On a more accurate Hardy-Mulholland-type inequality

Bicheng Yang ${ }^{1 *}$ and Qiang Chen ${ }^{2}$
"Correspondence:
bcyang@gdei.edu.cn
${ }^{1}$ Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China
Full list of author information is available at the end of the article

Abstract

By using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given. The equivalent forms, the reverses, the operator expressions and some particular cases are considered.

MSC: 26D15; 47A07 Keywords: Mulholland-type inequality; weight coefficient; equivalent form; reverse; operator

1 Introduction

Assuming that $p>1, \frac{1}{p}+\frac{1}{q}=1, a_{m}, b_{n} \geq 0, a=\left\{a_{m}\right\}_{m=1}^{\infty} \in l^{p}, b=\left\{b_{n}\right\}_{n=1}^{\infty} \in l^{q},\|a\|_{p}=$ $\left(\sum_{m=1}^{\infty} a_{m}^{p}\right)^{\frac{1}{p}}>0$, and $\|b\|_{q}>0$, we have the following Hardy-Hilbert's inequality with the best possible constant $\frac{\pi}{\sin (\pi / p)}$ (cf. [1], Theorem 315):

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin (\pi / p)}\|a\|_{p}\|b\|_{q} . \tag{1}
\end{equation*}
$$

A more accurate inequality of (1) is given as follows (cf. [1], Th. 323 and [2]):

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{m+n-\alpha}<\frac{\pi}{\sin (\pi / p)}\|a\|_{p}\|b\|_{q} \quad(0 \leq \alpha \leq 1) \tag{2}
\end{equation*}
$$

where the constant factor $\frac{\pi}{\sin (\pi / p)}$ is still the best possible.
Also we have the following Mulholland's inequality similar to (1) with the same best possible constant factor $\frac{\pi}{\sin (\pi / p)}$ (cf. [3] or [1], Th. 343, replacing $\frac{a_{m}}{m}, \frac{b_{n}}{n}$ by a_{m}, b_{n}):

$$
\begin{equation*}
\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_{m} b_{n}}{\ln m n}<\frac{\pi}{\sin (\pi / p)}\left(\sum_{m=2}^{\infty} \frac{a_{m}^{p}}{m^{1-p}}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{b_{n}^{q}}{n^{1-q}}\right)^{\frac{1}{q}} \tag{3}
\end{equation*}
$$

Inequalities (1)-(3) are important in analysis and its applications (cf. [1, 2, 4-18]).
© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Suppose that $\mu_{i}, v_{j}>0(i, j \in \mathbb{N}=\{1,2, \ldots\})$,

$$
\begin{equation*}
U_{m}=\sum_{i=1}^{m} \mu_{i}, \quad V_{n}=\sum_{j=1}^{n} v_{j} \quad(m, n \in \mathbb{N}), \tag{4}
\end{equation*}
$$

we have the following Hardy-Hilbert-type inequality (cf. [1], Theorem 321, replacing $\mu_{m}^{1 / q} a_{m}$ and $v_{n}^{1 / p} b_{n}$ by a_{m} and b_{n}): If $a_{m}, b_{n} \geq 0,0<\sum_{m=1}^{\infty} \frac{a_{m}^{p}}{m^{p-1}}<\infty, 0<\sum_{n=1}^{\infty} \frac{b_{n}^{q}}{n^{q-1}}<\infty$, then

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{U_{m}+V_{n}}<\frac{\pi}{\sin (\pi / p)}\left(\sum_{m=1}^{\infty} \frac{a_{m}^{p}}{\mu_{m}^{p-1}}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{\infty} \frac{b_{n}^{q}}{v_{n}^{q-1}}\right)^{\frac{1}{q}} \tag{5}
\end{equation*}
$$

For $\mu_{i}=v_{j}=1(i, j \in \mathbb{N})$, inequality (5) reduces to (1).
In 2015, Yang [19] gave an extension of (5) as follows: If $0<\lambda_{1}, \lambda_{2} \leq 1, \lambda_{1}+\lambda_{2}=\lambda,\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are positive and decreasing, with $U_{\infty}=V_{\infty}=\infty$, then we have the following inequality with the best possible constant factor $\pi / \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)$:

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m} b_{n}}{U_{m}^{\lambda}+V_{n}^{\lambda}}<\frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)}\left[\sum_{m=1}^{\infty} \frac{U_{m}^{p\left(1-\lambda_{1}\right)-1} a_{m}^{p}}{\mu_{m}^{p-1}}\right]^{\frac{1}{p}}\left[\sum_{n=1}^{\infty} \frac{V_{n}^{q\left(1-\lambda_{2}\right)-1} b_{n}^{q}}{v_{n}^{q-1}}\right]^{\frac{1}{q}} \tag{6}
\end{equation*}
$$

In this paper, by using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a new Hardy-Mulholland-type inequality with a best possible constant factor is given as follows: If $\mu_{1}=v_{1}=1,\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are positive and decreasing, with $U_{\infty}=V_{\infty}=\infty$, we have the following inequality:

$$
\begin{equation*}
\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_{m} b_{n}}{\ln U_{m} V_{n}}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left[\sum_{m=2}^{\infty}\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1} a_{m}^{p}\right]^{\frac{1}{p}}\left[\sum_{n=2}^{\infty}\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1} b_{n}^{q}\right]^{\frac{1}{q}}, \tag{7}
\end{equation*}
$$

which is an extension of (3). Moreover, the more accurate inequality of (7) and its extension with multi-parameters and the best possible constant factors are obtained. The equivalent forms, the reverses, the operator expressions and some particular cases are considered.

2 Some lemmas and an example

In the following, we agree that $p \neq 0,1, \frac{1}{p}+\frac{1}{q}=1,-1<\gamma \leq 0,0<\lambda_{1}, \lambda_{2}<1, \lambda_{1}+\lambda_{2}=\lambda$, $\mu_{i}, v_{j}>0(i, j \in \mathbb{N})$, with $\mu_{1}=v_{1}=1, U_{m}$ and V_{n} are defined by (4),

$$
\begin{align*}
& \frac{1}{1+\frac{\mu_{2}}{2}} \leq \alpha \leq 1, \quad \frac{1}{1+\frac{v_{2}}{2}} \leq \beta \leq 1, \\
& a_{m}, b_{n} \geq 0,\|a\|_{p, \Phi_{\lambda}}:=\left(\sum_{m=2}^{\infty} \Phi_{\lambda}(m) a_{m}^{p}\right)^{\frac{1}{p}} \text { and }\|b\|_{q, \Psi_{\lambda}}:=\left(\sum_{n=2}^{\infty} \Psi_{\lambda}(n) b_{n}^{q}\right)^{\frac{1}{q}}, \text { where } \\
& \Phi_{\lambda}(m):=\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln \alpha U_{m}\right)^{p\left(1-\lambda_{1}\right)-1}, \\
& \Psi_{\lambda}(n):=\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1}\left(\ln \beta V_{n}\right)^{q\left(1-\lambda_{2}\right)-1} \quad(m, n \in \mathbb{N} \backslash\{1\}) . \tag{8}
\end{align*}
$$

Lemma 1 If $n \in \mathbb{N} \backslash\{1\}, a \in\left(n-\frac{1}{2}, n\right), f(x)$ is continuous in $\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, and $f^{\prime}(x)$ is strictly increasing in the intervals $\left(n-\frac{1}{2}, a\right),(a, n)$ and $\left(n, n+\frac{1}{2}\right)$, respectively, satisfying

$$
\begin{equation*}
f^{\prime}(a-0) \leq f^{\prime}(a+0), \quad f^{\prime}(n-0) \leq f^{\prime}(n+0) \tag{9}
\end{equation*}
$$

then we have the following Hermite-Hadamard's inequality (cf. [20]).

