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Abstract
Due to updating the Lagrangian multiplier twice at each iteration, the symmetric
alternating direction method of multipliers (S-ADMM) often performs better than
other ADMM-type methods. In practical applications, some proximal terms with
positive definite proximal matrices are often added to its subproblems, and it is
commonly known that large proximal parameter of the proximal term often results in
‘too-small-step-size’ phenomenon. In this paper, we generalize the proximal matrix
from positive definite to indefinite, and propose a new S-ADMM with indefinite
proximal regularization (termed IPS-ADMM) for the two-block separable convex
programming with linear constraints. Without any additional assumptions, we prove
the global convergence of the IPS-ADMM and analyze its worst-caseO(1/t)
convergence rate in an ergodic sense by the iteration complexity. Finally, some
numerical results are included to illustrate the efficiency of the IPS-ADMM.
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1 Introduction
LetRni stand for an ni-dimensional Euclidean space, and letXi ⊆Rni be nonempty, closed
and convex set, where i = , . For two continuous closed convex functions θi(xi) : Rni →
R (i = , ), the canonical two-block separable convex programming with linear equality
constraints is

min
{
θ(x) + θ(x)|Ax + Ax = b, x ∈X, x ∈X

}
, ()

where Ai ∈ Rm×ni (i = , ), b ∈ Rm. Throughout, the solution set of () is assumed to be
nonempty. Convex programming () has promising applicability in modeling many con-
crete problems arising in a wide range of disciplines, such as statistical learning, inverse
problems and image processing; see, e.g. [–] for more details.

Convex programming () has been studied extensively in the literature, researchers have
developed many numerical methods to solve it during the last decades, which are mainly
based on the well-known Douglas-Rachford splitting method [, ] and the Peachmen-
Rachford splitting method [, ], which originate with the partial differential equation
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(PDE) literature. Concretely, applying the Douglas-Rachford splitting method to the dual
of () [, ], we get the well-known alternating direction of multipliers (ADMM) [, ],
whose iterative schemes reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – (λk)�(Ax + Axk

 – b)

+ β

 ‖Ax + Axk
 – b‖},

xk+
 ∈ argminx∈X{θ(x) – (λk)�(Axk+

k + Ax – b)

+ β

 ‖Axk+
 + Ax – b‖},

λk+ = λk – sβ(Axk+
 + Axk+

 – b),

()

where λ ∈Rm is the Lagrangian multiplier; β >  is a penalty parameter, and s ∈ (, +
√


 )

is a relaxation factor. Analogously, applying the Peachmen-Rachford splitting method to
the dual of (), we get the symmetric ADMM [–], which generates its sequence via the
scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – (λk)�(Ax + Axk

 – b)

+ β

 ‖Ax + Axk
 – b‖},

λk+ 
 = λk – rβ(Axk+

 + Axk
 – b),

xk+
 ∈ argminx∈X{θ(x) – (λk+ 

 )�(Axk+
k + Ax – b)

+ β

 ‖Axk+
 + Ax – b‖},

λk+ = λk+ 
 – sβ(Axk+

 + Axk+
 – b),

()

where the feasible region of r, s is

D =
{

(r, s)
∣∣∣r ∈ (–, ), s ∈

(
,

 +
√




)
& r + s > , |r| <  + s – s

}
. ()

Both methods make full use of the separable structure of (), and minimize the primal vari-
ables x and x individually in the Gauss-Seidel way. As elaborated in [], the S-ADMM
updates the Lagrangian multiplier twice at each iteration and thus the variables x, x

are treated in a symmetric manner. The S-ADMM includes some well-known ADMM-
based schemes as special cases. For example, it reduces to the original ADMM () when
r = , and reduces to the generalized ADMM [] when r ∈ (–, ), s = . Therefore, the
S-ADMM provides a unified framework to study the ADMM-type methods. The con-
vergence results of the S-ADMM with any (r, s) ∈ D, including global convergence, the
worst-case O(/t) convergence rate in an ergodic sense, have been established in []. To
the best of the authors’ knowledge, the worst-case O(/t) convergence rate in some non-
ergodic sense of the S-ADMM is still missing.

In practical applications, the two essential subproblems related to x and x dominate
the computation of the S-ADMM, which are often either linear or easily solvable, but nev-
ertheless challenging. In order to solve the issue, some proximal terms are often added to
these subproblems, which can linearize the quadratic term β

 ‖Aixi‖ (i = , ) of these sub-
problems, and as a result we have the following proximal S-ADMM (termed PS-ADMM)
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[–]:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – (λk)�(Ax + Axk

 – b)

+ β

 ‖Ax + Axk
 – b‖},

λk+ 
 = λk – rβ(Axk+

 + Axk
 – b),

xk+
 ∈ argminx∈X{θ(x) – (λk+ 

 )�(Axk+
k + Ax – b)

+ β

 ‖Axk+
 + Ax – b‖ + 

‖x – xk
‖

G},
λk+ = λk+ 

 – sβ(Axk+
 + Axk+

 – b),

()

where G ∈ Rn×n is a positive definite matrix. When we set G = τ In – βA�
 A with

τ > β‖A�
 A‖, the quadratic term β

 ‖Ax‖ in the subproblem related to x of the PS-
ADMM is offset and thus the quadratic term β

 ‖Axk+
 + Ax – b‖ is linearized. Then,

if X = Rn , the PS-ADMM only needs to compute the proximal mapping of the involved
convex function θ(·) at each iteration, which is often simple enough to have a closed-form
solution in many practical applications, such as θ(x) = ‖x‖ in the compressive sensing
problems [], θ(x) = ‖x‖∗ (here x is a square matrix) in the robust principal component
analysis models []. ‖x‖∗ is defined by the sum of all singular values of x.

