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1 Introduction and preliminaries
During the last century the theory of convexity has emerged as an interesting and fascinat-
ing field of mathematics. It plays a pivotal role in optimization theory, functional analysis,
control theory and economics etc.

A function f : I ⊆ R→R is said to be convex if the inequality

f
(
tx + ( – t)y

) ≤ tf (x) + ( – t)f (y)

holds for all x, y ∈ I and t ∈ [, ].
The following inequality is a so-called classical Hermite-Hadamard type inequality for

convex functions. Let f : I = [a, b] ⊆ R → R be a convex function and a, b ∈ I with a < b,
then

f
(

a + b


)
≤ 

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


. (.)

This inequality is one of the most useful inequalities in mathematical analysis. For new
proofs, noteworthy extension, generalizations and numerous applications on this inequal-
ity, see, e.g., [–] where further references are given.

The relationship between theory of convexity and theory of inequalities has motivated
many researchers to study these theories in depth. As a consequence of this fact several
inequalities have been obtained via convex functions; see [].
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The history of fractional calculus can be traced back to the letter of L’Hospital to Leibniz
in which he inquired him about the notation he was using for the nth derivative of the
linear function f (x) = x, Dnx

Dxn . L’Hospital asked the question: what would the result be if
n = 

 . Leibniz replied: An apparent paradox, from which one day useful consequences will
be drawn. Nowadays fractional calculus has become a powerful tool in many branches
of mathematics. Sarikaya et al. [] used the definitions of Riemannn-Liouville integrals
and developed a new generalization of Hermite-Hadamard inequality. This result inspired
many researchers to study this area. For more details, and for recent results and recently
found properties concerning this operator one can consult [–].

We need some definition and mathematical preliminaries of fractional calculus theory
for using in this study as follows.

Definition . Let f ∈ L[a, b]. The Riemann-Liouville integrals Jα
a+f and Jα

b–f of order α > 
with a ≥  are defined by

Jα
a+f (x) =


�(α)

∫ x

a
(x – t)α–f (t) dt, x > a,

and

Jα
b–f (x) =


�(α)

∫ b

x
(t – x)α–f (t) dt, x < b,

respectively. Here �(t) is the Gamma function and its definition is �(t) =
∫ ∞

 e–xxt– dx.
It is to be noted that J

a+f (x) = J
b–f (x) = f (x); in the case of α = , the fractional integral

reduces to the classical integral.

In [], Zhu et al. established a new identity for differentiable convex mappings via the
Riemann-Liouville fractional integral.

Lemma . ([]) Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
f ′ ∈ L[a, b], then the following equality for fractional integrals hold:

�(α + )
(b – a)α

[(
Ja
α– f

)
(b) +

(
Jb
α+ f

)
(a)

]
– f

(
a + b



)

=
b – a



[∫ 


k(t)f ′(ta + ( – t)b

)
dt –

∫ 



[
( – t)α – tα

]
f ′(ta + ( – t)b

)
dt

]
, (.)

where

k(t) =

⎧
⎨

⎩
,  < t ≤ 

 ,

–, 
 < t ≤ .

Using the above identity, they gave the following result for the Riemann-Liouville frac-
tional integral.
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Theorem . ([]) Let f : [a, b] → R be a differentiable mapping on (a, b) with a < b. If
|f ′| is convex on [a, b], then the following fractional inequality for fractional integrals holds:

∣∣
∣∣
�(α + )
(b – a)α

[(
Ja
α– f

)
(b) +

(
Jb
α+ f

)
(a)

]
– f

(
a + b



)∣∣
∣∣

≤ b – a
(α + )

(
α +  –


α–

)
[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣]. (.)

In [], Raina introduced a class of functions defined formally by

Fσ
ρ,λ(x) = Fσ (),σ (),...