Proof In view of $f^{\prime}(n-0) \leq f^{\prime}(n+0)=\lim _{x \rightarrow n^{+}} f^{\prime}(x)$ is finite, we set the linear function $g(x)$ as follows:

$$
g(x):=f^{\prime}(n-0)(x-n)+f(n), \quad x \in\left[n-\frac{1}{2}, n+\frac{1}{2}\right] .
$$

Since $f^{\prime}(x)$ is strictly increasing in $\left[n-\frac{1}{2}, a\right)$ and (a, n), then for $x \in\left[n-\frac{1}{2}, a\right)$,

$$
f^{\prime}(x)<\lim _{x \rightarrow a^{-}} f^{\prime}(x)=f^{\prime}(a-0) \leq f^{\prime}(a+0)<f^{\prime}(n-0) ;
$$

for $x \in(a, n), f^{\prime}(x)<\lim _{x \rightarrow n^{-}} f^{\prime}(x)=f^{\prime}(n-0)$. Hence,

$$
(f(x)-g(x))^{\prime}=f^{\prime}(x)-f^{\prime}(n-0)<0, \quad x \in\left(n-\frac{1}{2}, a\right) \cup(a, n)
$$

Since $f(x)-g(x)$ is continuous in $\left(n-\frac{1}{2}, n\right]$ with $f(n)-g(n)=0$, it follows that

$$
f(x)-g(x)>0, \quad x \in\left(n-\frac{1}{2}, n\right)
$$

In the same way, since $f^{\prime}(x)$ is strictly increasing in $\left(n, n+\frac{1}{2}\right)$, then for $x \in\left(n, n+\frac{1}{2}\right)$, $f^{\prime}(x)>f^{\prime}(n+0) \geq f^{\prime}(n-0)$. Hence,

$$
(f(x)-g(x))^{\prime}=f^{\prime}(x)-f^{\prime}(n-0)>0, \quad x \in\left(n, n+\frac{1}{2}\right)
$$

Since $f(x)-g(x)$ is continuous in $\left[n, n+\frac{1}{2}\right)$ with $f(n)-g(n)=0$, it follows that

$$
f(x)-g(x)>0, \quad x \in\left(n, n+\frac{1}{2}\right)
$$

Therefore, we have $f(x)-g(x)>0, x \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right) \backslash\{n\}$. Then we find

$$
\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} f(x) d x>\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} g(x) d x=f(n)
$$

namely, (9) follows. The lemma is proved.
Note With the assumptions of Lemma 1, if (i) $a \in\left(n, n+\frac{1}{2}\right), f^{\prime}(x)$ is strictly increasing in the intervals $\left(n-\frac{1}{2}, n\right),(n, a)$ and $\left(a, n+\frac{1}{2}\right)$, respectively, or (ii) $a=n, f^{\prime}(x)$ is strictly increasing in the intervals $\left(n-\frac{1}{2}, n\right)$ and $\left(n, n+\frac{1}{2}\right)$, respectively, then in the same way, we still can obtain (9).

Example $1\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are decreasing, we set functions $\mu(t):=\mu_{m}, t \in(m-1, m]$ $(m \in \mathbb{N}), v(t):=v_{n}, t \in(n-1, n](n \in \mathbb{N})$, and

$$
\begin{equation*}
U(x):=\int_{0}^{x} \mu(t) d t \quad(x \geq 0), \quad V(y):=\int_{0}^{y} v(t) d t \quad(y \geq 0) \tag{10}
\end{equation*}
$$

Then it follows that $U(m)=U_{m}, V(n)=V_{n}, U(\infty)=U_{\infty}, V(\infty)=V_{\infty}$ and

$$
\begin{aligned}
& U^{\prime}(x)=\mu(x)=\mu_{m}, \quad x \in(m-1, m) \\
& V^{\prime}(y)=v(y)=v_{n}, \quad y \in(n-1, n)(x, y \in \mathbb{N}) .
\end{aligned}
$$

For $0<\lambda \leq 1,-1<\gamma \leq 0$, we set

$$
\begin{equation*}
k_{\lambda}(x, y):=\frac{1}{x^{\lambda}+y^{\lambda}+\gamma\left|x^{\lambda}-y^{\lambda}\right|} \quad(x, y>0) . \tag{11}
\end{equation*}
$$

We find

$$
\begin{align*}
0 & <K_{\gamma}\left(\lambda_{1}\right):=\int_{0}^{\infty} k_{\lambda}(1, t) t^{\lambda_{2}-1} d t=\int_{0}^{\infty} k_{\lambda}(t, 1) t^{\lambda_{1}-1} d t \\
& =\int_{0}^{\infty} \frac{t^{\lambda_{1}-1}}{t^{\lambda}+1+\gamma\left|t^{\lambda}-1\right|} d t=\int_{0}^{1} \frac{t^{\lambda_{1}-1}+t^{\lambda_{2}-1}}{1+\gamma+(1-\gamma) t^{\lambda}} d t \\
& \leq \int_{0}^{1} \frac{t^{\lambda_{1}-1}+t^{\lambda_{2}-1}}{1+\gamma} d t=\frac{1}{1+\gamma}\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}\right)<\infty, \tag{12}
\end{align*}
$$

namely, $K_{\gamma}\left(\lambda_{1}\right) \in \mathbb{R}_{+}$. In the following, we express $K_{\gamma}\left(\lambda_{1}\right)$ in other forms.
(i) For $\gamma=0$, we obtain

$$
\begin{equation*}
K_{0}\left(\lambda_{1}\right)=\int_{0}^{\infty} \frac{t^{\lambda_{1}-1}}{t^{\lambda}+1} d t=\frac{1}{\lambda} \int_{0}^{\infty} \frac{v^{\left(\lambda_{1} / \lambda\right)-1}}{v+1} d \nu=\frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} ; \tag{13}
\end{equation*}
$$