The curse accompanying the above improvement in solvability is that the proximal pa-
rameter τ is not easy to determine for some problems in practice. Large τ prompts the
weight of the quadratic term 

‖x – xk
‖

G in the objective function of the x-subproblem
and inevitably results in the ‘too-small-step-size’ phenomenon. Then, the advance of
x is tiny at the kth iteration, which often slows down the convergence of the corre-
sponding method. Therefore, it is meaningful to expand the feasible set of τ . Obvi-
ously, if we further reduce τ to τ ≤ β‖A�

 A‖, the proximal matrix G will become in-
definite, and it is thus natural to ask whether or not the corresponding method with
such G is still globally convergent? Quite recently the authors in [–] partially an-
swered the question. More specifically, for the ADMM () with s = , He et al. [] have
proved that the feasible set of τ can be expanded to {τ |τ > .β‖A�

 A‖}, and for the
ADMM () with s ∈ (, +

√


 ), Sun et al. [] have proved that the feasible set of τ can
be expanded to {τ |τ > ( – min{s,  + s – s})β‖A�

 A‖/}. Then, for the S-ADMM with
r ∈ (–, ), s = , Gao et al. [] have proved that the feasible set of τ can be expanded
to {τ |τ > (r – r + )β‖A�

 A‖/(r – r + )}. Other relevant studies can be found in [,
]. In this paper, we continue to study along this direction, and present a new feasible
set of τ , which generalizes those in [–] to any (r, s) ∈ D. Furthermore, we show that
for any (r, s) ∈ D, the global convergence of the S-ADMM with some indefinite proximal
regularization can be guaranteed.

The rest of the paper is organized as follows. In Section , we summarize some pre-
liminaries which are useful for further discussion. Then, in Section , we list the iterative
scheme of the IPS-ADMM and prove its convergence results, including the global con-
vergence and the convergence rate. Some preliminary numerical results are reported in
Section . Finally, some conclusions are drawn in Section .

2 Preliminaries
In this section, we first list some notation used in this paper, and then characterize problem
() by a mixed variational inequality problem. Some matrices and variables to simplify the
notation of our later analysis are also defined.
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For any two vectors x, y ∈Rn, 〈x, y〉 or x�y denote their inner product. For any two ma-
trices A ∈Rs×m, B ∈Rn×s, the Kronecker product of A and B is defined as A ⊗ B = (aijB).
We let ‖ · ‖ and ‖ · ‖ be the �-norm and �-norm for vector variables, respectively. In

denotes the n-dimensional identity matrix. If the matrix G ∈ Rn×n is symmetric, we use
the symbol ‖x‖

G to denote x�Gx even if G is indefinite; G   (resp., G � ) denotes that
the matrix G is positive definite (resp., semi-definite).

Let us split the feasible set D of the parameters (r, s) into the following five subsets:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

D = {(r, s)|r ∈ (–, ), s ∈ (, ), r + s > },
D = {(r, s)|r ∈ (–, ), s = },
D = {(r, s)|r = , s ∈ (, +

√


 )},
D = {(r, s)|r ∈ (, ), s ∈ (, +

√


 ) & r <  + s – s},
D = {(r, s)|r ∈ (–, ), s ∈ (, +

√


 ) & – r <  + s – s}.

()

Obviously, the set {D,D,D,D,D} is a simplicial partition of the set D.
Throughout, the proximal matrix G is defined by

G = τ In – βA�
 A, ()

where we set τ = ατ̃ with τ̃ > β‖A�
 A‖, α ∈ (c(r, s), +∞), and c(r, s) is defined by

c(r, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s + (–s)

–r–s , if (r, s) ∈D,
–r–r

–r , if (r, s) ∈D,
s–s+
s–s+ , if (r, s) ∈D,
r+r–r–
r–r– , if (r, s) ∈D,

(r+r–)s–(r+r–)s–(r–)

s(–s)(–r) , if (r, s) ∈D.

()

Remark . Note that c(r, s) ≤  if (r, s) ∈D; see Lemmas .-. in Section . Therefore,
the feasible set of τ is expanded from {τ |τ > β‖A�

 A‖} to {τ |τ > c(r, s)β‖A�
 A‖}, which

provides more choices for researchers or practitioners.

Furthermore, we define an auxiliary matrix as follows:

G = α
(
τ̃ In – βA�

 A
)
, ()

which is positive definite by τ̃ > β‖A�
 A‖.

Invoking the first-order optimality condition for convex programming, we get the fol-
lowing equivalent form of problem (): Finding a vector w∗ ∈W such that

θ (x) – θ
(
x∗) +

(
w – w∗)�F

(
w∗) ≥ , ∀w ∈W , ()

where

x =

(
x

x

)

, w =

⎛

⎜
⎝

x

x

λ

⎞

⎟
⎠ , θ (x) = θ(x) + θ(x),
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F(w) =

⎛

⎜
⎝

–A�
 λ

–A�
 λ

Ax + Ax – b

⎞

⎟
⎠ , W = X ×X ×Rm. ()

Obviously, the problem () is a mixed variational inequality problem, which is denoted
by MVI(θ , F ,W). The mapping F(w) defined in () is not only monotone, but also satisfies
the property

w�(
F(w) – F(w̃)

)
= w̃�(

F(w) – F(w̃)
)
, ∀w, w̃ ∈Rm+n+n . ()

Furthermore, the solution set of MVI(θ , F ,W), denoted by W∗, is nonempty under the
nonempty assumption for the solution set of problem ().

Now, let us define three matrices in order to make our following analysis more succinct.
Set

M =

⎛

⎜
⎝

In  
 In 
 –sβA (r + s)Im

⎞

⎟
⎠ , Q =

⎛

⎜
⎝

P  
 G + βA�

 A –rA�


 –A

β

Im

⎞

⎟
⎠ , ()

H =

⎛

⎜
⎝

P  
 G + ( – rs

r+s )βA�
 A – r

r+s A�


 – r
r+s A


(r+s)β Im

⎞

⎟
⎠ . ()

Lemma . Suppose the matrix A is full column rank and the parameter α in () satisfies

α > α
.=

rs + r

r + s
. ()

Then, the matrices M, Q, H defined, respectively, in (), () satisfies

HM = Q, ()

H  . ()

Proof The proof of () is trivial, and we only need to prove (). By the positive defi-
niteness of P, we only need to prove H( : ,  : ) is positive definite. Here H( : ,  : )
denotes the corresponding sub-matrix formed from the rows and columns with the in-
dices ( : ) and ( : ) as in Matlab. Substituting () into the right-hand side of (), we
get

