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Abstract
In this paper, a modified BFGS algorithm is proposed for unconstrained optimization.
The proposed algorithm has the following properties: (i) a nonmonotone line search
technique is used to obtain the step size αk to improve the effectiveness of the
algorithm; (ii) the algorithm possesses not only global convergence but also
superlinear convergence for generally convex functions; (iii) the algorithm produces
better numerical results than those of the normal BFGS method.
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1 Introduction
Consider

min
{

f (x)|x ∈ �n}, (.)

where f (x) : �n → � is continuously differentiable. Many similar problems can be trans-
formed into the above optimization problem (see [–] etc.). The following iteration for-
mula is used to address the iteration point of (.):

xk+ = xk + αkdk , k = , , , . . . , (.)

where xk is the kth iterative point, αk >  is the step length, and dk is the search direction
of f at xk . The search direction dk determines the line search method (see [–]). The
quasi-Newton method is defined by

Bkdk + gk = , (.)

where gk = ∇f (xk), Bk is the quasi-Newton update matrix, and the sequence {Bk} satisfies
the so-called quasi-Newton equation

Bk+sk = yk , (.)
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where sk = xk+ – xk , yk = gk+ – gk , and gk+ = ∇f (xk+). The following update of Bk :

Bk+ = Bk –
BksksT

k Bk

sT
k Bksk

+
ykyT

k

sT
k yk

(.)

is the BFGS formula (Broyden [], Fletcher [], Goldfar [], and Shanno []), which is
one of the most effective quasi-Newton methods. Convex functions can be combined with
exact line or certain special inexact line search techniques that have global convergence
(see [–] etc.) and superlinear convergence (see [, ] etc.). For general functions,
under inexact line search techniques, Dai [] constructed an example to show that the
BFGS method fails. Mascarenhas [] proved the nonconvergence of this method, even
with the exact line search technique. To obtain global convergence of a BFGS method with-
out the convexity assumption, Li and Fukushima [, ] proposed the following modified
BFGS methods.

Formula  ([]) The BFGS update formula is defined by

Bk+ = Bk +
δT

k δk

sT
k δk

–
BksksT

k Bk

sT
k Bksk

, (.)

where δk = yk + (max{, – yT
k sk

‖sk‖ } + φ(‖gk‖))sk and function φ : � → � satisfies: (i) φ(t) > 
for all t > ; (ii) φ(t) =  if and only if t = ; (iii) if t is in a bounded set, and φ(t) is bounded.
Using the definition of δk , it is not difficult to obtain

δT
k sk ≥ max

{
sT

k yk ,φ
(‖gk‖

)‖sk‖} > .

This is sufficient to guarantee the positive definiteness of Bk+ as long as Bk is positive
definite. Li and Fukashima presented φ(t) = μt with some constant μ > .

Formula  ([]) The BFGS update formula is defined by

Bk+ =

⎧
⎨

⎩

Bk + δT
k δk

sT
k δk

– Bk sk sT
k Bk

sT
k Bk sk

, if δT
k sk

‖sk‖ ≥ φ(‖gk‖),

Bk , otherwise,
(.)

where δk , φ and the properties are the same as those in Formula . For nonconvex func-
tions, these two methods possess global convergence and superlinear convergence.

Some scholars have conducted further research to obtain a better approximation of the
Hessian matrix of the objective function.

Formula  ([]) The BFGS update formula is defined by

Bk+ = Bk –
BksksT

k Bk

sT
k Bksk

+
ym∗

k ym∗
k

T

sT
k ym∗

k
, (.)

where ym∗
k = yk + ρk

‖sk‖ sk and ρk = [f (xk) – f (xk + αkdk)] + (g(xk + αkdk) + g(xk))T sk . It is
easy to conclude that this formula contains both gradient and function value information.
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One may believe that the resulting methods will outperform the normal BFGS method.
In fact, the practical computation shows that the method is better than the normal BFGS
method and that it has some theoretical advantages (see [, ]). Under the WWP line
search, Wei et al. [] proposed the quasi-Newton method and established its superlinear
convergence for uniformly convex functions. Its global convergence can be found in [],
but the method fails for general convex functions. One of the main reasons for the fail-
ure is the non-positive definiteness of matrix Bk for general convex functions. Byrd et al.
[, ] showed that the positive definiteness of matrix Bk plays an important role in the
convergence of the quasi-Newton algorithm. Yuan and Wei [] first analyzed the global
convergence and superlinear convergence of the modified BFGS formula in [] using
gradient and function value information for general convex functions. Based on equation
(.), Yuan and Wei [] proposed another BFGS formula.