(ii) for $-1<\gamma<0,0<\frac{1+\gamma}{1-\gamma}<1$, by the Lebesgue term by term integration theorem (cf. [21]), we find

$$
\begin{aligned}
& K_{\gamma}\left(\lambda_{1}\right)= \frac{1}{1-\gamma} \int_{0}^{1} \frac{t^{-\lambda_{2}-1}+t^{-\lambda_{1}-1}}{\frac{1+\gamma}{1-\gamma} t^{-\lambda}+1} d t \\
& \stackrel{\nu+\gamma}{1-\gamma}=t^{-\lambda} \\
& \frac{1}{\lambda(1-\gamma)} \int_{\frac{1+\gamma}{1-\gamma}}^{\infty} \frac{1}{v+1}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} v^{\frac{\lambda_{2}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v \\
&= \frac{1}{\lambda(1-\gamma)}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} \int_{0}^{\infty} \frac{v^{\frac{\lambda_{2}}{\lambda}-1}}{v+1} d v+\frac{1}{\lambda(1-\gamma)}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} \int_{0}^{\infty} \frac{v^{\frac{\lambda_{1}}{\lambda}-1}}{v+1} d v \\
&-\frac{1}{\lambda(1-\gamma)} \int_{0}^{\frac{1+\gamma}{1-\gamma}} \frac{1}{v+1}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} v^{\frac{\lambda_{2}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v \\
&= \frac{1}{\lambda(1-\gamma)}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} \frac{\pi}{\sin \left(\frac{\pi \lambda_{2}}{\lambda}\right)}+\frac{1}{\lambda(1-\gamma)}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} \frac{\pi}{\sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} \\
&-\frac{1}{\lambda(1-\gamma)} \int_{0}^{\frac{1+\gamma}{1-\gamma}} \sum_{k=0}^{\infty}(-1)^{k} v^{k}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} v^{\frac{\lambda_{2}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{\lambda(1-\gamma)}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1}\right] \frac{\pi}{\sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} \\
& -\frac{1}{\lambda(1-\gamma)} \int_{0}^{\frac{1+\gamma}{1-\gamma}} \sum_{k=0}^{\infty}\left(v^{2 k}-v^{2 k+1}\right)\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}-1} v^{\frac{\lambda_{2}}{\lambda}-1}\right. \\
& \left.+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v \\
= & \frac{1}{1+\gamma}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}}\right] \frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} \\
& -\frac{1}{\lambda(1+\gamma)} \int_{0}^{\frac{1+\gamma}{1-\gamma}} \sum_{k=0}^{\infty}\left(v^{2 k}-v^{2 k+1}\right)\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}} v^{\frac{\lambda_{2}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v \\
= & \frac{1}{1+\gamma}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}}\right] \frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} \\
& -\frac{1}{\lambda(1+\gamma)} \sum_{k=0}^{\infty} \int_{0}^{\frac{1+\gamma}{1-\gamma}}(-1)^{k} v^{k}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}} v^{\frac{\lambda_{2}}{\lambda}-1}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}-1} v^{\frac{\lambda_{1}}{\lambda}-1}\right] d v \\
= & \frac{1}{1+\gamma}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{1}}{\lambda}}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{\lambda_{2}}{\lambda}}\right] \frac{\pi}{\lambda \sin \left(\frac{\pi \lambda_{1}}{\lambda}\right)} \\
& -\frac{1}{1+\gamma} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{1+\gamma}{1-\gamma}\right)^{k+1}\left(\frac{1}{\lambda k+\lambda_{2}}+\frac{1}{\lambda k+\lambda_{1}}\right) ; \tag{14}
\end{align*}
$$

(iii) for $\lambda_{1}=\lambda_{2}=\frac{\lambda}{2},-1<\gamma<0$, we find

$$
\begin{align*}
K_{\gamma}\left(\frac{\lambda}{2}\right) & =2 \int_{0}^{1} \frac{t^{(\lambda / 2)-1}}{1+\gamma+(1-\gamma) t^{\lambda}} d t \stackrel{u=\left(\frac{1-\gamma}{1+\underline{y}} \lambda^{\frac{1}{2}}\right.}{\frac{1}{\lambda(1+\gamma)}}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{1}{2}} \int_{0}^{\left(\frac{1-\gamma}{1+\gamma}\right)^{\frac{1}{2}}} \frac{d u}{1+u^{2}} \\
& =\frac{4}{\lambda(1+\gamma)}\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{1}{2}} \arctan \left(\frac{1-\gamma}{1+\gamma}\right)^{\frac{1}{2}} . \tag{15}
\end{align*}
$$

For fixed $m \in \mathbb{N} \backslash\{1\}$, we define the function $f(y)$ as follows:

$$
f(y):=k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right), \quad y \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)(n \in \mathbb{N} \backslash\{1\})
$$

Then $f(y)$ is continuous in $\left(n-\frac{1}{2}, n+\frac{1}{2}\right)(n \in \mathbb{N} \backslash\{1\})$. There exists a unified number $y_{0}>\frac{3}{2}$ satisfying $V\left(y_{0}\right)=\frac{\alpha}{\beta} U_{m}$.
(i) If $y_{0} \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, we find

$$
f(y)= \begin{cases}\frac{1}{(1+\gamma) \ln ^{\lambda} \alpha U_{m+1}+(1-\gamma) \ln ^{\lambda} \beta V(\gamma)}, & n-\frac{1}{2}<y<y_{0}, \\ (1-\gamma) \ln ^{\lambda} \alpha U_{m}+(1+\gamma) \ln ^{\lambda} \beta V(y) & , \\ y_{0}<y<n+\frac{1}{2} .\end{cases}
$$

For $y_{0} \neq n$, we obtain for $y \neq n$ that

$$
f^{\prime}(y)= \begin{cases}\frac{-\lambda(1-\gamma) V^{\prime}(y) \ln ^{\lambda-1} \beta V(y)}{V(y)\left[(1+\gamma) \ln ^{\lambda} \alpha U_{m}+(1-\gamma) \ln ^{\lambda} \beta V(y)\right]^{2}}, & n-\frac{1}{2}<y<y_{0}, \\ \frac{-\lambda(1+\gamma)}{\left.V(y)\left[(1-\gamma) \ln ^{\lambda} \alpha U_{m}+(y) \ln ^{\lambda 1} \beta\right) \beta V(1+\gamma) \ln ^{\lambda} \beta V(y)\right]^{2}}, & y_{0}<y<n+\frac{1}{2} ;\end{cases}
$$

for $y_{0} \neq n$, we obtain for $y=n$ that

$$
\begin{aligned}
& f^{\prime}(n-0)= \begin{cases}\frac{-\lambda(1-\gamma) v_{n} \ln ^{\lambda-1} \beta V_{n}}{V_{n}\left[(1+\gamma) \ln ^{\lambda} \alpha U_{m}+(1-\gamma) \ln ^{\lambda} \beta V_{n}\right]^{2}}, & n-\frac{1}{2}<y<y_{0}, \\
\frac{-\lambda(1+\gamma) v_{n} \ln ^{\lambda 1}-1}{} V_{n} \\
V_{n}\left[(1-\gamma) \ln ^{\lambda} \alpha U_{m}+(1+\gamma) \ln ^{\lambda} \beta V_{n}\right]^{2}, & y_{0}<y<n+\frac{1}{2},\end{cases} \\
& f^{\prime}(n+0)= \begin{cases}\frac{-\lambda(1-\gamma) v_{n+1} \ln ^{\lambda-1} \beta V_{n}}{\frac{-\lambda}{\left.V_{n}\left[(1+\gamma) \ln ^{\lambda} \alpha U_{m}+1-\gamma\right) \ln ^{\lambda} \beta V_{n}\right]^{2}},}, & n-\frac{1}{2}<y<y_{0}, \\
\frac{\lambda(1+\gamma) v_{n+1} \ln ^{\lambda-1} \beta V_{n}}{V_{n}\left[(1-\gamma) \ln ^{\lambda} \alpha U_{m}+(1+\gamma) \ln ^{\lambda} \beta V_{n}\right]^{2}}, & y_{0}<y<n+\frac{1}{2} .\end{cases}
\end{aligned}
$$