ρ,λ (x) =
∞∑

k=

σ (k)
�(ρk + λ)

xk (
ρ,λ > ; |x| < R

)
, (.)

where the coefficients σ (k) (k ∈N = N∪{}) are a bounded sequence of positive real num-
bers and R is the set of real numbers. With the help of (.), Raina [] and Agarwal et al.
[] defined the following left-sided and right-sided fractional integral operators, respec-
tively:

(
J σ

ρ,λ,a+;wϕ
)
(x) =

∫ x

a
(x – t)λ–Fσ

ρ,λ
[
w(x – t)ρ

]
ϕ(t) dt (x > a > ), (.)

(
J σ

ρ,λ,b–;wϕ
)
(x) =

∫ b

x
(t – x)λ–Fσ

ρ,λ
[
w(t – x)ρ

]
ϕ(t) dt ( < x < b), (.)

where λ,ρ > , w ∈ R and ϕ(t) is such that the integral on the right side exists. Recently
some new integral inequalities involving this operator have appeared in the literature (see,
e.g., [–]).

It is easy to verify that J σ
ρ,λ,a+;wϕ(x) and J σ

ρ,λ,b–;wϕ(x) are bounded integral operators on
L(a, b), if

M := Fσ
ρ,λ+

[
w(b – a)ρ

]
< ∞. (.)

In fact, for ϕ ∈ L(a, b), we have

∥
∥J σ

ρ,λ,a+;wϕ(x)
∥
∥

 ≤ M(b – a)λ‖ϕ‖ (.)

and

∥
∥J σ

ρ,λ,b–;wϕ(x)
∥
∥

 ≤ M(b – a)λ‖ϕ‖, (.)

where

‖ϕ‖p :=
(∫ b

a

∣∣ϕ(t)
∣∣p dt

) 
p

.

Here, many useful fractional integral operators can be obtained by specializing the co-
efficient σ (k). For instance the classical Riemann-Liouville fractional integrals Jα

a+ and Jα
b–

of order α follow easily by setting λ = α, σ () =  and w =  in (.) and (.).
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Motivated by the work in [–], firstly, we will prove a generalization of the identity
given by Zhu et al. using generalized fractional integral operators. Then we will give some
new Hermite-Hadamard type inequalities, which are generalizations of the results in []
to the case λ = α, σ () =  and w = . Our results can be viewed as a significant extension
and generalization of the previously known results.

2 Results and discussions
In this section, we derive our main results. For the sake of simplicity, we denote

Lf (a, b; w; J) :=


(b – a)λ
[(
J σ

ρ,λ,b–;wf
)
(a)+

(
J σ

ρ,λ,a+;wf
)
(b)

]
–Fσ

ρ,λ+
[
w(b–a)ρ

]
f
(

a + b


)
.

Lemma . Let f : [a, b] →R be a differentiable mapping on (a, b) with a < b. If f ′ ∈ L[a, b],
then the following equality for generalized fractional integral operators holds:

Lf (a, b; w; J) =
(b – a)



{∫ 


k(t)f ′(ta + ( – t)b

)
dt

–
∫ 


( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f ′(ta + ( – t)b

)
dt

+
∫ 


tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f ′(ta + ( – t)b

)
dt

}
,

where

k(t) =

⎧
⎨

⎩
Fσ

ρ,λ+[w(b – a)ρ],  < t ≤ 
 ,

–Fσ
ρ,λ+[w(b – a)ρ], 

 < t ≤ ,

ρ,λ > , w ∈R.

Proof It suffices to note that

I =
∫ 




Fσ

ρ,λ+
[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

–
∫ 




Fσ
ρ,λ+

[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

–
∫ 


( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f ′(ta + ( – t)b

)
dt

+
∫ 


tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f ′(ta + ( – t)b

)
dt

:= I + I + I + I. (.)

Changing variables with x = ta + ( – t)b, we get

I =
∫ 




Fσ

ρ,λ+
[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

=
Fσ

ρ,λ+[w(b – a)ρ]
b – a

[
f (b) – f

(
a + b



)]
,
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I = –
∫ 




Fσ
ρ,λ+

[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

=
Fσ

ρ,λ+[w(b – a)ρ]
b – a

[
f (a) – f

(
a + b



)]
.