Formula  ([]) The BFGS update formula is defined by

Bk+ = Bk –
BksksT

k Bk

sT
k Bksk

+
ym

k ym
k

T

sT
k ym

k
, (.)

where ym
k = yk + max{ ρk

‖sk‖ , }sk . This modified method obtains global convergence and
superlinear convergence for generally convex functions. The same work was previously
performed by Zhang et al. [].

Formula  ([]) The BFGS update formula is defined by

Bk+ = Bk –
BksksT

k Bk

sT
k Bksk

+
y∗

k y∗
k

T

sT
k y∗

k
, (.)

where y∗
k = yk + Āksk , Āk = [f (xk )–f (xk +αk dk )]+(∇f (xk +αk dk )+∇f (xk ))T sk

‖sk‖ . It is clear that the quasi-
Newton equation (.) also contains both gradient and function value information, and
it has been proved that the new formula has a higher order approximation to ∇f (x). Fur-
thermore, Yuan et al. [] extended a similar technique to y∗

k in a limited memory BFGS
method, where global convergence is only obtained for uniformly convex functions. Sev-
eral other modified quasi-Newton methods have been reported (see [, , , ]).

The monotone line search technique is often used to determine the step size αk . One
famous technique is the weak Wolfe-Powell (WWP) technique.

(i) WWP line search technique. αk is determined by

f (xk + αkdk) ≤ f (xk) + δαkgT
k dk , g(xk + αkdk)T dk ≥ σ gT

k dk , (.)

where  < δ < σ < . Recently, a modified WWP line search technique was proposed
by Yuan, Wei, and Lu [] to ensure that the BFGS and the PRP methods have
global convergence for nonconvex functions; these two open problems have been
solved. However, monotonicity may generate a series of extremely small steps if the
contours of the objective functions are a family of curves with large curvature [].
Nonmonotonic line search to solve unconstrained optimization was proposed by
Grippo et al. in [–] and was further studied by []. Grippo, Lamparillo, and
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Lucidi [] proposed the following nonmonotone line search and called it GLL line
search.

(ii) GLL nonmonotone line search. αk is determined by

f (xk+) ≤ max
≤j≤M

f (xk–j) + εαkgT
k dk , (.)

g(xk+)T dk ≥ max
{
ε,  –

(
αk‖dk‖

)p}gT
k dk , (.)

where p ∈ (–∞, ), k = , , , . . . , ε ∈ (, ), ε ∈ (, 
 ), M is a nonnegative integer.

By combining this line search with the normal BFGS formula, Han and Liu []
established the global convergence of the convex objective function; its superlinear
convergence was established by Yuan and Wei []. Although these nonmonotone
techniques perform well in many cases, the numerical performance is dependent
on the choice of M to some extent (see [, , ] in detail). Zhang and Hager
[] presented another nonmonotone line search technique.

(iii) Zhang and Hager nonmonotone line search technique []. In this technique αk is
found by

Qk+ = ηkQk + , Ck+ =
ηkQkCk + f (xk+)

Qk+
, (.)

where ηk ∈ [ηmin,ηmax],  ≤ ηmin ≤ ηmax ≤ , C = f (x) and Q = . It is easy to
conclude that Ck+ is a convex combination of Ck and f (xk+). The numerical results
show that this technique is more competitive than the nonmonotone method of
[], but it requires strong assumption conditions for convergence analysis.

Motivated by the above observations, we study the modified BFGS-type method of Yuan
et al. [] based on the formula (.). The modified BFGS-type method and the proposed
algorithm have the following characteristics:

• The GLL line search technique is used in the algorithm to ensure good convergence.
• The major contribution of the new algorithm is an extension of the modified BFGS

update from [] and [].
• Another contribution is the proof of global convergence for generally convex

functions.
• The major aim of the proposed method is to establish the superlinear convergence

and the global convergence for generally convex functions.
• The experimental problems, including both normal unconstrained optimization and

engineering problems (benchmark problems), indicate that the proposed algorithm is
competitive with the normal method.