Since $0<\lambda \leq 1,-1<\gamma \leq 0,(1-\gamma) v_{n} \geq(1+\gamma) v_{n+1}$, in view of the above results, we find $f^{\prime}(n-0) \leq f^{\prime}(n+0)\left(n \neq y_{0}\right)$, and $f^{\prime}(y)(<0)$ is strictly increasing in $\left(n-\frac{1}{2}, y_{0}\right),\left(y_{0}, n\right)$ and $\left(n, n+\frac{1}{2}\right)$ for $y_{0}<n$ or in $\left(n-\frac{1}{2}, n\right),\left(n, y_{0}\right)$ and $\left(y_{0}, n+\frac{1}{2}\right)$ for $y_{0}>n$.

We obtain

$$
\begin{aligned}
f^{\prime}\left(y_{0}-0\right) & =\frac{-\lambda(1-\gamma) V^{\prime}\left(y_{0}-0\right) \ln ^{\lambda-1} \beta V\left(y_{0}\right)}{V\left(y_{0}\right)\left[(1+\gamma) \ln ^{\lambda} \alpha U_{m}+(1-\gamma) \ln ^{\lambda} \beta V\left(y_{0}\right)\right]^{2}} \\
& =\frac{-\lambda(1-\gamma) V^{\prime}\left(y_{0}-0\right) \ln ^{\lambda-1} \beta V\left(y_{0}\right)}{V\left(y_{0}\right)\left(2 \ln ^{\lambda} \alpha U_{m}\right)^{2}}, \\
f^{\prime}\left(y_{0}+0\right) & =\frac{-\lambda(1+\gamma) V^{\prime}\left(y_{0}+0\right) \ln ^{\lambda-1} \beta V\left(y_{0}\right)}{V\left(y_{0}\right)\left[(1-\gamma) \ln ^{\lambda} \alpha U_{m}+(1+\gamma) \ln ^{\lambda} \beta V\left(y_{0}\right)\right]^{2}} \\
& =\frac{-\lambda(1+\gamma) V^{\prime}\left(y_{0}+0\right) \ln ^{\lambda-1} \beta V\left(y_{0}\right)}{V\left(y_{0}\right)\left(2 \ln ^{\lambda} \alpha U_{m}\right)^{2}} .
\end{aligned}
$$

Since for $y_{0}=n, V^{\prime}\left(y_{0}-0\right)=v_{n}, V^{\prime}\left(y_{0}+0\right)=v_{n+1}$ and for $y_{0} \neq n, V^{\prime}\left(y_{0}-0\right)=V^{\prime}\left(y_{0}\right)$, then we have $\lambda(1-\gamma) V^{\prime}\left(y_{0}-0\right) \geq \lambda(1+\gamma) V^{\prime}\left(y_{0}+0\right)$, namely, $f^{\prime}\left(y_{0}-0\right) \leq f^{\prime}\left(y_{0}+0\right)$.
(ii) If $y_{0} \notin\left(n-\frac{1}{2}, n+\frac{1}{2}\right)$, then it follows that $f^{\prime}(y)=\frac{V^{\prime}(y)}{V(y)} \frac{d}{d y} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right)<0, y \in$ ($\left.n-\frac{1}{2}, n+\frac{1}{2}\right) \backslash\{n\}$. We still can find that

$$
\begin{aligned}
\left.\frac{v_{n}}{V_{n}} \frac{d}{d y} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right)\right|_{y=n} & =f^{\prime}(n-0) \\
& \leq f^{\prime}(n+0)=\left.\frac{v_{n+1}}{V_{n}} \frac{d}{d y} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right)\right|_{y=n}
\end{aligned}
$$

and $f^{\prime}(y)(<0)$ is strictly increasing in $\left(n-\frac{1}{2}, n\right)$ and $\left(n, n+\frac{1}{2}\right)$.
Therefore, $f(y)$ satisfies the conditions of Lemma 1 with Note. So does $g(y)=$ $\frac{f(y)}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)}$. Hence, by (9), we have

$$
\begin{equation*}
\frac{k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right)}{V_{n} \ln ^{1-\lambda_{2}} \beta V_{n}}<\int_{n-\frac{1}{2}}^{n+\frac{1}{2}} \frac{k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right)}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \quad(n \in \mathbb{N} \backslash\{1\}) . \tag{16}
\end{equation*}
$$

Definition 1 Define the following weight coefficients:

$$
\begin{array}{ll}
\omega\left(\lambda_{2}, m\right):=\sum_{n=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{v_{n+1} \ln ^{\lambda_{1}} \alpha U_{m}}{V_{n} \ln ^{1-\lambda_{2}} \beta V_{n}}, \quad m \in \mathbb{N} \backslash\{1\}, \\
\varpi\left(\lambda_{1}, n\right):=\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{\mu_{m+1} \ln ^{\lambda_{2}} \beta V_{n}}{U_{m} \ln ^{1-\lambda_{1}} \alpha U_{m}}, \quad n \in \mathbb{N} \backslash\{1\} . \tag{17}
\end{array}
$$

Lemma 2 If $\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are decreasing and $U_{\infty}=V_{\infty}=\infty$, then for $m, n \in \mathbb{N} \backslash\{1\}$, we have the following inequalities:

$$
\begin{align*}
& \omega\left(\lambda_{2}, m\right)<K_{\gamma}\left(\lambda_{1}\right), \tag{18}\\
& \varpi\left(\lambda_{1}, n\right)<K_{\gamma}\left(\lambda_{1}\right), \tag{19}
\end{align*}
$$

where $K_{\gamma}\left(\lambda_{1}\right)$ is determined by (12).
Proof For $y \in\left(n-\frac{1}{2}, n+\frac{1}{2}\right) \backslash\{n\}, v_{n+1} \leq V^{\prime}(y)$, by (16), we find

$$
\begin{aligned}
\omega\left(\lambda_{2}, m\right) & <\sum_{n=2}^{\infty} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{v_{n+1} \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
& \leq \sum_{n=2}^{\infty} \int_{n-\frac{1}{2}}^{n+\frac{1}{2}} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
& =\int_{\frac{3}{2}}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y .
\end{aligned}
$$

Setting $t=\frac{\ln \beta V(y)}{\ln \alpha U_{m}}$ in the above, since $\beta V\left(\frac{3}{2}\right)=\beta\left(1+\frac{v_{2}}{2}\right) \geq 1$ and $\frac{V^{\prime}(y)}{V(y)} d y=\left(\ln \alpha U_{m}\right) d t$, we find

$$
\omega\left(\lambda_{2}, m\right)<\int_{0}^{\infty} k_{\lambda}(1, t) t^{\lambda_{2}-1} d t=K_{\gamma}\left(\lambda_{1}\right) .
$$

Hence, we obtain (18). In the same way, we obtain (19).