H( : ,  : ) =

(
ατ̃ In – rs

r+sβA�
 A – r

r+s A�


– r
r+s A


(r+s)β Im

)

=

(
α(τ̃ In – βA�

 A) 
 

)

+

(
(α – rs

r+s )βA�
 A – r

r+s A�


– r
r+s A


(r+s)β Im

)

�
(

(α – rs
r+s )βA�

 A – r
r+s A�



– r
r+s A


(r+s)β Im

)

=


r + s

(
A�

 
 Im

)(
β((r + s)α – rs)Im –rIm

–rIm

β

Im

)(
A 
 Im

)

,
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where the relationship � comes from α >  and τ̃ > β‖A�
 A‖. Since the matrix A is full

column rank, we only need to prove the positive definiteness of the matrix

(
β((r + s)α – rs)Im –rIm

–rIm

β

Im

)

,

which can be further written as
(

β((r + s)α – rs) –r
–r 

β

)

⊗ Im,

where ⊗ denotes the matrix Kronecker product. Then, we only need to show the -by-
matrix

(
β((r + s)α – rs) –r

–r 
β

)

is positive definite. In fact, by (), we have

β
(
(r + s)α – rs

) × 
β

– r = (r + s)α – rs – r > .

Therefore, the matrix H is positive definite. The proof is completed. �

At the end of this section, let us summarize two criteria to measure the worst-caseO(/t)
convergence rate of the ADMM-type methods in an ergodic sense.

() For a given compact set D̄ ⊂Rm+n, let d = sup{‖w – w‖|w ∈ D̄}, where w is the
initial iterate. He et al. [] established the following criterion:

sup
w∈D̄

{
θ (xt) – θ (x) + (wt – w)�F(w)

} ≤ Cd

t + 
, ()

where wt = 
t+

∑t
k= wk , C > , and t is the iteration counter. This criterion is used in

[, ]. Obviously, we can only ensure that any w ∈ D̄ satisfies (). Therefore, the
criterion () is not reasonable.

() In [], Lin et al. proposed the following criterion:

θ (xt) – θ
(
x∗) +

(
xt – x∗)�(

–A�λ∗) +
c

‖Axt – b‖ ≤ C

t + 
, ()

where c > . Proposition  in [] indicates that the vector xt ∈X ×X is an
optimal solution to () if and only if the left-hand side of () equals zero. Compared
with (), the criterion () is more reasonable. Therefore, we shall use a criterion
similar to () to measure the O(/t) convergence rate of our new method.

3 Algorithm and convergence results
In this section, we first present the symmetric ADMM with indefinite proximal regular-
ization (termed IPS-ADMM), and then prove the convergence results of the sequence
generated by the IPS-ADMM.



Sun et al. Journal of Inequalities and Applications  (2017) 2017:172 Page 7 of 22

Algorithm . (The IPS-ADMM for problem ())

Step . Input four parameters (r, s) ∈D, α ∈ (c(r, s), +∞), β > , the tolerance ε > , and the
proximal matrices P ∈ Rn×n with P   and G ∈ Rn×n defined by (). Initialize
(x, x,λ) := (x

 , x
,λ), and set k := .

Step . Compute the new iterate wk+ = (xk+
 , xk+

 ,λk+) by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈X{θ(x) – (λk)�(Ax + Axk

 – b)

+ β

 ‖Ax + Axk
 – b‖ + 

‖x – xk
‖

P},
λk+ 

 = λk – rβ(Axk+
 + Axk

 – b),

xk+
 ∈ argminx∈X{θ(x) – (λk+ 

 )�(Axk+
k + Ax – b)

+ β

 ‖Axk+
 + Ax – b‖ + 

‖x – xk
‖

G},
λk+ = λk+ 

 – sβ(Axk+
 + Axk+

 – b).

()

Step . If ‖wk – wk+‖ ≤ ε, then stop; otherwise set k := k + , and go to Step .

Remark . Since the global convergence of IPS-ADMM with α ≥  has been established
in the literature [, –], in the following, we restrict α ∈ (c(r, s), ).

To prove the convergence results of the IPS-ADMM, we first define a block matrix and
an auxiliary variable.

A = (A, A), w̃k =

⎛

⎜
⎝

x̃k


x̃k


λ̃k

⎞

⎟
⎠ =

⎛

⎜
⎝

xk+


xk+


λk – β(Axk+
 + Axk

 – b)

⎞

⎟
⎠ .

Lemma . For the sequence {(xk ,λk)} = {(xk
 , xk

,λk)} generated by the IPS-ADMM, we
have

θ (x) – θ
(
xk+) +

(
w – w̃k)�F

(
w̃k) ≥ (

w – w̃k)�Q
(
wk – w̃k), ∀w ∈W , ()

and

θ (x) – θ
(
xk+) +

(
w – w̃k)�F(w)

≥ 

(∥∥w – wk+∥∥

H –
∥∥w – wk∥∥

H

)
+



∥∥wk – w̃k∥∥

R, ∀w ∈W , ()

where R = Q� + Q – M�HM.

Proof The proof of this lemma is similar to that of Lemma . and Theorem . in [],
which is omitted. �

Remark . By the definition of F(·) in (), (), for any (x, x,λ) ∈ Rm+n+n such that
Ax + Ax = b, the left-hand side of () can be written as

(
w – w̃k)�F(w)

=
(
w – w̃k)�F

(
w̃k)
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=
(
x – x̃k


)�(

–Aλ̃
k) +

(
x – x̃k


)�(

–Aλ̃
k) +

(
λ – λ̃k)�(

Ax̃k
 + Ax̃k

 – b
)

=
(
Ax̃k

 + Ax̃k
 – b

)�
λ̃k +

(
λ – λ̃k)�(

Ax̃k
 + Ax̃k

 – b
)

= λ�(
Ax̃k

 + Ax̃k
 – b

)

= λ�(
Axk+ – Ax

)

=
(
x – xk+)�(

–A�λ
)
. ()