This paper is organized as follows. In the next section, we present the algorithm. The
global convergence and superlinear convergence are established in Section  and Sec-
tion , respectively. Numerical results are reported in Section . In the final section, we
present a conclusion. Throughout this paper, ‖ · ‖ denotes the Euclidean norm of a vector
or matrix.

2 Algorithm
In this paper, we study the modified formula of [] and obtain global convergence and
superlinear convergence under generally convex conditions. The modified BFGS update
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of (.) is presented as

B∗
k+ = B∗

k –
B∗

ksksT
k B∗

k

sT
k B∗

ksk
+

y∗
ky∗

k
T

y∗
k

T sk
, (.)

where y∗
k = yk + A∗

ksk , A∗
k = max{Āk , }. The corresponding quasi-Newton equation is

B∗
k+sk = y∗

k . (.)

By the definition of the convex property of f , sT
k y∗

k >  holds (see [] in detail). There-
fore, the update matrix B∗

k+ from (.) inherits the positive definiteness of B∗
k for generally

convex functions. Now, we state the algorithm as follows.

Algorithm  (Mod-non-BFGS-A)

Step : Given a symmetric and positive definite matrix B∗
 and an integer M > , choose

an initial point x ∈ �n,  < ε < ,  < ε < ε < , p ∈ (–∞, ); Set k := .
Step : ‖gk‖ ≤ ε, stop; Otherwise, go to the next step.
Step : Solve

B∗
kdk + gk =  (.)

to obtain dk .
Step : The step length αk is determined by GLL (.) and (.).
Step : Let xk+ = xk + αkdk .
Step : Generate B∗

k+ from (.) and set k = k + ; Go to Step .

3 Global convergence
The following assumptions are required to obtain the global convergence of Algorithm .

Assumption A
(i) The level set Ł = {x | f (x) ≤ f (x)} is bounded.

(ii) The objective function f is continuously differentiable and convex on L. Moreover,
there exists a constant L ≥  satisfying

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ L. (.)

Assumption A implies that there exist constants M >  and 
 >  satisfying

∥∥G(x)
∥∥ ≤ M, G(x) = ∇f (x), x ∈ L,

and

‖yk‖

sT
k yk

≤ 
, k ≥  (see []). (.)
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Lemma . Suppose Assumption A holds. Then there exists a constant M∗ >  such that

‖y∗
k‖

sT
k y∗

k
≤ M∗.

The proof is similar to [], so it is not presented here.

Lemma . Let Bk be updated by (.); then the relation

det
(
B∗

k+
)

= det
(
B∗

k
) (y∗

k)T sk

sT
k B∗

ksk

holds, where det(B∗
k) denotes the determinant of B∗

k .

Lemma . Assume that Assumption A holds and that sequence {xk} is generated by Al-
gorithm . If

lim inf
k→∞

‖gk‖ > ,

then there exists a constant ε′ >  satisfying

k∏

j=

γj ≥
(
ε′)k , for all k ≥ ,

where γj =
–gT

j dj
‖dj‖ .

Proof For k = , by the positive definiteness of B, we have sT
 y∗

 > . Then B is generated
by (.), and B is positive definite. Assume that Bk is positive definite; for all k ≥ , we
prove that sT

k y∗
k >  holds by the following three cases.

Case : Āk < . The definition of y∗
k , the convexity of f (x), and Assumption A generate

sT
k y∗

k = sT
k yk > .

Case : Āk = . By (.), (.), Assumption A, the definition of y∗
k , and the positive defi-

niteness of Bk , we get

sT
k y∗

k = sT
k yk ≥ –( – σ∗)αkdT

k gk = ( – σ∗)αkdT
k B∗

kdk > ,

where σ∗ ∈ (, ).
Case : Āk > . The proof can be found in []
Similar to the proof of Theorem . in [], we can establish the global convergence

theorem of Algorithm . Here, we state the theorem but omit the proof. �

Theorem . Let the conditions of Lemma . hold; then we have

lim inf
k→∞

‖gk‖ = . (.)
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4 Superlinear convergence analysis
Based on Theorem ., we suppose that x∗ is the limit of the sequence {xk}. To establish the
superlinear convergence of Algorithm , the following additional assumption is needed.

Assumption B g(x∗) =  with xk → x∗. G(x∗) is positive definite and Hölder continuous
at x∗, namely, for all x in the neighborhood of x∗, there exist constants u ≥ (, ) and ζ ≥ 
satisfying

∥∥G(x) – G
(
x∗)∥∥ ≤ ζ

∥∥x – x∗∥∥u, (.)

where G(x) = ∇f (x).