Note For example, $\mu_{n}=v_{n}=\frac{1}{n^{\sigma}}(0 \leq \sigma \leq 1)$ satisfies the conditions of Lemma 2 .
Lemma 3 With regard to the assumptions of Lemma 2, (i) for $m, n \in \mathbb{N} \backslash\{1\}$, we have

$$
\begin{align*}
& K_{\gamma}\left(\lambda_{1}\right)\left(1-\theta\left(\lambda_{2}, m\right)\right)<\omega\left(\lambda_{2}, m\right), \tag{20}\\
& K_{\gamma}\left(\lambda_{1}\right)\left(1-\vartheta\left(\lambda_{1}, n\right)\right)<\varpi\left(\lambda_{1}, n\right), \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
\theta\left(\lambda_{2}, m\right) & =\frac{k_{\lambda}\left(1, \frac{\ln \beta\left(1+v_{2} \theta(m)\right)}{\ln \alpha U_{m}}\right)}{\lambda_{2} K_{\gamma}\left(\lambda_{1}\right)} \frac{\ln ^{\lambda_{2}} \beta\left(1+v_{2}\right)}{\ln ^{\lambda_{2}} \alpha U_{m}} \\
& =O\left(\frac{1}{\ln ^{\lambda_{2}} \alpha U_{m}}\right) \in(0,1) \quad\left(\theta(m) \in\left(\frac{1-\beta}{\beta v_{2}}, 1\right)\right) \tag{22}
\end{align*}
$$

$$
\begin{align*}
\vartheta\left(\lambda_{1}, n\right) & =\frac{k_{\lambda}\left(\frac{\ln \alpha\left(1+\mu_{2} \vartheta(n)\right)}{\ln \beta V_{n}}\right)}{\lambda_{1} K_{\gamma}\left(\lambda_{1}\right)} \frac{\ln ^{\lambda_{1}} \alpha\left(1+\mu_{2}\right)}{\ln ^{\lambda_{1}} \beta V_{n}} \\
& =O\left(\frac{1}{\ln ^{\lambda_{1}} \beta V_{n}}\right) \in(0,1) \quad\left(\vartheta(n) \in\left(\frac{1-\alpha}{\alpha \mu_{2}}, 1\right)\right) ; \tag{23}
\end{align*}
$$

(ii) for any $c>0$, we have

$$
\begin{align*}
& \sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+c} \alpha U_{m}}=\frac{1}{c}\left[\frac{1}{\ln ^{c} \alpha\left(1+\mu_{2}\right)}+c O(1)\right] \tag{24}\\
& \sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{1+c} \beta V_{n}}=\frac{1}{c}\left[\frac{1}{\ln ^{c} \beta\left(1+v_{2}\right)}+c \tilde{O}(1)\right] \tag{25}
\end{align*}
$$

Proof In view of $\beta \leq 1$ and $\beta \geq \frac{1}{1+v_{2} / 2}>\frac{1}{1+v_{2}}$, it follows that $1 \leq \frac{1-\beta}{\beta v_{2}}+1<2$. Since, by Examples $1, g(y)$ is strictly decreasing in $[n, n+1)$, then for $m \in \mathbb{N} \backslash\{1\}$, we find

$$
\begin{aligned}
\omega\left(\lambda_{2}, m\right)> & \sum_{n=2}^{\infty} \int_{n}^{n+1} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{v_{n+1} \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
= & \int_{2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
= & \int_{\frac{1-\beta}{\beta v_{2}}+1}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
& -\int_{\frac{1-\beta}{\beta v_{2}}+1}^{2} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y .
\end{aligned}
$$

Setting $t=\frac{\ln \beta V(y)}{\ln \alpha U_{m}}$, we have $\ln \beta V\left(\frac{1-\beta}{\beta v_{2}}+1\right)=\ln \beta\left(1+\frac{1-\beta}{\beta v_{2}} v_{2}\right)=0$ and

$$
\begin{aligned}
\omega\left(\lambda_{2}, m\right) & >\int_{0}^{\infty} k_{\lambda}(1, t) t^{\lambda_{2}-1} d t-\int_{\frac{1-\beta}{\beta v_{2}}+1}^{2} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y) \ln ^{\lambda_{1}} \alpha U_{m}}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
& =K_{\gamma}\left(\lambda_{1}\right)\left(1-\theta\left(\lambda_{2}, m\right)\right)
\end{aligned}
$$

where

$$
\theta\left(\lambda_{2}, m\right):=\frac{\ln ^{\lambda_{1}} \alpha U_{m}}{K_{\gamma}\left(\lambda_{1}\right)} \int_{\frac{1-\beta}{\beta v_{2}}+1}^{2} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(y)\right) \frac{V^{\prime}(y)}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \in(0,1)
$$

In view of the integral mid-value theorem, for fixed $m \in \mathbb{N} \backslash\{1\}$, there exists $\theta(m) \in$ $\left(\frac{1-\beta}{\beta v_{2}}, 1\right)$ such that

$$
\begin{aligned}
\theta\left(\lambda_{2}, m\right) & =\frac{\ln ^{\lambda_{1}} \alpha U_{m}}{K_{\gamma}\left(\lambda_{1}\right)} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(1+\theta(m))\right) \int_{\frac{1-\beta}{\beta v_{2}}+1}^{2} \frac{V^{\prime}(y)}{V(y) \ln ^{1-\lambda_{2}} \beta V(y)} d y \\
& =\frac{\ln ^{\lambda_{1}} \alpha U_{m}}{\lambda_{2} K_{\gamma}\left(\lambda_{1}\right)} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V(1+\theta(m))\right) \ln ^{\lambda_{2}} \beta\left(1+v_{2}\right) \\
& =\frac{1}{\lambda_{2} K_{\gamma}\left(\lambda_{1}\right)} k_{\lambda}\left(1, \frac{\ln \beta V(1+\theta(m))}{\ln \alpha U_{m}}\right) \frac{\ln ^{\lambda_{2}} \beta\left(1+v_{2}\right)}{\ln ^{\lambda_{2}} \alpha U_{m}}
\end{aligned}
$$

Hence, we find

$$
0<\theta\left(\lambda_{2}, m\right) \leq \frac{1}{\lambda_{2} K_{\gamma}\left(\lambda_{1}\right)} \frac{\ln ^{\lambda_{2}} \beta\left(1+v_{2}\right)}{(1+\gamma) \ln ^{\lambda_{2}} \alpha U_{m}}
$$

namely, $\theta\left(\lambda_{2}, m\right)=O\left(\frac{1}{\ln ^{\lambda} \alpha U_{m}}\right)$. Then we obtain (20) and (22). In the same way, we obtain (21) and (23).