Then, substituting the above equality into the left-hand side of (), we get

θ
(
xk+)–θ (x)+

(
xk+ –x

)�(
–A�λ

) ≤ 

(∥∥w–wk∥∥

H –
∥∥w–wk+∥∥

H

)
–



∥∥wk –w̃k∥∥

R, ()

where the vector (x, x,λ) ∈Rm+n+n satisfies Ax + Ax = b.
Comparing all the terms appeared in () and (), we find that the left-hand side of ()

does not have the term ‖Axk+ – b‖ temporarily, and due to the indefinite of R, the term
‖vk – ṽk‖

R on the right-hand side of () maybe negative. Now let us deal with the term
‖vk – ṽk‖

R, and by doing so, the term ‖Axk+ – b‖ will also appear. By a manipulation, we
get the concrete expression of the matrix R, which is as follows:

R =

⎛

⎜
⎝

P  
 G + ( – s)βA�

 A –( – s)A�


 –( – s)A
–(r+s)

β
Im

⎞

⎟
⎠ . ()

Lemma . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM.
Then we have

∥∥wk – w̃k∥∥
R

=
∥∥xk

 – xk+


∥∥
P +

∥∥xk
 – xk+


∥∥

G + ( – r)β
∥∥A

(
xk

 – xk+


)∥∥

+ ( – r – s)β
∥∥Axk+ – b

∥∥ + ( – r)β
(
Axk+ – b

)�A
(
xk+

 – xk

)
. ()

Proof The proof of this lemma is similar to that of Lemma . in [], which is omitted.
�

The following lemma deals with the crossing term (Axk+ – b)�A(xk+
 – xk

) on the right-
hand side of (), whose proof is mainly motivated by those of Lemma . in [] and
Lemma . in [].

Lemma . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM.
Then we have

(
Axk+ – b

)�A
(
xk+

 – xk

)

≥  – s
 + r

(
Axk – b

)�A
(
xk

 – xk+


)
–

r
 + r

∥∥A
(
xk

 – xk+


)∥∥

+
α

( + r)β
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
 – α

( + r)
(

∥∥A

(
xk

 – xk+


)∥∥ +
∥∥A

(
xk–

 – xk

)∥∥). ()
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Proof The first-order optimality condition of x-subproblem in () indicates that, for any
x ∈X,

θ(x) – θ
(
xk+


)

+
(
x – xk+


)�{

–A�
 λk+ 

 + β
(
Axk+ – b

)
+ G

(
xk+

 – xk

)} ≥ . ()

Setting x = xk
 in (), we get

θ
(
xk


)

– θ
(
xk+


)

+
(
xk

 – xk+


)�{
–A�

 λk+ 
 + β

(
Axk+ – b

)
+ G

(
xk+

 – xk

)} ≥ .

Similarly, taking x = xk+
 in () for k := k – , we have

θ
(
xk+


)

– θ
(
xk


)

+
(
xk+

 – xk

)�{

–A�
 λk– 

 + β
(
Axk – b

)
+ G

(
xk

 – xk–


)} ≥ .

Then, adding the above two inequalities, we get

(
xk

 – xk+


)�A�

{(

λk– 
 – λk+ 


)

– β
(
Axk – b

)
+ β

(
Axk+ – b

)}

≥ ∥∥xk+
 – xk


∥∥

G +
(
xk

 – xk+


)�G
(
xk

 – xk–


)
. ()

From the update formula for λ in (), we have

λk+ 
 = λk – rβ

(
Axk+

 + Axk
 – b

)

= λk– 
 – sβ

(
Axk

 + Axk
 – b

)
– rβ

(
Axk+

 + Axk
 – b

)
.

Substituting the above equality into the left-hand side of (), we get

(
xk

 – xk+


)�A�

{

( + r)β
(
Axk+ – b

)
– ( – s)β

(
Axk – b

)
+ rβA

(
xk

 – xk+


)}

≥ ∥∥xk+
 – xk


∥∥

G +
(
xk

 – xk+


)�G
(
xk

 – xk–


)
. ()

By the definitions of G and G (see () and ()), we have

∥∥xk+
 – xk


∥∥

G +
(
xk

 – xk+


)�G
(
xk

 – xk–


)

= α
∥∥xk+

 – xk

∥∥

G
– ( – α)β

∥∥A
(
xk+

 – xk

)∥∥ + α

(
xk

 – xk+


)�G
(
xk

 – xk–


)

– ( – α)β
(
Axk

 – Axk+


)�(
Axk

 – Axk–


)

≥ α


(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
( – α)β


(

∥∥A

(
xk

 – xk+


)∥∥ +
∥∥A

(
xk–

 – xk

)∥∥),

where the last inequality comes from the Cauchy-Schwartz inequality. Substituting the
above inequality into the right-hand side of () and arranging terms, we get the assertion
() immediately. �

Then, substituting () into the right-hand side of (), we get the following main theo-
rem, which provides a lower bound of as ‖wk – w̃k‖

R, and the lower bound is composed of
the term ‖Axk+ – b‖, some terms in the form ‖w – wk+‖ – ‖w – wk‖, and some others.
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Theorem . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM.
Then we have

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + α
∥∥xk

 – xk+


∥∥
G

– ( – α)β
∥∥A

(
xk

 – xk+


)∥∥

+
( – r)

 + r
β
∥∥A

(
xk

 – xk+


)∥∥ + ( – r – s)β
∥∥Axk+ – b

∥∥

+
( – r)( – s)

 + r
β
(
Axk – b

)�A
(
xk

 – xk+


)

+
( – r)α

 + r
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
( – r)( – α)β

 + r
(

∥∥A

(
xk

 – xk+


)∥∥ +
∥∥A

(
xk–

 – xk

)∥∥). ()

Now, let us rewrite all the terms on the right-hand side of () by some quadratic terms,
and mainly deal with the term ‖xk

 – xk+
 ‖

G
and the crossing term (Axk – b)�A(xk

 – xk+
 ).

According to the simplicial partition Di (i = , , . . . , ) of the set D in (), the following
analysis is divided into five cases, which are discussed in the following five subsections.