In a way similar to [], we can obtain the superlinear convergence of Algorithm , which
we state as follows but we omit its proof.

Theorem . Let Assumption A and B hold and {xk} be generated by Algorithm . Then
the sequence {xk} superlinearly tends to x∗.

5 Numerical results
This section reports the numerical results of Algorithm . All code was written in MAT-
LAB . and run on a PC with a . GHz CPU processor,  MB memory and the
Windows XP operating system. The parameters are chosen as δ = ., σ = ., ε = –,
ε = ., ε = ., p = , M = , and the initial matrix B = I is the unit matrix. Since the
line search cannot ensure the descent condition dT

k gk < , an uphill search direction may
occur in the numerical experiments. In this case, the line search rule may fail. To avoid
this case, the step size αk is accepted if the search number is greater than  in the line
search. The following is the Himmeblau stop rule: If |f (xk)| > e, let stop = |f (xk )–f (xk+)|

|f (xk )| ;
otherwise, let stop = |f (xk) – f (xk+)|. In the experiment, if ‖g(x)‖ < ε or stop < e satisfies
e = e = –, we end the program.

5.1 [57] problems
It has been proved that [] problems with initial points are an effective tool to estimate the
performance of algorithms and are one of the most commonly used sets of optimization
problems. Many scholars use these problems to assess their algorithms (see [, , ,
]). In this paper, we also perform experiments on these problems. The detailed numeri-
cal results are listed in Table , where the columns of Table  have the following meaning:

Problem: the name of the test problem;
Dim: the dimensions of the problem;
NI: the total number of iterations;
Time: the cpu time in seconds;
NFG: NFG = NF + NG, where NF and NG are the total number of function and gra-

dient evaluations, respectively (see []).

In Table , ‘BFGS-WP’, ‘BFGS-Non’, ‘BFGS-WP-Zhang’, and ‘BFGS-M-Non’ stand for the
normal BFGS formula with WWP rule, the normal BFGS formula with GLL rule, the mod-
ified BFGS equation (.) with WWP rule, and MN-BFGS-A, respectively. The numerical
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Figure 1 Performance profiles of these methods (NI).

Figure 2 Performance profiles of these methods (NFG).

results in Table  indicate that the proposed method is competitive with the other three
similar methods.

To directly illustrate the performance of these methods, we utilize the tool of Dolan
and Moré [] to analyze their efficiency. Figures , , and  show that the performance
is related to NI , NFG, and Time, respectively. According to these three figures, the MN-
BFGS-A method has the best performance (the highest probability of being the optimal
solver).

Figure  shows that BFGS-M-Non and BFGS-Non outperform BFGS-WP and BFGS-
WP-Zhang on approximately % and % of the problems, respectively. The BFGS-WP-
Zhang and BFGS-WP methods can successfully solve % and % of the test problems,
respectively.

Figure  shows that BFGS-M-Non and BFGS-Non are superior to BFGS-WP and BFGS-
WP-Zhang on approximately % and % of these problems, respectively. The BFGS-M-
Non and BFGS-Non methods solve % of the test problems at t ≈ . The BFGS-WP-
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Figure 3 Performance profiles of these methods (Time).

Zhang and the BFGS-WP methods solve the test problems with probabilities of % and
%, respectively.

Figure  shows that the success rates when using the BFGS-M-Non and BFGS-Non
methods to address the test problems are higher than the success rates when using BFGS-
WP and BFGS-WP-Zhang by approximately % and %, respectively. Additionally, the
BFGS-M-Non and BFGS-Non algorithms can address almost all the test problems. More-
over, BFGS-WP-Zhang has better results than BFGS-WP.

5.2 Benchmark problems
The benchmark problems listed in Table  are widely applied in various practical engineer-
ing situations. A function is multimodal if it has two or more local optima. A function p
of the responding variables is separable provided that it can be rewritten as a sum of p
functions of just one variable []. Separability is closely related to the concept of epista-
sis or interrelation among the variables of a function. Non-separable functions are more
difficult to optimize because the accuracy of the searching direction depends on two or
more variables. By contrast, separable functions can be optimized for each variable in turn.
The problem is even more difficult if the function is multimodal. The search process must
be able to avoid the regions around local minima in order to approximate, as closely as
possible, the global optimum. The most complex case appears when the local optima are
randomly distributed in the search space.