For $c>0$, we find

$$
\begin{aligned}
\sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+c} \alpha U_{m}} & \leq \sum_{m=2}^{\infty} \frac{\mu_{m}}{U_{m} \ln ^{1+c} \alpha U_{m}}=\frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}+\sum_{m=3}^{\infty} \frac{\mu_{m}}{U_{m} \ln ^{1+c} \alpha U_{m}} \\
& =\frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}+\sum_{m=3}^{\infty} \int_{m-1}^{m} \frac{U^{\prime}(x) d x}{U_{m} \ln ^{1+c} \alpha U_{m}} \\
& <\frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}+\sum_{m=3}^{\infty} \int_{m-1}^{m} \frac{U^{\prime}(x) d x}{U(x) \ln ^{1+c} \alpha U(x)} \\
& =\frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}+\int_{2}^{\infty} \frac{U^{\prime}(x) d x}{U(x) \ln ^{1+c} \alpha U(x)} \\
& =\frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}+\frac{1}{c \ln ^{c} \alpha\left(1+\mu_{2}\right)} \\
& =\frac{1}{c}\left[\frac{1}{\ln ^{c} \alpha\left(1+\mu_{2}\right)}+c \frac{\mu_{2}}{U_{2} \ln ^{1+c} \alpha U_{2}}\right] \\
& =\int_{2}^{\infty} \frac{U^{\prime}(x) d x}{U(x) \ln ^{1+c} \alpha U(x)}=\frac{U^{\prime}(x) d x}{c \ln ^{c} \alpha\left(1+\mu_{2}\right)} .
\end{aligned}
$$

Hence, we obtain (20). In the same way, we obtain (21).

Lemma 4 If $-1<\gamma \leq 0,0<\lambda_{1}, \lambda_{2}<1, \lambda_{1}+\lambda_{2} \leq 1, K_{\gamma}\left(\lambda_{1}\right)$ is determined by (12), then for $0<\delta<\min \left\{\lambda_{1}, \lambda_{2}\right\}$, we have

$$
\begin{equation*}
K_{\gamma}\left(\lambda_{1} \pm \delta\right)=K_{\gamma}\left(\lambda_{1}\right)+o(1) \quad\left(\delta \rightarrow 0^{+}\right) . \tag{26}
\end{equation*}
$$

Proof We find, for $0<\delta<\min \left\{\lambda_{1}, \lambda_{2}\right\}$,

$$
\begin{aligned}
\left|K_{\gamma}\left(\lambda_{1}+\delta\right)-K_{\gamma}\left(\lambda_{1}\right)\right| & \leq \int_{0}^{\infty} \frac{t^{\lambda_{1}-1}\left|t^{\delta}-1\right|}{t^{\lambda}+1+\gamma\left|t^{\lambda}-1\right|} d t \\
& =\int_{0}^{1} \frac{t^{\lambda_{1}-1}\left(1-t^{\delta}\right)}{1+\gamma+(1-\gamma) t^{\lambda}} d t+\int_{1}^{\infty} \frac{t^{\lambda_{1}-1}\left(t^{\delta}-1\right)}{1-\gamma+(1+\gamma) t^{\lambda}} d t \\
& \leq \frac{1}{1+\gamma}\left[\int_{0}^{1} t^{\lambda_{1}-1}\left(1-t^{\delta}\right) d t+\int_{1}^{\infty} \frac{t^{\lambda_{1}-1}\left(t^{\delta}-1\right)}{t^{\lambda}} d t\right] \\
& =\frac{1}{1+\gamma}\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{1}+\delta}+\frac{1}{\lambda_{2}-\delta}-\frac{1}{\lambda_{2}}\right) \rightarrow 0 \quad\left(\delta \rightarrow 0^{+}\right)
\end{aligned}
$$

In the same way, we find

$$
\begin{aligned}
\left|K_{\gamma}\left(\lambda_{1}-\delta\right)-K_{\gamma}\left(\lambda_{1}\right)\right| & \leq \frac{1}{1+\gamma}\left[\int_{0}^{1} t^{\lambda_{1}-1}\left(t^{-\delta}-1\right) d t+\int_{1}^{\infty} \frac{t^{\lambda_{1}-1}\left(1-t^{-\delta}\right)}{t^{\lambda}} d t\right] \\
& =\frac{1}{1+\gamma}\left(\frac{1}{\lambda_{1}-\delta}-\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}-\frac{1}{\lambda_{2}+\delta}\right) \rightarrow 0 \quad\left(\delta \rightarrow 0^{+}\right)
\end{aligned}
$$

and then we have (26).

3 Main results

In the following, we also set

$$
\begin{align*}
& \tilde{\Phi}_{\lambda}(m):=\omega\left(\lambda_{2}, m\right)\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln \alpha U_{m}\right)^{p\left(1-\lambda_{1}\right)-1} \quad(m \in \mathbb{N} \backslash\{1\}), \tag{27}\\
& \tilde{\Psi}_{\lambda}(n):=\varpi\left(\lambda_{1}, n\right)\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1}\left(\ln \beta V_{n}\right)^{q\left(1-\lambda_{2}\right)-1} \quad(n \in \mathbb{N} \backslash\{1\}) .
\end{align*}
$$

Theorem 1

(i) For $p>1$, we have the following equivalent inequalities:

$$
\begin{align*}
& I:=\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m} b_{n} \leq\|a\|_{p, \tilde{\Phi}_{\lambda}}\|b\|_{q, \tilde{\Psi}_{\lambda}} \tag{28}\\
& I:=\left\{\sum_{n=2}^{\infty} \frac{v_{n+1} \ln ^{p \lambda_{2}-1} \beta V_{n}}{\left(\varpi\left(\lambda_{1}, n\right)\right)^{p-1} V_{n}}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}} \leq\|a\|_{p, \tilde{\Phi}_{\lambda}} \tag{29}
\end{align*}
$$

(ii) for $0<p<1$ (or $p<0$), we have the equivalent reverse of (28) and (29).

