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(A;is an eigenvalue of a matrix) by using the partitioned matrices. By using this
estimation and inequality theory, the new and more accurate estimations for the
lower bounds for the rank are deduced. Furthermore, based on the estimation for the
rank, some sufficient conditions for nonsingular matrices are obtained.

MSC: 47A63

Keywords: nonsingular matrices; lower bounds; rank; sufficient conditions

1 Introduction
Let M, (C) be the set of n x n complex matrix. Let A = (a;),x» € M,(C). Denote by A*,
|Allg, r(A) and tr A the conjugate transpose, Frobenius norm, rank and trace of A, respec-
tively. Let [A,A*] = AA* — A*A.

The lower bounds for the rank of matrices play an important role in diagnosing nonsin-
gular matrices. A well-known inequality for r(A) given by Ky Fan and Hoffman [1], is as

follows:

o al

Huang and You [2] improved the Ky Fan and Hoffman’s inequality, as follows:

rA) > AP . (12)

= 1 T
> Qo lag?) 2 0 lal?)?

Let M be an n x n complex matrix and partitioned as

M= [ Apsck Bl (n-k)

(l<k=<n-1),
Ch-ryxk  Dpryx(n-k)
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where Ay is a k x k principal submatrix of M. In [3], the inequality of lower bound of
rank was shown that

| tr M|?
(IBx(u—iy IlE = I Cluty i | )2

r(M) > (1.3)
IMIIE -
In this paper, some new estimations about the lower bounds for the rank are deduced,
which improve the above estimations. In order to facilitate the expression, we define the
following forms of representation throughout this paper:

2 |tI’]\/I|2
ou(k) = IMIF = (IBixn-n | F = I Cuiiyell) ™ = pa

_ | tr M|?
oak, %) = |MIF = [(1 = 2*) 1Bispuoio 17 + (1= 272) | Cumyei 7] = —

A B, _ A B _
M@= kxk XBix (n-k) ’ M, = kxk M Bix (n-k) ’
X Cluiyxk  Din—kyx(n-k) N Cliyxk  Din—iyx (n-k)

_ “C(n—k)kaF #

where x is a non-zero real number, u = Bt TF
X (n—

2 Estimations for the lower bounds for the rank
In this section, some new estimations about lower bounds for the rank are obtained. We
first give the following lemma.

Lemma2.1 Let M € M, (C) be an n x n complex matrix with eigenvalues A; (i =1,2,...,n).
Then

; b emp

- n
i=1

Proof Let R = My(x) — %I , where [ is an n x n unit matrix. We note that My (x) is similar
to M, then M (x) has the same eigenvalues with M, i.e., A, is the eigenvalues of My (x). So,
we can deduce that X, — % (i =1,2,...,n) are eigenvalues of R. According to the Kress
theorem in [4], we have

n

2

i=1

1
tr M 2
Aj— —— .
n

e (uRu;‘s -5 [RR*]II?)

We note the following equalities:

2
Xn: :Xn:|)»i|2— |tri\/1
i=1

i=1

trM

|2
hi—— :
n

[R.R*] = [Mk(x) — %I,Mk(x)* - %1} = [ M (), Mr(x)*],

* 2
IRIZ = tr|:(Mk(x) - %1) (Mk(x) _ %1) ] - e 2= gt

Combining the above conclusions, we can directly deduce Lemma 2.1. O
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Theorem 2.1 Let M € M, (C) be an n x n complex matrix, then

| tr M|?
[(@m(k, %)) - %H[Mk(x),Mk(x)*]”%]% L LM

n

r(M) >

(2.1)

Proof By the Schur theorem, there is a unitary matrix U € M,(C) such that UMU* is

upper triangular, i.e.,

where Aq, Ag, ..., A, are eigenvalues of M. Without loss of generality, we suppose A3, o, ...,

Ap are all non-zero eigenvalues of M, then we can get

2 P

>

i=1

n
>

i=1

2 » »
| M|? = |e(umur)|* = <pY Il =r0n Il
i=1 i=1

Applying Lemma 2.1, we have

e M < r(M)[((goM(k,x))2 - %H [ My (%), My (x)* ] ||§) i

| tr M|?
—

Thus, the proof is completed. O

Now let us consider some special cases of this theorem, the cases x =1 and x =

MCo .
7“ BI(:I (“Xk’; ”i , and we have the following corollary.
X \n—

Corollary 2.1 Let M € M, (C) be an n x n complex matrix, then

| tr M|
2 1 2
(M1 - %)2 - LM, MA1)12)2 + | trM|

n

@) M) =

(2.2)

| tr M2
(o2 = 31 IMe ML + 1550

n

2) M) = (2.3)

Theorem 2.2 Let M € M, (C) be an n x n complex matrix with all non-zero eigenvalues
Ao, ..y, p =2, then

|tr M|% + 157 max;j-1p, . |Ai — Aj|
1 2
[paa(h,2))? = 1 LM (), M)V + LA

(M) > | tr M|?