The dimensionality of the search space is another important factor in the complexity
of the problem. A study of the dimensionality problem and its features was conducted by
Friedman []. To establish the same degree of difficulty in all cases, a search space of
dimensionality p =  is chosen for all the functions. In the experiment, we do not fix the
value to p = , namely, it can be larger than . The exact dimensions can be found in
Table .

However, the effectiveness of one algorithm compared another algorithm cannot be de-
termined based on the number of problems that it solves better. The ‘no free lunch’ theo-
rem (see []) states that provided we compare two searching algorithms with all possible
functions, the performance of any two algorithms will be, on average, the same. As a re-
sult, attempting to find a perfect test set where all the functions are present to determine
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Table 2 Definition of the benchmark problems and their features

Function Definition Multimodal? Separable? Regular?

Sphere fSph(x) =
∑p

i=1 x
2
i no yes n/a

xi ∈ [–5.12, 5.12], x∗ = (0, 0, . . . , 0), fSph(x∗) = 0.

Schwefel’s fSchDS(x) =
∑p

i=1(
∑i

j=1 xj)
2 no no n/a

xi ∈ [–65.536, 65.536], x∗ = (0, 0, . . . , 0), fSchDS(x∗) = 0.

Griewank fGri(x) = 1 +
∑p

i=1
x2i

4,000 –
∏p

i=1 cos
xi
i yes no yes

xi ∈ [–600, 600], x∗ = (0, 0, . . . , 0), fGri(x∗) = 0.

Rosenbrock fRos(x) =
∑p

i=1[100(xi+1 – x
2
i )
2 + (xi – 1)2] no no n/a

xi ∈ [–2.048, 2.048], x∗ = (1, 1, . . . , 1), fRos(x∗) = 0.

Ackley fAck(x) = 20 + e – 20e–0.2
√

1
p

∑p
i=1 x

2
i – e

1
p

∑p
i=1 cos(2πxi ) yes no yes

xi ∈ [–30, 30], x∗ = (0, 0, . . . , 0), fAck (x∗) = 0.

whether an algorithm is better than another algorithm for every function is a fruitless
task. Therefore, when an algorithm is evaluated, we identify the types of problems where
its performance is good to characterize the types of problems for which the algorithm is
suitable. The authors previously studied functions to be optimized to construct a test set
with a better selection of fewer functions (see [, ]). This enables us to draw conclu-
sions about the performance of the algorithm depending on the type of function.

The above benchmark problems and the discussions of the choice of test problems for
an algorithm can be found at

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume/ortizboyera-html/
node.html.

Many scholars use these problems to test numerical optimization methods (see [, ]
etc.). Based on the above discussions, in this subsection, we test the four algorithms on
the Benchmark problems. The test results are presented in Table , where x denotes the
initial point, xSph = (–, –, . . . , –), xSph = (, , . . . , ), xSph = (–, , –, , . . .), xSph =
(, , , , . . .), xSchDS = (–., –., . . . , –.), xSchDS = (., ., . . . ,
.), xSchDS = (–., , –., , . . .), xSchDS = (., , ., , . . .),
xGri = (–, –, . . . , –), xGri = (, , . . . , ), xGri = (–, , –, , . . .), xGri =
(, , , , . . .), xRos = (., ., . . . , .), xRos = (., ., . . . , .), xRos = (., , .,
, . . .), xRos = (., , ., , . . .), xAck = (–., –., . . . , –.), xAck = (.,
., . . . , .), xAck = (–., , –., , . . .), and xAck = (., , ., , . . .).

The numerical results in Table  show that the proposed algorithm performs the best
among the four methods. The total cpu time of the proposed algorithm is the shortest.
BFGS-Non performs better than BFGS-WP and BFGS-WP-Zhang, which is consistent
with the results of []. Additionally, BFGS-WP-Zhang performs better than BFGS-WP,
which is consistent with the results of []. To directly illustrate the performances of these
four methods, we also use the tool of Dolan and Moré [] to analyze the results with
respect to NI and NFG in Table . Figures  and  show their performances.

Figure  indicates that BFGS-WP can solve approximately % of the test problems and
that the other three methods can solve all the problems. The proposed algorithm solves
the problems in the shortest amount of time.