Proof (i) By Hölder's inequality with weight (cf. [20]) and (17), we have

$$
\begin{align*}
& \left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p} \\
& =\left[\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right)\left(\frac{U_{m}^{1 / q}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right) / q} v_{n+1}^{1 / p}}{\left(\ln \beta V_{n}\right)^{\left(1-\lambda_{2}\right) / p} \mu_{m+1}^{1 / q}} a_{m}\right)\right. \\
& \left.\quad \times\left(\frac{\left(\ln \beta V_{n}\right)^{\left(1-\lambda_{2}\right) / p} \mu_{m+1}^{1 / q}}{U_{m}^{1 / q}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right) / q} v_{n+1}^{1 / p}}\right)\right]^{p} \\
& \leq \\
& \quad \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{U_{m}^{p-1}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right) p / q} v_{n+1}}{\left(\ln \beta V_{n}\right)^{1-\lambda_{2}} \mu_{m+1}^{p / q}} a_{m}^{p} \\
& \quad \times\left[\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{\left(\ln \beta V_{n}\right)^{\left(1-\lambda_{2}\right)(q-1)} \mu_{m+1}}{U_{m}\left(\ln \alpha U_{m}\right)^{1-\lambda_{1}} v_{n+1}^{q-1}}\right]^{p-1} \tag{30}\\
& =\frac{\left(\varpi\left(\lambda_{1}, n\right)\right)^{p-1} V_{n}}{\left(\ln \beta V_{n}\right)^{p \lambda_{2}-1} v_{n+1}} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{v_{n+1} U_{m}^{p-1}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right)(p-1)}}{\left(\ln \beta V_{n}\right)^{1-\lambda_{2}} \mu_{m+1}^{p-1}} a_{m}^{p} .
\end{align*}
$$

Then, by (16), we find

$$
\begin{align*}
J & \leq\left[\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{v_{n+1} U_{m}^{p-1}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right)(p-1)}}{\left(\ln \beta V_{n}\right)^{1-\lambda_{2}} \mu_{m+1}^{p-1}} a_{m}^{p}\right]^{\frac{1}{p}} \\
& =\left[\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{v_{n+1} U_{m}^{p-1}\left(\ln \alpha U_{m}\right)^{\left(1-\lambda_{1}\right)(p-1)}}{\left(\ln \beta V_{n}\right)^{1-\lambda_{2}} \mu_{m+1}^{p-1}} a_{m}^{p}\right]^{\frac{1}{p}} \\
& =\left[\sum_{m=2}^{\infty} \omega\left(\lambda_{2}, m\right)\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln \alpha U_{m}\right)^{p\left(1-\lambda_{1}\right)-1} a_{m}^{p}\right]^{\frac{1}{p}}, \tag{31}
\end{align*}
$$

and then (29) follows.
By Hölder's inequality (cf. [20]), we have

$$
\begin{align*}
I & =\sum_{n=2}^{\infty}\left[\frac{\left(\ln \beta V_{n}\right)^{\lambda_{2}-\frac{1}{p}} v_{n+1}^{1 / p}}{\left(\varpi\left(\lambda_{1}, n\right)\right)^{1 / q} V_{n}^{1 / p}} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right]\left[\frac{\left(\varpi\left(\lambda_{1}, n\right)\right)^{1 / q} V_{n}^{1 / p}}{\left(\ln \beta V_{n}\right)^{\lambda_{2}-\frac{1}{p}} v_{n+1}^{1 / p}} b_{n}\right] \\
& \leq J\|b\|_{q, \tilde{\Psi}_{\lambda}} . \tag{32}
\end{align*}
$$

Then, by (29), we have (28).
On the other hand, assuming that (28) is valid, we set

$$
\begin{equation*}
b_{n}:=\frac{v_{n+1} \ln ^{p \lambda_{2}-1} \beta V_{n}}{\left(\varpi\left(\lambda_{1}, n\right)\right)^{p-1} V_{n}}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p-1}, \quad n \in \mathbb{N} \backslash\{1\} . \tag{33}
\end{equation*}
$$

Then we find $J^{p}=\|b\|_{q, \tilde{\Psi}_{\lambda}}^{q}$. If $J=0$, then (29) is trivially valid; if $J=\infty$, then by (31), (29) takes the form of equality. Suppose that $0<J<\infty$. By (28), it follows that

$$
\begin{align*}
& \|b\|_{q, \tilde{\Psi}_{\lambda}}^{q}=J^{p}=I \leq\|a\|_{p, \tilde{\Phi}_{\lambda}}\|b\|_{q, \tilde{\Psi}_{\lambda}}, \tag{34}\\
& \|b\|_{q, \tilde{\Psi}_{\lambda}}^{q-1}=J \leq\|a\|_{p, \tilde{\Phi}_{\lambda}}, \tag{35}
\end{align*}
$$

and then (29) follows, which is equivalent to (28).
(ii) For $0<p<1$ (or $p<0$), by the reverse Hölder's inequality with weight (cf. [20]) and (13), we obtain the reverse of (30) (or (30)), then we have the reverse of (31), and then the reverse of (29) follows. By Hölder's inequality (cf. [20]), we have the reverse of (32), and then by the reverse of (29), the reverse of (28) follows.

On the other hand, assuming that the reverse of (28) is valid, we set b_{n} as (33). Then we find $J^{p}=\|b\|_{q, \tilde{\Psi}_{\lambda}}^{q}$. If $J=\infty$, then the reverse of (29) is trivially valid; if $J=0$, then by the reverse of (31), (29) takes the form of equality (=0). Suppose that $0<J<\infty$. By the reverse of (28), it follows that the reverses of (34) and (35) are valid, and then the reverse of (29) follows, which is equivalent to the reverse of (28).

Theorem 2 If $p>1,\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are decreasing, $U_{\infty}=V_{\infty}=\infty,\|a\|_{p, \Phi_{\lambda}} \in \mathbb{R}_{+}$and $\|b\|_{q, \Psi_{\lambda}}^{q} \in \mathbb{R}_{+}$, then we have the following equivalent inequalities:

$$
\begin{equation*}
\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m} b_{n}<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}}\|b\|_{q, \Psi_{\lambda}}, \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
J_{1}:=\left\{\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}} \ln ^{p \lambda_{2}-1} \beta V_{n}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}}<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}} \tag{37}
\end{equation*}
$$

where the constant factor $K_{\gamma}\left(\lambda_{1}\right)$ is the best possible.

Proof Using (18) and (19) in (28) and (29), we obtain the equivalent inequalities (36) and (37).

For $\varepsilon \in\left(0, \min \left\{p \lambda_{1}, p\left(1-\lambda_{2}\right)\right\}\right)$, we set $\tilde{\lambda}_{1}=\lambda_{1}-\frac{\varepsilon}{p}(\in(0,1)), \tilde{\lambda}_{2}=\lambda_{2}+\frac{\varepsilon}{p}(\in(0,1))$, and

$$
\begin{align*}
& \tilde{a}_{m}:=\frac{\mu_{m+1}}{U_{m}} \ln ^{\tilde{\lambda}_{1}-1} \alpha U_{m}=\frac{\mu_{m+1}}{U_{m}} \ln ^{\lambda_{1}-\frac{\varepsilon}{p}-1} \alpha U_{m}, \\
& \tilde{b}_{n}:=\frac{v_{n+1}}{V_{n}} \ln ^{\tilde{\lambda}_{2}-\varepsilon-1} \beta V_{n}=\frac{v_{n+1}}{V_{n}} \ln ^{\lambda_{2}-\frac{\varepsilon}{q}-1} \beta V_{n} . \tag{38}
\end{align*}
$$