3.1 Case 1: (r, s) ∈D1

Lemma . For any fixed (r, s) ∈D, if α > α
.= s + (–s)

–r–s , then there are constants C, C >
 such that

∥∥wk – w̃k∥∥
R ≥ ∥∥xk

 – xk+


∥∥
P + Cβ

∥∥A
(
xk

 – xk+


)∥∥ + Cβ
∥∥Axk+ – b

∥∥. ()

Furthermore, α ∈ (α, ), for any (r, s) ∈D, where α is defined in ().

Proof We prove the assertion () from the definition of the matrix R directly. Define an
auxiliary matrix R as

R =

⎛

⎜
⎝

P  
 (α – s)βA�

 A –( – s)A�


 –( – s)A
–(r+s)

β
Im

⎞

⎟
⎠ .

By the expression of R in (), we have

R( : ,  : ) =

(
αG + (α – s)βA�

 A –( – s)A�


–( – s)A
–(r+s)

β
Im

)

=

(
αG 

 

)

+ R( : ,  : )

� R( : ,  : )

=

(
A�

 
 Im

)(
β(α – s)Im –( – s)Im

–( – s)Im
–r–s

β
Im

)(
A 
 Im

)

.
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Now, let us verify the positive definiteness of the matrix

S .=

(
β(α – s)Im –( – s)Im

–( – s)Im
–r–s

β
Im

)

,

which can be written as

(
β(α – s) –( – s)
–( – s) –r–s

β

)

⊗ Im.

Obviously, when α > α, the above matrix is positive definite. Therefore, the matrix S is
positive definite, and then the matrices R and R are both positive definite by the full col-
umn rank of A and the positive definiteness of P. By a manipulation, we get

∥∥wk – w̃k∥∥
R

≥ ∥∥wk – w̃k∥∥
R

=
∥∥xk

 – xk+


∥∥
P +

∥∥∥∥∥
A(xk

 – xk+
 )

Axk+ – b

∥∥∥∥∥



S̃

,

where

S̃ = L�SL, L =

(
Im 
βIm βIm

)

.

By the positive definiteness of the matrix S, we get the assertion (). By the definitions of
α and α, we have

α – α =
( – r)

 – r – s
> , ∀(r, s) ∈D.

Therefore, α > α, for any (r, s) ∈D. By some manipulations, we have

 – α =
( – r)( – s)

 – r – s
> , ∀(r, s) ∈D.

Therefore, α ∈ (α, ), for any (r, s) ∈D. �

3.2 Case 2: (r, s) ∈D2

Lemma . For any (r, s) ∈D, if α > α
.= –r–r

–r , then we have

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + Cβ
∥∥A

(
xk

 – xk+


)∥∥

+ Cβ
∥∥Axk+ – b

∥∥ + C
(∥∥xk

 – xk+


∥
∥

G
–

∥∥xk–
 – xk


∥
∥

G

)

+ Cβ
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥), ()
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where Ci (i = , , , ) are four positive constants defined by

C =
( – r)α + r + r – 

 + r
, C =  – r,

C =
( – r)α

 + r
, C =

( – r)( – α)
 + r

.

Furthermore, α ∈ (α, ), for any (r, s) ∈D.

Proof Setting s =  in (), we have

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + α
∥∥xk

 – xk+


∥∥
G

– ( – α)β
∥∥A

(
xk

 – xk+


)∥∥

+
( – r)

 + r
β
∥∥A

(
xk

 – xk+


)∥∥ + ( – r)β
∥∥Axk+ – b

∥∥

+
( – r)α

 + r
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
( – r)( – α)β

 + r
(

∥∥A

(
xk

 – xk+


)∥∥ +
∥∥A

(
xk–

 – xk

)∥∥)

≥ ( – r)α + r + r – 
 + r

β
∥∥A

(
xk

 – xk+


)∥∥

+ ( – r)β
∥∥Axk+ – b

∥∥ +
( – r)α

 + r
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

+
( – r)( – α)β

 + r
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥),

which proves (). From α > α, it is obvious that C > , and from r ∈ (–, ), α ∈ (α, ),
we have C, C, C > . By the definition of α, we get

α – α =
( – r)( – r)

 – r
> , ∀(r, s) ∈D.

Therefore, α > α, for any (r, s) ∈D. By some manipulations, we have

 – α =
(r – )

 – r
> , ∀(r, s) ∈D.

Therefore, α ∈ (α, ), for any (r, s) ∈D. �

Remark . For any (r, s) ∈ D, Gao et al. [] have proved that αG
.= r–r+

r–r+ is a lower
bound of α. The curves of α and αG with r ∈ (–, ) are drawn in Figure , from which
we have α < αG if r ∈ (–, ), and α > αG if r ∈ (, ). Therefore, compared with that in
[], the feasible set of τ in this paper is expanded if r ∈ (–, ), and is shrunk if r ∈ (, ).
However, Gao et al. only established the worst-case convergence rate of the IPS-ADMM
using the criterion (), and we shall prove the worst-case convergence rate of the IPS-
ADMM using the more reasonable criterion (); see the following Theorem ..
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Figure 1 The curves of α2 and αG in r ∈ (–1, 1).

3.3 Case 3: (r, s) ∈D3

Lemma . For any (r, s) ∈D, if α > α
.= s–s+

s–s+ , then we have

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + Cβ
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥) + Cβ
∥∥A

(
xk

 – xk+


)∥∥

+ Cβ
∥∥Axk+ – b

∥∥ + C
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

+ Cβ
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥), ()

where Ci (i = , , , , ) are five positive constants defined by

C = T – s, C =  –
( – s)

T – s
– ( – α), C =  – T,

C = α, C =  – α, T =


(
s – s + 

)
.

Furthermore, α ∈ (α, ), for any (r, s) ∈D.

Proof By the Cauchy-Schwartz inequality, we have

( – s)β
(
Axk – b

)�A
(
xk

 – xk+


) ≥ –(T – s)β
∥∥Axk – b

∥∥ –
( – s)

T – s
∥∥A

(
xk

 – xk+


)∥∥.