The performance in Figure  is similar to that in Figure . BFGS-WP can solve approx-
imately % of the test problems, while the other methods can solve all the problems.

According to these two figures, the proposed algorithm has the best performance among
these four methods, and the BFGS-WP performs the worst. In summary, based on the

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/node6.html
http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume24/ortizboyer05a-html/node6.html
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Figure 4 Performance profiles of these methods (NI).

Figure 5 Performance profiles of these methods (NFG).

numerical results of the [] and benchmark problems, the GLL nonmonotone line search
with quasi-Newton update is more effective than the normal WWP line search with quasi-
Newton update, which is consistent with the results of [, ]. Moreover, these numerical
results indicate that the modified BFGS equation (.) is better than the normal BFGS
update, which is consistent with the results of []. Furthermore, the proposed algorithm
is competitive with the related methods.

6 Conclusion
(i) This paper conducts a further study of the modified BFGS update formula in [].

The main contribution is the global convergence and superlinear convergence for
generally convex functions. The numerical results show that the proposed method
is competitive with other quasi-Newton methods for the test problems.

(ii) In contrast to [] and [], this paper achieves both superlinear and global
convergence. Moreover, the convergence is obtained for generally convex functions,
whereas the other two papers only obtained convergence for uniformly convex
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functions. The conditions of this paper are weaker than those of the previous
research.

(iii) For further research, we should study the performance of the new algorithm under
different stop rules and in different testing environments (such as []). Moreover,
more numerical experiments for large practical problems should be performed in
the future.

Acknowledgements
The authors thank the referees for their valuable comments, which greatly improved their paper.

Funding
This work is supported by the China NSF (Grant No. 11261006 and 11661009), the Guangxi Science Fund for
Distinguished Young Scholars (No. 2015GXNSFGA139001),and the basic ability promotion project of Guangxi young and
middle-aged teachers (No. 2017KY0019).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Mr. XL wrote and organized the paper. Dr. BW performed the algorithm experiments and wrote the code. Dr. WH studied
the BFGS-type methods. Only the authors contributed to writing this paper. All authors read and approved the final
manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 March 2017 Accepted: 14 July 2017

References
1. Fu, Z, Wu, X, Guan, C, et al.: Toward efficient multi-keyword fuzzy search over encrypted outsourced data with

accuracy improvement. IEEE Trans. Inf. Forensics Secur. 11(12), 2706-2716 (2016)
2. Gu, B, Sheng, VS, Tay, KY, et al.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw.

Learn. Syst. 26(7), 1403-1416 (2015)
3. Gu, B, Sun, X, Sheng, VS: Structural minimax probability machine. IEEE Trans. Neural Netw. Learn. Syst. 99, 1-11 (2016)
4. Li, J, Li, X, Yang, B, et al.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics

Secur. 10(3), 507-518 (2015)
5. Pan, Z, Zhang, Y, Kwong, S: Efficient motion and disparity estimation optimization for low complexity multiview video

coding. IEEE Trans. Broadcast. 61(2), 166-176 (2015)
6. Pan, Z, Lei, J, Zhang, Y, et al.: Fast motion estimation based on content property for low-complexity H.265/HEVC

Encoder. IEEE Trans. Broadcast. 99, 1-10 (2016)
7. Yuan, G, Lu, S, Wei, Z: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J.

Comput. Math. 88(10), 2109-2123 (2011)
8. Yuan, G, Meng, Z, Li, Y: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth

minimizations and nonlinear equations. J. Optim. Theory Appl. 168(1), 129-152 (2016)
9. Yuan, G, Wei, Z: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex

optimization problems. Math. Model. Anal. 17(2), 203-216 (2012)
10. Yuan, G, Wei, Z, Li, G: A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs.

J. Comput. Appl. Math. 255, 86-96 (2014)
11. Yuan, G, Wei, Z, Lu, S: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math.

Comput. Model. 54(1-2), 367-377 (2011)
12. Yuan, G, Wei, Z, Lu, X: A BFGS trust-region method for nonlinear equations. Computing 92(4), 317-333 (2011)
13. Yuan, G, Wei, Z, Wang, Z: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex

minimization. Comput. Optim. Appl. 54(1), 45-64 (2013)
14. Yuan, G, Yao, S: A BFGS algorithm for solving symmetric nonlinear equations. Optimization 62(1), 85-99 (2013)
15. Yuan, G, Zhang, M: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear

equations. J. Comput. Appl. Math. 286, 186-195 (2015)
16. Yuan, G, Zhang, M: A modified Hestenes-Stiefel conjugate gradient algorithm for large-scale optimization. Numer.

