

v=

∣
∣�v(t̂nv)

∣
∣ =

n–∑

v=

(tn–,v – tnv) ≤ tnn.

Hence, we get

m+∑

n=

ϕk–
n |In,|k = O()

m+∑

n=

ϕk–
n tk–

nn

( n–∑

v=

∣
∣�v(t̂nv)

∣
∣|λv|k|zv|k

)
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by using ()

m+∑

n=

ϕk–
n |In,|k = O()

m+∑

n=

(
ϕnpn

Pn

)k–
( n–∑

v=

∣
∣�v(t̂nv)

∣
∣|λv|k|zv|k

)

= O()
m∑

v=

|λv|k|zv|k
m+∑

n=v+

(
ϕnpn

Pn

)k–∣
∣�v(t̂nv)

∣
∣

= O()
m∑

v=

(
ϕvpv

Pv

)k–

|λv|k|zv|k
m+∑

n=v+

∣
∣�v(t̂nv)

∣
∣.

Now, using () and (), we obtain

m+∑

n=v+

∣
∣�v(t̂nv)

∣
∣ =

m+∑

n=v+

(tn–,v – tnv) ≤ tvv.

Thus, by using Abel’s formula, we obtain

m+∑

n=

ϕk–
n |In,|k = O()

m∑

v=

(
ϕvpv

Pv

)k–

|λv|k–|λv||zv|ktvv

= O()
m∑

v=

ϕk–
v

(
pv

Pv

)k

|λv||zv|k

= O()
m–∑

v=

�|λv|
v∑

r=

ϕk–
r

(
pr

Pr

)k

|zr|k + O()|λm|
m∑

v=

ϕk–
v

(
pv

Pv

)k

|zv|k

= O()
m–∑

v=

|�λv|Yv + O()|λm|Ym

= O()
m–∑

v=

|Bv|Yv + O()|λm|Ym

= O() as m → ∞,

in view of () and ().
Again, using Hölder’s inequality, we have

m+∑

n=

ϕk–
n |In,|k = O()

m+∑

n=

ϕk–
n

( n–∑

v=

|t̂n,v+||�λv||zv|
)k

= O()
m+∑

n=

ϕk–
n

( n–∑

v=

|t̂n,v+||Bv||zv|k
)

×
( n–∑

v=

|t̂n,v+||Bv|
)k–

.
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By means of (), () and (), we have

t̂n,v+ = t̄n,v+ – t̄n–,v+

=
n∑

i=v+

tni –
n–∑

i=v+

tn–,i

= tnn +
n–∑

i=v+

(tni – tn–,i)

≤ tnn.

In this way, we have

m+∑

n=

ϕk–
n |In,|k = O()

m+∑

n=

ϕk–
n tk–

nn

( n–∑

v=

|t̂n,v+||Bv||zv|k
)

= O()
m+∑

n=

(
ϕnpn

Pn

)k–
( n–∑

v=

|t̂n,v+||Bv||zv|k
)

= O()
m∑

v=

|Bv||zv|k
m+∑

n=v+

(
ϕnpn

Pn

)k–

|t̂n,v+|

= O()
m∑

v=

(
ϕvpv

Pv

)k–

|Bv||zv|k
m+∑

n=v+

|t̂n,v+|.

By (), (), () and (), we obtain

|t̂n,v+| =
v∑

i=

(tn–,i – tni).

Thus, using () and (), we have

m+∑

n=v+

|t̂n,v+| =
m+∑

n=v+

v∑

i=

(tn–,i – tni) ≤ ,

then we get

m+∑

n=

ϕk–
n |In,|k = O()

m∑

v=

ϕk–
v

(
pv

Pv

)k–

v|Bv| 
v
|zv|k

= O()
m–∑

v=

�
(
v|Bv|

) v∑

r=

ϕk–
r

(
pr

Pr

)k– 
r
|zr|k

+ O()m|Bm|
m∑

v=

ϕk–
v

(
pv

Pv

)k– 
v
|zv|k

= O()
m–∑

v=

v|�Bv|Yv + O()
m–∑

v=

|Bv|Yv + O()m|Bm|Ym

= O() as m → ∞,

in view of (), () and ().



Özarslan and Kartal Journal of Inequalities and Applications  (2017) 2017:179 Page 7 of 8

Also, we have

m+∑

n=

ϕk–
n |In,|k ≤

m+∑

n=

ϕk–
n

( n–∑

v=

|t̂n,v+||λv+| |zv|
v

)k

≤
m+∑

n=

ϕk–
n

( n–∑

v=

|t̂n,v+||λv+| |zv|k
v

)( n–∑

v=

|t̂n,v+| |λv+|
v

)k–

≤
m+∑

n=

ϕk–
n tk–

nn

( n–∑

v=

|t̂n,v+||λv+| |zv|k
v

)( n–∑

v=

|λv+|
v

)k–

= O()
m+∑

n=

ϕk–
n

(
pn

Pn

)k–
( n–∑

v=

|t̂n,v+||λv+| |zv|k
v

)

= O()
m+∑

n=

(
ϕnpn

Pn

)k–
( n–∑

v=

|t̂n,v+||λv+| |zv|k
v

)

= O()
m∑

v=

|λv+| |zv|
v

k m+∑

n=v+

(
ϕnpn

Pn

)k–

|t̂n,v+|

= O()
m∑

v=

(
ϕvpv

Pv

)k–

|λv+| |zv|
v

k m+∑

n=v+

|t̂n,v+|

= O()
m∑

v=

ϕk–
v

(
pv

Pv

)k–

|λv+| |zv|
v

k

= O()
m–∑

v=

|�λv+|
v∑

r=

ϕk–
r

(
pr

Pr

)k– 
r
|zr|k

+ O()|λm+|
m∑

v=

ϕk–
v

(
pv

Pv

)k– 
v
|zv|k

= O()
m–∑

v=

|Bv+|Yv+ + O()|λm+|Ym+

= O() as m → ∞,

in view of (), (), () and ().
Finally, as in In,, we have

m∑

n=

ϕk–
n |In,|k = O()

m∑

n=

ϕk–
n tk

nn|λn|k|zn|k

= O()
m∑

n=

ϕk–
n

(
pn

Pn

)k

|λn|k–|λn||zn|k

= O()
m∑

n=

ϕk–
n

(
pn

Pn

)k

|λn||zn|k = O() as m → ∞,

in view of (), () and (). Finally, the proof of Theorem . is completed.
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5 Corollary
If we take ϕn = Pn

pn
and tnv = pv

Pn
in Theorem ., then we get Theorem .. In this case,

conditions () and () reduce to conditions () and (), respectively. Also, the condition
‘( ϕnpn

Pn
) is a non-increasing sequence’ and the conditions ()-() are clearly satisfied.

6 Conclusions
In this study, we have generalized a well-known theorem dealing with an absolute summa-
bility method to a ϕ – |T , pn|k summability method of an infinite series by using almost
increasing sequences and δ-quasi-monotone sequences.
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