Then, substituting the above inequality into the right-hand side of (), we get

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + (T – s)β
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥)

+
(

 –
( – s)

T – s
– ( – α)

)
β
∥∥A

(
xk

 – xk+


)∥∥
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+ ( – T)β
∥∥Axk+ – b

∥∥ + α
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

+ ( – α)β
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥),

which proves (). From α ∈ (α, ), it is obvious that

C =


[
(s – ) + 

]
>




,

C =
(s – s + )α – s + s – 

s – s + 
> ,

C =


(
 + s – s) > ,

C = α > , C =  – α > .

Furthermore, by some manipulations, ∀(r, s) ∈D, we have

α – α = α =
s – s + 
(s – s + )

> ,

 – α =
–(s – –

√


 )(s – +
√


 )

(s – s + )
> .

Therefore, α ∈ (α, ), for any (r, s) ∈D. �

3.4 Case 4: (r, s) ∈D4

Lemma . For any (r, s) ∈D, if α > α
.= r+r–r–

r–r– , then we have

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P + Cβ
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥) + Cβ
∥∥A

(
xk

 – xk+


)∥∥

+ Cβ
∥∥Axk+ – b

∥∥ + C
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

+ Cβ
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥), ()

where Ci (i = , , , , ) are five positive constants defined by

C = T – (r + s), C = r
( – r)

( + r) – ( – α)
 – r
 + r

+ (α – ),

C =  – T, C = α
 – r
 + r

, C = ( – α)
 – r
 + r

, T = r + s + ( – s).

Furthermore, α ∈ (α, ), for any (r, s) ∈D.

Proof By the Cauchy-Schwartz inequality, we have


( – r)( – s)

 + r
β
(
Axk – b

)�A
(
xk

 – xk+


)

≥ –
[
T – (r + s)

]
β
∥∥Axk – b

∥∥ –
( – r)( – s)

( + r)[T – (r + s)]
∥∥A

(
xk

 – xk+


)∥∥.
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Then, substituting the above inequality into the right-hand side of (), we get

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P +
[
T – (r + s)

]
β
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥)

+
(

r
( – r)

( + r) – ( – α)
 – r
 + r

+ (α – )
)

β
∥∥A

(
xk

 – xk+


)∥∥

+ ( – T)β
∥∥Axk+ – b

∥∥ + α
 – r
 + r

(∥∥xk
 – xk+


∥∥

G
–

∥∥xk–
 – xk


∥∥

G

)

+ ( – α)
 – r
 + r

β
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥),

which proves (). From the definition of T, α ∈ (α, ), (r, s) ∈D, it is easy to verify that
C, C, C, C > . From the definition of C, we get

C =
(r + )( – r)α + r + r – r – 

(r + ) > , ∀α > α.

Furthermore, by some manipulations, ∀(r, s) ∈D, we have

α – α =
( – r)[( – r) + r + ]

( + r)( – r)
> ,

 – α =
r(r – )

( + r)( – r)
> .

Therefore, α ∈ (α, ), for any (r, s) ∈D. �

3.5 Case 5: (r, s) ∈D5

Lemma . For any (r, s) ∈D, if α > α
.= (r+r–)s–(r+r–)s–(r–)

s(–s)(–r) , then we have

∥
∥wk – w̃k∥∥

R

≥ ∥∥xk
 – xk+


∥∥

P + Cβ
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥) + Cβ
∥∥A

(
xk

 – xk+


)∥∥

+ Cβ
∥∥Axk+ – b

∥∥ + C
(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

+ Cβ
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥), ()

where Ci (i = , , , , ) are five positive constants defined by

C =
(s – s)( – s)

 + r
, C =

( – r)( + s – s)
s( + r)( – s)

– ( – α)
 – r
 + r

+ (α – ),

C =  – T, C = α
 – r
 + r

,

C = ( – α)
 – r
 + r

, T = r + s +
(s – s)( – s)

 + r
.

Furthermore, α ∈ (α, ), for any (r, s) ∈D.



Sun et al. Journal of Inequalities and Applications  (2017) 2017:172 Page 16 of 22

Proof By the Cauchy-Schwartz inequality, we have


( – r)( – s)

 + r
β
(
Axk – b

)�A
(
xk

 – xk+


)

≥ –
[
T – (r + s)

]
β
∥∥Axk – b

∥∥ –
( – r)( – s)

( + r)[T – (r + s)]
∥∥A

(
xk

 – xk+


)∥∥.

Then, substituting the above inequality into the right-hand side of (), we get

∥∥wk – w̃k∥∥
R

≥ ∥∥xk
 – xk+


∥∥

P +
[
T – (r + s)

]
β
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥)

+
(

( – r)( + s – s)
s( + r)( – s)

– ( – α)
 – r
 + r

+ (α – )
)

β
∥∥A

(
xk

 – xk+


)∥∥

+ ( – T)β
∥∥Axk+ – b

∥∥ + α
 – r
 + r

(∥∥xk
 – xk+


∥∥

G
–

∥∥xk–
 – xk


∥∥

G

)

+ ( – α)
 – r
 + r

β
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥),

which proves (). From the definition of T, α ∈ (α, ), (r, s) ∈D, it is easy to verify that
C, C, C, C > . From the definition of C, for any (r, s) ∈D, we get

C =
s( – s)( – r)α – (r + r – )s + (r + r – )s + (r – )

s( – s)(r + )
> , ∀α > α.

By the definition of α, for any (r, s) ∈D, we have

α – α

=
( – r)[(r – )s + ( – r)s + r – ]

s( – r)( – s)

≥ ( – r)[(r – )( + r + s) + ( – r)s + r – ]
s( – r)( – s)

=
( – r)[(s – ) + r(r – s – )]

s( – r)( – s)

> ,

where the first inequality follows from s <  + r + s, and the second inequality comes from
r < , s ∈ (, +

√


 ), r < s+
 . By some manipulations, we obtain

 – α =
–(r – )(s – –

√


 )(s – +
√


 )

s( – r)( – s)
> , ∀(r, s) ∈D.