Funct. Anal. Optim. 34(8), 914-937 (2013)
17. Schropp, J: A note on minimization problems and multistep methods. Numer. Math. 78(1), 87-101 (1997)
18. Schropp, J: One-step and multistep procedures for constrained minimization problems. IMA J. Numer. Anal. 20(1),

135-152 (2000)
19. Wyk, DV: Differential optimization techniques. Appl. Math. Model. 8(6), 419-424 (1984)
20. Vrahatis, MN, Androulakis, GS, Lambrinos, JN, et al.: A class of gradient unconstrained minimization algorithms with

adaptive stepsize. J. Comput. Appl. Math. 114(2), 367-386 (2000)
21. Yuan, G: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale

optimization problems. Optim. Lett. 3(1), 11-21 (2009)



Li et al. Journal of Inequalities and Applications  (2017) 2017:183 Page 17 of 18

22. Yuan, G, Duan, X, Liu, W, et al.: Two new PRP conjugate gradient algorithms for minimization optimization models.
PLoS ONE 10(10), e0140071 (2015)

23. Yuan, G, Wei, Z: New line search methods for unconstrained optimization. J. Korean Stat. Soc. 38(1), 29-39 (2009)
24. Yuan, G, Wei, Z: A trust region algorithm with conjugate gradient technique for optimization problems. Numer. Funct.

Anal. Optim. 32(2), 212-232 (2011)
25. Yuan, G, Wei, Z, Zhao, Q: A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization

problems. IIE Trans. 46(4), 397-413 (2014)
26. Broyden, C: The convergence of a class of double rank minimization algorithms. J. Inst. Math. Appl. 6(1), 222-231

(1970)
27. Fletcher, R: A new approach to variable metric algorithms. Comput. J. 13(2), 317-322 (1970)
28. Goldfarb, A: A family of variable metric methods derived by variational means. Math. Comput. 24(109), 23-26 (1970)
29. Schanno, J: Conditions of quasi-Newton methods for function minimization. Math. Comput. 24(4), 647-650 (1970)
30. Broyden, CG, Dennis, JE, Moré, JJ: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Math.

Appl. 12(3), 223-245 (1973)
31. Byrd, RH, Nocedal, J: A tool for the analysis of quasi-Newton methods with application to unconstrained

minimization. SIAM J. Sci. Comput. 26(3), 727-739 (1989)
32. Byrd, RH: Global convergence of a cass of quasi-Newton methods on convex problems. SIAM J. Numer. Anal. 24(5),

1171-1190 (1987)
33. Dennis, JE: Quasi-Newton methods, motivation and theory. SIAM Rev. 19(1), 46-89 (1977)
34. Dennis, JE: A characterization of superlinear convergence and its application to quasi-Newton methods. Math.

Comput. 28(126), 549-560 (1974)
35. Dai, YH: Convergence properties of the BFGS algoritm. SIAM J. Optim. 13(3), 693-701 (2002)
36. Mascarenhas, WF: The BFGS method with exact line searches fails for non-convex objective functions. Math. Program.

99(1), 49-61 (2004)
37. Li, DH, Fukushima, M: A modified BFGS method and its global convergence in nonconvex minimization. J. Comput.

Appl. Math. 129(1-2), 15-35 (2001)
38. Li, DH, Fukushima, M: On the global convergence of BFGS method for nonconvex unconstrained optimization

problems. SIAM J. Optim. 11(4), 1054-1064 (1999)
39. Wei, Z, Yu, G, Yuan, G, et al.: The superlinear convergence of a modified BFGS-type method for unconstrained

optimization. Comput. Optim. Appl. 29(3), 315-332 (2004)
40. Wei, Z, Li, G, Qi, L: New quasi-Newton methods for unconstrained optimization problems. Appl. Math. Comput.

175(2), 1156-1188 (2006)
41. Yuan, G, Wei, Z: Convergence analysis of a modified BFGS method on convex minimizations. Comput. Optim. Appl.

47(2), 237-255 (2010)
42. Zhang, JZ, Deng, NY, Chen, LH: New quasi-Newton equation and related methods for unconstrained optimization.