— 1 2 *
[(@m(k,x))* = 31| [Mi(x), Mic(x)*]1|3]2 + % — 3 max;j1a.p A — A

r(M) >

(2.4)

(2.5)
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Proof Without loss of generality, let max;j-15,.., |A; — Aj| = |A; — ,,|. By Lagrange’s identity,

we have
p v |2
pY_ P =D on = Y =P
i-1 i=1 1<i<j<p
p-1 p-1
o I e M L S VR ¥ e NV e ¥
j=2 j=2 2<i<j<p-1
p-1
= ha=apl+ D> (I =AP =27+ D =P
j=2 2<i<j<p-1
p-1 2
A1 = Apl
R D D ek D DN L Ty
j=2 2<icj<p-1
p-2 p
= 11 = Apl* + = A= dyp = Tlha = Al (2.6)
According to Lemma 2.1, we get
2 1 2.1 |trM|2 p
p[(w(k,x)) = S I, M@ ] [)7 + —— | = 1M = T1aa = 4%,

- | tr M|?
p= .
[(par(k, %)% = S IMy(x), My ()*]]12] 7 + LEM2 _ L3, 52

n

We know that r(M) > p, therefore the conclusion (2.5) is true.
Applying Lemma 2.1 and (2.6), we can get

[ e MP? + |y = A2
[(parlh, )2 = L1 M), M) 1212 + L2

n

r(M) >

The proof is completed. O

Corollary 2.2 Let M € M,(C) be an n x n complex matrix with all non-zero eigenvalues
A2, .. hy, p>2; then

| tr M|?

2 tr M|2 1 271 wM?2 1 ’
(M2 - M52 _ Ly[ag, M#])12)2 + 25— L max;g, . 1A — 212

@) M) =

|tl']VI|2 + %9 max;j-1.,..p [X; — )»1'|2

2) M) = ,
(M3 - S22 — L) (g, M]3+ L2
tr M|?
@) D= tr M2 | 1| tr M2 ’
[(@a(k) = “MEy2 _ Ly (M, METNZD2 + 2 L max; s, (2 = A2
2 2
4) (M) > [ tr M= + gmaxi,jzlyzwp A — Al

[(oan (k) = 15152 = 11 [V M) + 05

n
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Theorem 2.3 Let M € M, (C) be an n x n complex matrix with eigenvalues ); = a; + b;«/—1
(i=1,2,...,n), where a;, b; denote the real parts and imaginary parts of 1;, respectively
(a; =Re(A;), b; =Im(};)). Then

) = | Re(tr M) |? 2.7)
r = MsM* 2 1 2,1 2_1 «12y3 , leMi2y’ :
l 2 ”F 2 ”M”F +3 [((‘PM(k:x)) 2 ”[Mk(x)’Mk(x) ]”F)Z + =, ]
[ Im(tr M) |?
(M) = ——— T 1 N Ty (2.8)
15511 = 3 IMIlE + 5[(@ar(k, %))* = S 11 M (x), Mic(x)*117) 2 + =]

Proof By the Schur theorem, there is a unitary matrix U such that UMU* is an upper

triangular matrix, i.e.,

A dyp diz - dy

0 Xy doz - dyy
umur = | . ) .|

0 0 0o - Ay

where A1, 4y,..., A, are eigenvalues of M. Since the Frobenius norm is unitarily invariant

norm, we can deduce that

n
2
|umur | =Mz =" P+ Y ldyl™ (2.9)
i=1 1<i<j<n
Furthermore,
ay %du %dm %dm
17 1 1
L[(M+M*>U*= 56.112 ﬂ‘z 56‘123 56‘12;1 ’
2
3du 3d 5ds, @y

where a; = Re(};) (i = 1,2,...,n), and by the unitarily invariant norm

n n

M+M*\ P | MeM|? , 1 ,
Hu( 2 >U Fz‘ 2 F=Z“i+§ Z |yl (2.10)
i=1 1<i<j<n
Similarly we have available
M_M* 2 n 1
= szz +5 Z ||, (2.11)

where b; =Im(%;) (i =1,2,...,n). Combining (2.9) and (2.10), we can deduce that

2, | MM
E a; =
2

i=1

2 1 n
-3 (nMn% - |xi|2>.
F

i=1
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Applying Lemma 2.1, we get
L Mmoo
a; < 5 - EIIM 7
i=1 F
1 1 D M|
2 2 I
+ 5 |:<((pM(k,x)) — EH [Mk(x),Mk(x)*]”F) + ” ] (2.12)
Similarly, according to (2.9), (2.11) and Lemma 2.1, we can deduce that
n 2
M — M* 1
v < ’ — ZIMI2
le_ o |, M
1 1 D |wMP
2 2 r
5 [(((pM(k,x)) = 5 N [Me), Miy*] ||F) +— ] (2.13)

Without loss of generality, let A1, As,...,A; be all non-zero eigenvalues of M, so there are
no more ¢ non-zero real parts a;,,d;,,...,a; (k <t)inaj,as,...,a,. Thus, we can deduce
the following conclusion:

po @) |Re(rM)?