Therefore, α ∈ (α, ), for any (r, s) ∈D. �

In the remainder of this section, we shall establish the convergence results of the se-
quence generated by the IPS-ADMM. First, based on () and Lemmas .-., we can
get the following theorem.
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Theorem . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM.
Then, for any (r, s) ∈D, α ∈ (c(r, s), ), where c(r, s) is defined in (), we have

θ
(
xk+) – θ (x) +

(
xk+ – x

)�(
–A�λ

)

≤ 

(∥∥w – wk∥∥

H –
∥∥w – wk+∥∥

H

)
–



∥∥xk

 – xk+


∥∥
P

–
C


β
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥)

–
C


β
∥∥A

(
xk

 – xk+


)∥∥ –
C


β
∥∥Axk+ – b

∥∥

–
C


(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
C


β
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥), ()

where (x, x,λ) ∈Rm+n+n satisfies Ax + Ax = b, C, C, C ≥ , C, C >  with Cj = Cij

if (r, s) ∈Di, i = , , , , , j = , , , , .

With the above theorems in hand, now we are ready to prove the global convergence of
the IPS-ADMM.

Theorem . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM.
Then, if A, A are both full column rank, the sequence {(xk ,λk)} is bounded and converges
to a point (x∞,λ∞) ∈W∗.

Proof Choose an arbitrary (x∗
 , x∗

,λ∗) ∈ W∗ and setting x = x∗
 , x = x∗

, λ = λ∗ in (), we
get

θ
(
xk+) – θ

(
x∗) +

(
xk+ – x∗)�(

–A�λ∗)

≤ 

(∥∥w∗ – wk∥∥

H –
∥∥w∗ – wk+∥∥

H

)
–



∥∥xk

 – xk+


∥
∥

P

–
C


β
(∥∥Axk+ – b

∥∥ –
∥∥Axk – b

∥∥)

–
C


β
∥∥A

(
xk

 – xk+


)∥∥ –
C


β
∥∥Axk+ – b

∥∥

–
C


(∥∥xk

 – xk+


∥∥
G

–
∥∥xk–

 – xk

∥∥

G

)

–
C


β
(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk–

 – xk

)∥∥).

Then, from x ∈X ×X, (x∗
 , x∗

,λ∗) ∈W∗ and (), we have

∥∥wk+ – w∗∥∥
H + Cβ

∥∥Axk+ – b
∥∥ + C

∥∥xk
 – xk+


∥∥

G
+ Cβ

∥∥A
(
xk

 – xk+


)∥∥

≤ ∥∥wk – w∗∥∥
H + Cβ

∥∥Axk – b
∥∥ + C

∥
∥xk–

 – xk

∥
∥

G
+ Cβ

∥∥A
(
xk–

 – xk

)∥∥

–
∥∥xk

 – xk+


∥∥
P – Cβ

∥∥A
(
xk

 – xk+


)∥∥ – Cβ
∥∥Axk+ – b

∥∥, ()
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which together with C, C, C ≥ , C, C > , H , G   implies that

∞∑

k=

(∥∥xk
 – xk+


∥∥

P + Cβ
∥∥A

(
xk

 – xk+


)∥∥ + Cβ
∥∥Axk+ – b

∥∥)

≤ ∥∥w – w∗∥∥
H + Cβ

∥∥Ax – b
∥∥ + C

∥∥x
 – x


∥∥

G
+ Cβ

∥∥A
(
x

 – x

)∥∥ < +∞.

This, the full column rank of A, and the positive definiteness of P indicate that

lim
k→∞

∥∥xk – xk+∥∥ = lim
k→∞

∥∥Axk+ – b
∥∥ = . ()

Furthermore, it follows from () that the sequences {wk} and {Axk – b} are both
bounded. Therefore, {wk} has at least one cluster point, saying w∞, and suppose that the
subsequence {wki} converges to w∞. Then, taking the limits on both sides of () along the
subsequence {wki} and using (), we have

θ (x) – θ
(
x∞)

+
(
w – w∞)�F

(
w∞) ≥ , ∀w ∈W .

Therefore, w∞ ∈W∗.
Hence, replacing w∗ by w∞ in (), we get

∥∥wk+ – w∞∥∥
H + Cβ

∥∥Axk+ – b
∥∥ + C

∥∥xk
 – xk+


∥∥

G
+ Cβ

∥∥A
(
xk

 – xk+


)∥∥

≤ ∥∥wk – w∞∥∥
H + Cβ

∥∥Axk – b
∥∥ + C

∥∥xk–
 – xk


∥∥

G
+ Cβ

∥∥A
(
xk–

 – xk

)∥∥.

From (), we see that, for any given ε > , there exists l > , such that

Cβ
∥∥Axk – b

∥∥ + C
∥∥xk–

 – xk

∥∥

G
+ Cβ

∥∥A
(
xk–

 – xk

)∥∥ <

ε


, ∀k ≥ l.

Since wki → w∞ for i → ∞, there exists kl > l, such that

∥∥wkl – w∞∥∥
H <

ε


.

Then the above three inequalities lead, for any k > kl , to

∥∥wk – w∞∥∥
H

≤ ∥∥wkl – w∞∥∥
H + Cβ

∥∥Axkl – b
∥∥ + C

∥∥xkl–
 – xkl


∥∥

G
+ Cβ

∥∥A
(
xkl–

 – xkl

)∥∥

< ε.

Therefore the whole sequence {wk} converges to the w∞. The proof is completed. �

Now, we are going to prove the worst-case O(/t) convergence rate in an ergodic sense
of the IPS-ADMM.