J. Optim. Theory Appl. 102(1), 147-167 (1999)
43. Yuan, G, Wei, Z, Wu, Y: Modified limited memory BFGS method with nonmonotone line search for unconstrained

optimization. J. Korean Math. Soc. 47(4), 767-788 (2010)
44. Davidon, WC: Variable metric method for minimization. SIAM J. Optim. 1(1), 1-17 (1991)
45. Powell, MJD: A new algorithm for unconstrained optimization. In: Nonlinear Programming, pp. 31-65. Academic

Press, New York (1970)
46. Yuan, G, Wei, Z, Lu, X: Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line

search. Appl. Math. Model. 47, 811-825 (2017)
47. Grippo, L, Lampariello, F, Lucidi, S: A nonmonotone line search technique for Newton’s method. SIAM J. Sci. Comput.

23(4), 707-716 (1986)
48. Grippo, L, Lampariello, F, Lucidi, S: A truncated Newton method with nonmonotone line search for unconstrained

optimization. J. Optim. Theory Appl. 60(3), 401-419 (1989)
49. Grippo, L, Lampariello, F, Lucidi, S: A class of nonmonotone stabilization methods in unconstrained optimization.

Numer. Math. 59(1), 779-805 (1991)
50. Liu, G, Han, J, Sun, D: Global convergence of the BFGS algorithm with nonmonotone linesearch. Optimization 34(2),

147-159 (1995)
51. Han, J, Liu, G: Global convergence analysis of a new nonmonotone BFGS algorithm on convex objective functions.

Comput. Optim. Appl. 7(3), 277-289 (1997)
52. Yuan, GL, Wei, ZX: The superlinear convergence analysis of a nonmonotone BFGS algorithm on convex objective

functions. Acta Math. Sin. Engl. Ser. 24(1), 35-42 (2008)
53. Raydan, M: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM

J. Sci. Comput. 7(1), 26-33 (1997)
54. Toint, PL: An assessment of nonmonotone linesearch techniques for unconstrained optimization. SIAM J. Sci.

Comput. 17(3), 725-739 (2012)
55. Zhang, H, Hager, WW: A nonmonotone line search technique and its application to unconstrained optimization.

SIAM J. Optim. 14(4), 1043-1056 (2006)
56. Powell, MJD: Some properties of the variable metric algorithm. In: Numerical Methods for Non-linear Optimization,

pp. 1-17. Academic Press, London (1972)
57. Moré, JJ, Garbow, BS, Hillstrom, KE: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17-41

(1981)
58. Dolan, ED, Moré, JJ: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201-213

(2002)
59. Hadley, G: Nonlinear and Dynamics Programming. Addison-Wesley, New Jersey (1964)
60. Friedman, JH: An overview of predictive learning and function approximation. In: Cherkassky, V, Friedman, JH,

Wechsler, H (eds.) From Statistics to Neural Networks, Theory and Pattern Recognition Applications. NATO ASI
Series F, vol. 136, pp. 1-61. Springer, Berlin (1994)

61. Wolpert, DH, Macready, WG: No free-lunch theorems for search. Technical Report 95-02-010, Santa Fe Institute (1995)



Li et al. Journal of Inequalities and Applications  (2017) 2017:183 Page 18 of 18

62. Salomon, R: Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions.
Biosystems 39(3), 263-278 (1996)

63. Whitley, D, Mathias, K, Rana, S, Dzubera, J: Building better test functions. In: Eshelman, L (ed.) Sixth International
Conference on Genetic Algorithms, pp. 239-246. Kaufmann, California (1995)

64. Yuan, G, Lu, X, Wei, Z: A conjugate gradient method with descent direction for unconstrained optimization.
J. Comput. Appl. Math. 233(2), 519-530 (2009)

65. Yuan, G, Lu, X, Wei, Z: BFGS trust-region method for symmetric nonlinear equations. Biosystems 230(1), 44-58 (2009)
66. Gould, NIM, Orban, D, Toint, PL: CUTEr and SifDec: a constrained and unconstrained testing environment, revisited.

ACM Trans. Math. Softw. 29(4), 373-394 (2003)


	A modiﬁed nonmonotone BFGS algorithm for unconstrained optimization
	Abstract
	MSC
	Keywords

	Introduction
	Algorithm
	Global convergence
	Superlinear convergence analysis
	Numerical results
	DJJ2 problems
	Benchmark problems

	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