Integrating by parts, we have

I = –
∫ 


( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f ′(ta + ( – t)b

)
dt

=


b – a
( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f
(
ta + ( – t)b

)∣∣


+


b – a

∫ 


( – t)λ–Fσ

ρ,λ
[
w(b – a)ρ( – t)ρ

]
f
(
ta + ( – t)b

)
dt

= –


b – a
Fσ

ρ,λ+
[
w(b – a)ρ

]
f (b)

+


b – a

∫ b

a

(
x – a
b – a

)λ–

Fσ
ρ,λ

[
w(b – a)ρ

(
x – a
b – a

)ρ] f (x)
b – a

dx

= –


b – a
Fσ

ρ,λ+
[
w(b – a)ρ

]
f (b) +


(b – a)λ+

(
J σ

ρ,λ,b–;wf
)
(a). (.)

Analogously

I =
∫ 


tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f ′(ta + ( – t)b

)
dt

= –


b – a
tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f
(
ta + ( – t)b

)∣∣


+


b – a

∫ 


tλ–Fσ

ρ,λ
[
w(b – a)ρtρ

]
f
(
ta + ( – t)b

)
dt

= –


b – a
Fσ

ρ,λ+
[
w(b – a)ρ

]
f (a)

+


b – a

∫ b

a

(
b – x
b – a

)λ–

Fσ
ρ,λ

[
w(b – a)ρ

(
b – x
b – a

)ρ] f (x)
b – a

dx

= –


b – a
Fσ

ρ,λ+
[
w(b – a)ρ

]
f (a) +


(b – a)λ+

(
J σ

ρ,λ,a+;wf
)
(b). (.)

�

Substituting the resulting equalities into equality (.), we have

I =
–

b – a
Fσ

ρ,λ+
[
w(b – a)ρ

]
f
(

a + b


)

+


(b – a)λ+

[(
J σ

ρ,λ,b–;wf
)
(a) +

(
J σ

ρ,λ,a+;wf
)
(b)

]
. (.)

Thus, multiplying both sides by (b–a)
 , the result is obtained.

Remark . Choosing λ = α, σ () =  and w =  in Lemma ., equality (.) reduces to
equality (.).
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Theorem . Let f : [a, b] → R be a differentiable function on [a, b] with a < b. If |f ′| is
convex on (a, b), then the following inequality for generalized fractional integral operators
holds:

∣
∣Lf (a, b; w; J)

∣
∣ ≤ b – a


Fσ

ρ,λ+
[|w|(b – a)ρ

][∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣], (.)

where

σ(k) = σ (k)
(

λ + ρk +  –


λ+ρk–

)
,

ρ,λ > , w ∈R, s ∈ (, ].

Proof Using Lemma . and convexity of |f ′|, we have

∣∣Lf (a, b; w; J)
∣∣

≤ b – a


{∣
∣∣∣

∫ 



Fσ

ρ,λ+
[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

+
∫ 




Fσ
ρ,λ+

[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

∣∣
∣∣

+
∣∣
∣∣

∫ 


( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f ′(ta + ( – t)b

)
dt

–
∫ 


tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f ′(ta + ( – t)b

)
dt

∣
∣∣
∣

}

≤ b – a


{∫ 



∣∣Fσ
ρ,λ+

[
w(b – a)ρ

]∣∣(t
∣∣f ′(a)

∣∣ + ( – t)
∣∣f ′(b)

∣∣)dt

+
∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )

[∫ 




(
( – t)λ+ρk – tλ+ρk)(t

∣∣f ′(a)
∣∣ + ( – t)

∣∣f ′(b)
∣∣)dt

+
∫ 




(
tλ+ρk – ( – t)λ+ρk)(t

∣∣f ′(a)
∣∣ + ( – t)

∣∣f ′(b)
∣∣)dt

]}

≤ b – a


∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )
×

{( |f ′(a)| + |f ′(b)|


)

+
∣
∣f ′(a)

∣
∣
∫ 





(
t( – t)λ+ρk – tλ+ρk+)dt

+
∣
∣f ′(b)