Sun et al. Journal of Inequalities and Applications  (2017) 2017:172 Page 19 of 22

Theorem . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the IPS-ADMM,
and let

xt =

t

t∑

k=

xk+,

where t is a positive integer. Then,

θ (xt) – θ
(
x∗) +

(
xt – x∗)�(

–A�λ∗) +
C


β‖Axt – b‖ ≤ D

t
, ()

where (x∗,λ∗) ∈W∗, and D is a constant defined by

D =


∥∥v – v∗∥∥

H +
C


β
∥∥Ax – b

∥∥ +
C


∥∥x

 – x

∥∥

G
+

C


β
∥∥A

(
x

 – x

)∥∥. ()

Proof Setting x = x∗, λ = λ∗ in (), and summing the resulted inequality over k = , , . . . , t,
we have

t∑

k=

[
θ
(
xk+) – θ

(
x∗) +

(
xk+ – x∗)�(

–A�λ∗) +
C


β
∥∥Axk+ – b

∥∥
]

≤ 

∥∥v – v∗∥∥

H +
C


β
∥∥Ax – b

∥∥ +
C


∥∥x

 – x

∥∥

G
+

C


β
∥∥A

(
x

 – x

)∥∥. ()

Therefore, dividing () by t and using the convexity of θ (·) lead to

θ (xt) – θ
(
x∗) +

(
xt – x∗)�(

–A�λ∗) +
Cβ

t

t∑

k=

∥∥Ak+ – b
∥∥ ≤ D

t
, ()

where the constant D is defined by ().
Compared () with (), we only need to deal with the term Cβ

t
∑t

k= ‖Ak+ – b‖ on
the left-hand side of (). In fact, from the convexity of ‖ · ‖, we get

Cβ

t

t∑

k=

∥∥Ak+ – b
∥∥

=
Cβ



t∑

k=


t
∥∥Axk+ – b

∥∥

≥ Cβ



∥∥∥∥A
∑t

k= xk+

t
– b

∥∥∥∥



=
Cβ


‖Axt – b‖.

Then, substituting the above inequality into (), we get the desired result (). This com-
pletes the proof. �

4 Numerical results
We have established the convergence results of the IPS-ADMM in theory. In this sec-
tion, by comparing the IPS-ADMM with the PS-ADMM [], we are going to highlight
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its promising numerical behaviors in solving an image restoration problem: the total-
variational denoising problem. All the codes were written by Matlab Ra and all the nu-
merical experiments were conducted on a THINKPAD notebook with Pentium(R) Dual-
Core CPU@. GHz and  GB RAM.

Below, we consider the total-variational (TV) denoising problem []:

min


‖y – b‖ +

η


‖Dy‖, ()

where D� = [D�
 , D�

 ]� is a discrete gradient operator with D : Rn → Rn, D : Rn → Rn

being the finite-difference operators in the horizontal and vertical directions, respectively;
η >  is the regularization parameter. Here, we set η = .

Introducing an auxiliary variable x ∈Rn, we can reformulate () as

minη‖x‖ +


‖y – b‖

s.t. x – Dy = , x ∈Rn, y ∈Rn.
()

Obviously, () is a special case of (), and therefore the IPS-ADMM is applicable. Now,
let us elaborate on how to derive the closed-form solutions for the subproblems resulted
by the IPS-ADMM.

Set P = τIn, G = ατIn – βD�D. For given (xk , yk ,λk), the first subproblem is

xk+ = argmin
x∈Rn

{
η‖x‖ –

(
λk)�(

x – Dyk) +
β


∥∥x – Dyk∥∥ +



∥∥x – xk∥∥

P

}
,

which has a closed-form solution:

xk+ = shrink,

(
τxk + βDyk + λk

β + τ
,

η

β + τ

)
.

For given xk+, yk , λk+ 
 , the third subproblem is

yk+ = argmin
y∈Rn

{


‖y – b‖ –

(
λk+ 


)�(

xk+ – Dy
)

+
β


∥∥xk+ – Dy

∥∥ +


∥∥y – yk∥∥

G

}
,

which has a closed-form solution:

yk+ =


 + ατ

(
b – D�λk+ 

 + βDxk+ + Gyk).

For the IPS-ADMM, we set β = , τ = ., τ = .β‖D�D‖, α = .c(r, s). For the
PS-ADMM, we set G = τIn – βB�B. The initialization is chosen as x = , y = b, λ = .
The stopping criterion is the same as that in []:

∥∥xk+ – Dyk+∥∥ ≤ εpri and
∥∥βD

(
yk+ – yk)∥∥ ≤ εdual,

where εpri =
√

nεabs + εrel max{‖xk+‖,‖Dyk+‖}, and εdual =
√

nεabs + εrel‖yk+‖ with εabs =
– and εrel = –. We use the following Matlab scripts to generate some synthetic data
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Table 1 Comparison between the number of iterations (time in seconds) taken by PS-ADMM
and IPS-ADMM for TV denoising problem

n PS-ADMM
(r, s) = (–0.3, 1.2)

IPS-ADMM
(r, s) = (–0.3, 1.2)

Ratio (%) PS-ADMM
(r, s) = (0.3, 1.2)

IPS-ADMM
(r, s) = (0.3, 1.2)

Ratio (%)

100 176 (0.04) 94 (0.03) 0.53 (0.60) 149 (0.06) 97 (0.02) 0.65 (0.41)
200 213 (0.05) 107 (0.03) 0.50 (0.49) 180 (0.04) 117 (0.03) 0.65 (0.67)
300 189 (0.06) 104 (0.03) 0.55 (0.45) 160 (0.04) 105 (0.03) 0.66 (0.63)
400 47 (0.02) 24 (0.01) 0.51 (0.43) 40 (0.01) 27 (0.01) 0.68 (0.88)
500 99 (0.03) 54 (0.02) 0.55 (0.56) 84 (0.03) 56 (0.02) 0.67 (0.68)

for () []:

for j = 1 : 3

id = randsample(n,1);

id = randsample(n,1);

y(ceil(idx/2) : idx) = k ∗ y(ceil(idx/2) : idx);

end

b = y + randn(n,1);

e = ones(n,1);

D = spdiags([e – e],0 : 1,n,n);

We list some numerical results in Table . Numerical results in Table  illustrate that the
IPS-ADMM often performs much better than the PS-ADMM, though the difference be-
tween them only lies in the proximal parameter. Then, the numerical advantage of smaller
proximal parameter is verified.

5 Conclusions
In this paper, a symmetric ADMM with indefinite proximal regularization for two-block
linearly constrained convex programming is proposed. Under mild conditions, we have
established the global convergence and the worst-case O(/t) convergence rate in an er-
godic sense of the new method. Some numerical results are given, which illustrate that
the new method often performs better than its counterpart with positive definite proxi-
mal regularization. Note that this paper only discusses the symmetric ADMM with indef-
inite proximal regularization for the two-block separable convex problems. In the future,
we shall study the ADMM-type method with indefinite proximal regularization for the
multi-block case.
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