M) >t > k> ; (2.14)
Yt @, Y
Similarly we have available
Im(tr M)/
vy > rADE (2.15)

YiLbi

By (2.12) and (2.14), we can directly get the conclusion (2.7). In the same way, by (2.13) and
(2.15), we can also directly get the conclusion (2.8). The proof is completed. O

Corollary 2.3 Let M € M,(C) be an n x n complex matrix. Then

M) > | Re(tr M) |? (2.16)
A2 LM LM - Ry Ly, M) LR
2 F 2 FT12 F n 2 ’ F n
r(M) > - |Im(t1‘1\/2|22 . —, (2.17)
1222 — LMY + SLMIE — 22y — L[, ae)2)2 + L0t
| Re(tr M)|?
O B LT + S (07— SV AT + (218)
2 F 2 J) (D 2” ISEALYS ”F) + P ]
r(M) > - |Im(trM)|2 . —. (2.19)
145417 = SIMIZE + 5 [(om(k)? = 311 [Me MNP 2 + 7]

3 Some sufficient conditions for nonsingular matrices
In this section, based on the conclusions of Section 2, we directly obtain some simple
sufficient conditions for nonsingular matrices.

According to Theorem 2.1, we can directly get the following.

Page 6 of 8
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Theorem 3.1 Let M € M,(C); if M satisfies the following condition:

n

1
1 . T | M?
M > (- 1)[(<¢M(k,x>>2 - S M), M) ]ui) ; }
then M is nonsingular matrix.
According to Corollary 2.1, we have the following.

Corollary 3.1 Let M € M, (C); if M satisfies one of the following conditions, then M is
nonsingular matrix:

: }
@t > - ( (- Y 2y paaar;) 2]

n

7 2
(2) |tl"1\/I|2 >(n— 1)[((¢M(k)) “ [Mk’Mk] ” ) | tr M| ]

n

According to Theorem 2.3, we can directly get the following.

Theorem 3.2 Let M € M,,(C); if M satisfies one of the following conditions, then M is non-
singular matrix:

|RetrM| >(n- 1)<‘

1 1
EHM”‘% + Ew(M’x)>’

2
1 1
E ”M”[z-" + Ew(er))’

M+M*
’Im trM

where (M, x) = (par(k,2))? — L1 [Me(x), Me()*][2) 3 + L2222

n

According to Corollary 2.3, we have the following.

Corollary 3.2 Let M € M,(C); if M satisfies one of the following conditions, then M is
nonsingular matrix:

|Re trM

M+M > 1, 1
- —IMlz + —oM,x=1) ),

2y 2 2
M-M|* 1 1
2) |Im(trM Dl I[/—=—| -=IM|?+-wM,x=1)),
@) |ImwM)|* > (n- )( Walh SIMIE + S, ))
<M+M* 2

’Re trM

1 1
- IM|E+ oM, x = ,
2|, 5 IMllE + S ﬂ))

M-M|* 1 1
— = IM|7 + ~o(M,x = )>,
ot |, 2MlEr N/

|Im trM| >(n-1)

where (M, x = 1) = (| M2 - =822 _ Lj1ag, M) |2)3 + W42 (M, x = /72) = (ou(K))2 -

n
1 1 tr M2
M M1 (122 + L2E
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Matrix inequality is a research focus in the inequality field and a good many scholars
have been researching on this topic. For instance, Hu and Xue [5] obtained some improved
reverses of Young type inequalities for matrices, Zou and Peng [6] presented some trace
inequalities for matrix means, Zou and Jiang [7] gave a note on interpolation between
Cauchy-Schwarz matrix norm inequalities and the arithmetic-geometric mean.

4 Conclusion

In matrix analysis, the elements of the matrix to determine the nonsingularity of the ma-
trix have been widely used in practical problems. In this paper, we firstly base our con-
siderations on the Kress theorem in [4], using the partitioned matrices to obtain a new
estimation for ), |1;|*. Secondly, through the new estimation mentioned above, some
new and more accurate estimations for the lower bound for the rank of the matrix are
obtained, such as theorems and corollaries in Section 2. Lastly, due to the nonsingularity
of the matrix being closely related to the lower bound for the rank of the matrix, using the
results in Section 2, we can get some new sufficient conditions for nonsingular matrices,
such as the theorems and corollaries in Section 3.
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