∣
∣
∫ 





(
( – t)λ+ρk+ – tλ+ρk( – t)

)
dt

+
∣∣f ′(a)

∣∣
∫ 




(
tλ+ρk+ – t( – t)λ+ρk)dt

+
∣∣f ′(b)

∣∣
∫ 




(
( – t)tλ+ρk – ( – t)λ+ρk+)dt

}

=
b – a



∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )

[



+


λ + ρk + 

(
 –


λ+ρk

)]
[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣]
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=
b – a



∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )

(
λ + ρk +  –


λ+ρk–

)[∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣]

=
b – a


Fσ

ρ,λ+
[|w|(b – a)ρ

][∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣], (.)

using the facts that

∫ 




(
t( – t)λ+ρk – tλ+ρk+)dt =

∫ 




(
( – t)tλ+ρk – ( – t)λ+ρk+)dt

=
λ+ρk+ – (λ + ρk + )

(λ + ρk + )(λ + ρk + )λ+ρk+

and

∫ 




(
( – t)λ+ρk+ – tλ+ρk( – t)

)
dt =

∫ 




(
tλ+ρk+ – t( – t)λ+ρk)dt

=


λ + ρk + 
–


(λ + ρk + )λ+ρk+

–
λ + ρk + 

(λ + ρk + )(λ + ρk + )λ+ρk+ .

Thus the proof is completed. �

Remark . Choosing λ = α, σ () =  and w =  in Theorem ., inequality (.) reduces
to inequality (.).

Theorem . Let f : [a, b] → R be a differentiable function on (a, b) with a < b. If |f ′|q is
convex and q >  with 

p + 
q = , then the following inequality for generalized fractional

integral operators holds:

∣∣Lf (a, b; w; J)
∣∣

≤ b – a


[
Fσ

ρ,λ+
[|w|(b – a)ρ

]
( |f ′(a)|q + |f ′(a)|q



) 
q

+ Fσ
ρ,λ+

[|w|(b – a)ρ
]([



∣
∣f ′(a)

∣
∣q +



∣
∣f ′(b)

∣
∣q

] 
q

+
[



∣
∣f ′(a)

∣
∣q +



∣
∣f ′(b)

∣
∣q

] 
q
)]

≤Fσ
ρ,λ+

[|w|(b – a)ρ
][∣∣f ′(a)

∣
∣ +

∣
∣f ′(b)

∣
∣], (.)

where

σ(k) = σ (k)
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p

,

σ(k) = σ (k)
(




) 
q
(

 +
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
)

,

ρ,λ >  and w ∈R.
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Proof By using Lemma ., we have
∣
∣Lf (a, b; w; J)

∣
∣

≤ b – a


{∣
∣∣∣

∫ 



Fσ

ρ,λ+
[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

+
∫ 




Fσ
ρ,λ+

[
w(b – a)ρ

]
f ′(ta + ( – t)b

)
dt

∣
∣∣
∣

+
∣
∣∣∣

∫ 


( – t)λFσ

ρ,λ+
[
w(b – a)ρ( – t)ρ

]
f ′(ta + ( – t)b

)
dt

–
∫ 


tλFσ

ρ,λ+
[
w(b – a)ρtρ

]
f ′(ta + ( – t)b

)
dt

∣
∣∣
∣

}

≤ b – a


{ ∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )

∫ 



∣
∣f ′(ta + ( – t)b

)∣∣dt

+
∞∑

k=

σ (k)|w|k(b – a)ρk

�(ρk + λ + )

[∫ 




(
( – t)λ+ρk – tλ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt

+
∫ 




(
tλ+ρk – ( – t)λ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt
]}

. (.)

Using the well-known Hölder inequality and convexity of |f ′|q we get

∫ 



∣
∣f ′(ta + ( – t)b

)∣∣dt ≤
( |f ′(a)|q + |f ′(a)|q



) 
q

. (.)

Thus
∫ 





(
( – t)λ+ρk – tλ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt

≤
[∫ 





(
( – t)λ+ρk – tλ+ρk)p dt

] 
p
[∫ 





∣
∣f ′(ta + ( – t)b

)∣∣q dt
] 

q

≤
[∫ 





(
( – t)p(λ+ρk) – tp(λ+ρk))dt

] 
p
[∫ 





(
t
∣
∣f ′(a)

∣
∣q + ( – t)

∣
∣f ′(a)

∣
∣q)dt

] 
q

=
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
[



∣
∣f ′(a)

∣
∣q +



∣
∣f ′(b)

∣
∣q

] 
q

(.)

and
∫ 




(
tλ+ρk – ( – t)λ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt

≤
[∫ 




(
tλ+ρk – ( – t)λ+ρk)p dt

] 
p
[∫ 





∣
∣f ′(ta + ( – t)b

)∣∣q dt
] 

q

≤
[∫ 




(
tp(λ+ρk) – ( – t)p(λ+ρk))dt

] 
p
[∫ 




(
t
∣
∣f ′(a)

∣
∣q + ( – t)

∣
∣f ′(a)

∣
∣q)dt

] 
q

=
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
[



∣∣f ′(a)

∣∣q +


∣∣f ′(b)

∣∣q
] 

q
, (.)

where we used that (A – B)p ≤ Ap – Bp for any A ≥ B ≥  and p ≥  in (.) and (.).
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Let a = |f ′(a)|q, b = |f ′(b)|q, a = |f ′(a)|q, b = |f ′(b)|q. Here  < 
q <  for q > . We

use the fact that

n∑

k=

(ak + bk)s ≤
n∑

k=

as
k +

n∑

k=

bs
k .

For  ≤ s < , a, a, a, . . . , an ≥ , b, b, b, . . . , bn ≥ . Combining the inequalities (.)
with (.) we obtain

∫ 




(
( – t)λ+ρk – tλ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt

+
∫ 




(
tλ+ρk – ( – t)λ+ρk)∣∣f ′(ta + ( – t)b

)∣∣dt

≤
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
(




) 
q

× ([

∣
∣f ′(a)

∣
∣q +

∣
∣f ′(b)

∣
∣q] 

q +
[∣∣f ′(a)

∣
∣q + 

∣
∣f ′(b)

∣
∣q] 

q
)

≤
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
(




) 
q (



q + 

)[∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣]

≤
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
(




) 
q


[∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣]

=
[


p(λ + ρk) + 

(
 –


p(λ+ρk)

)] 
p
(




) 
q [∣∣f ′(a)

∣
∣ +

∣
∣f ′(b)

∣
∣] (.)

and

( |f ′(a)|q + |f ′(a)|q


) 
q

≤
(




) 
q [∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣]. (.)

Thus putting the inequalities (.), (.) and (.) in (.), the proof is completed. �

Corollary . Choosing λ = α, σ () =  and w =  in Theorem ., inequality (.) becomes
the following inequality:

∣
∣∣
∣
�(α + )
(b – a)α

[(
Ja
α– f

)
(b) +

(
Jb
α+ f

)
(a)

]
– f

(
a + b



)∣
∣∣
∣

≤ b – a


{[ |f ′(a)|q + |f ′(a)|q


] 
q

+
[


αp + 

(
 –


αp

)] 
p
([



∣∣f ′(a)

∣∣q +


∣∣f ′(b)

∣∣q
] 

q
+

[


∣∣f ′(a)

∣∣q +


∣∣f ′(b)

∣∣q
] 

q
)}

≤ b – a


(
 +

[


αp + 

(
 –


αp

)] 
p
)(




) 
q [∣∣f ′(a)

∣
∣ +

∣
∣f ′(b)

∣
∣]. (.)

3 Conclusion
In this paper, we have obtained a new fractional integral identity. Utilizing this new identity
as an auxiliary result, we have obtained some new variants of Hermite-Hadamard type
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inequalities. The results derived in this paper become natural generalizations of classical
results. It is expected that the interested reader may find useful applications of these results
and consequently this paper may stimulate further research in this area.
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