Then, by (24), (25) and (21), we have

$$
\begin{aligned}
& \|\tilde{a}\|_{p, \Phi_{\lambda}}\|\tilde{b}\|_{q, \Psi_{\lambda}}=\left(\sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}\right)^{\frac{1}{q}} \\
& \quad=\frac{1}{\varepsilon}\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon O(1)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right]^{\frac{1}{q}}, \\
& \tilde{I}:=\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \tilde{a}_{m} \tilde{b}_{n} \\
& =\sum_{n=2}^{\infty}\left[\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{\mu_{m+1} \ln ^{\tilde{\lambda}_{2}} \beta V_{n}}{U_{m} \ln ^{1-\tilde{\lambda}_{1}} \alpha U_{m}}\right] \frac{v_{n+1}}{V_{n}} \ln ^{-\varepsilon-1} \beta V_{n} \\
& =\sum_{n=2}^{\infty} \frac{v_{n+1} \varpi\left(\lambda_{1}, n\right)}{V_{n} \ln ^{\varepsilon+1} \beta V_{n}} \geq K_{\gamma}\left(\tilde{\lambda}_{1}\right) \sum_{n=2}^{\infty}\left(1-O\left(\frac{1}{\ln ^{\tilde{\lambda}_{1}} \beta V_{n}}\right)\right) \frac{v_{n+1}}{V_{n} \ln ^{\varepsilon+1} \beta V_{n}} \\
& \quad=K_{\gamma}\left(\tilde{\lambda}_{1}\right)\left[\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{\varepsilon+1} \beta V_{n}}-\sum_{n=2}^{\infty} O\left(\frac{1}{\ln ^{\lambda_{1}+\frac{\varepsilon}{q}+1} \beta V_{n}}\right) \frac{v_{n+1}}{V_{n}}\right] \\
& \quad=\frac{1}{\varepsilon} K_{\gamma}\left(\tilde{\lambda}_{1}\right)\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon(\tilde{O}(1)-O(1))\right] .
\end{aligned}
$$

If there exists a positive constant $K \leq K_{\gamma}\left(\lambda_{1}\right)$ such that (36) is valid when replacing $K_{\gamma}\left(\lambda_{1}\right)$ by K, then, in particular, we have $\varepsilon \tilde{I}<\varepsilon K\|\tilde{a}\|_{p, \Phi_{\lambda}}\|\tilde{b}\|_{q, \Psi_{\lambda}}$, namely,

$$
\begin{aligned}
& K_{\gamma}\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon(\tilde{O}(1)-O(1))\right] \\
& \quad<K\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon O(1)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right]^{\frac{1}{q}} .
\end{aligned}
$$

In view of (26), it follows that $K_{\gamma}\left(\lambda_{1}\right) \leq K\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, $K=K_{\gamma}\left(\lambda_{1}\right)$ is the best possible constant factor of (36).
Similarly to (32), we still can find the following inequality:

$$
\begin{equation*}
I \leq J_{1}\|b\|_{q, \Psi_{\lambda}} . \tag{39}
\end{equation*}
$$

Hence, we can prove that the constant factor $K_{\gamma}\left(\lambda_{1}\right)$ in (37) is the best possible. Otherwise, we would reach the contradiction by (39) that the constant factor in (36) is not the best possible.

Remark 1 (i) For $\alpha=\beta=1$ in (36) and (37), setting

$$
\begin{aligned}
& \phi_{\lambda}(m):=\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln U_{m}\right)^{p\left(1-\lambda_{1}\right)-1}, \\
& \psi_{\lambda}(n):=\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1}\left(\ln V_{n}\right)^{q\left(1-\lambda_{2}\right)-1} \quad(m, n \in \mathbb{N} \backslash\{1\}),
\end{aligned}
$$

we have the following equivalent Mulholland-type inequalities:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{a_{m} b_{n}}{\ln ^{\lambda} U_{m}+\ln ^{\lambda} V_{n}+\gamma\left|\ln ^{\lambda} U_{m}-\ln ^{\lambda} V_{n}\right|}<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \phi_{\lambda}}\|b\|_{q, \psi \lambda} \tag{40}\\
& {\left[\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}}\left(\ln V_{n}\right)^{p \lambda_{2}-1}\left(\sum_{m=2}^{\infty} \frac{a_{m}}{\ln ^{\lambda} U_{m}+\ln ^{\lambda} V_{n}+\gamma\left|\ln ^{\lambda} U_{m}-\ln ^{\lambda} V_{n}\right|}\right)^{p}\right]^{\frac{1}{p}}} \\
& \quad<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \phi_{\lambda}} . \tag{41}
\end{align*}
$$

(40) is an extension of (7) and the following inequality (for $\lambda=1, \lambda_{1}=\frac{1}{q}, \lambda_{2}=\frac{1}{p}, \gamma=0$):

$$
\begin{equation*}
\left[\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}}\left(\ln V_{n}\right)^{p \lambda_{2}-1}\left(\sum_{m=2}^{\infty} \frac{a_{m}}{\ln U_{m} V_{n}}\right)^{p}\right]^{\frac{1}{p}}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left[\sum_{m=2}^{\infty}\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1} a_{m}^{p}\right]^{\frac{1}{p}} \tag{42}
\end{equation*}
$$

(ii) For $\lambda=1, \lambda_{1}=\frac{1}{q}, \lambda_{2}=\frac{1}{p}$ in (36) and (37), we have the following equivalent inequalities:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{a_{m} b_{n}}{\ln \left(\alpha \beta U_{m} V_{n}\right)+\gamma\left|\ln \frac{\alpha U_{m}}{\beta V_{n}}\right|} \\
& \quad<K_{1, \gamma}\left(\frac{1}{q}\right)\left[\sum_{m=2}^{\infty}\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1} a_{m}^{p}\right]^{\frac{1}{p}}\left[\sum_{n=2}^{\infty}\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1} b_{n}^{q}\right]^{\frac{1}{q}} \tag{43}\\
& \left\{\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}}\left[\sum_{m=2}^{\infty} \frac{a_{m}}{\ln \left(\alpha \beta U_{m} V_{n}\right)+\gamma\left|\ln \frac{\alpha U_{m}}{\beta V_{n}}\right|}\right]^{p}\right\}^{\frac{1}{p}} \\
& \quad<K_{1, \gamma}\left(\frac{1}{q}\right)\left[\sum_{m=2}^{\infty}\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1} a_{m}^{p}\right]^{\frac{1}{p}} \tag{44}
\end{align*}
$$

where

$$
\begin{align*}
K_{1, \gamma}\left(\frac{1}{q}\right):= & \int_{0}^{1} \frac{t^{\frac{-1}{p}-1}+t^{\frac{-1}{q}-1}}{1+\gamma+(1-\gamma) t} d t=\frac{1}{1+\gamma}\left[\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{1}{q}}+\left(\frac{1+\gamma}{1-\gamma}\right)^{\frac{1}{p}}\right] \frac{\pi}{\sin \left(\frac{\pi}{p}\right)} \\
& -\frac{1}{1+\gamma} \sum_{k=0}^{\infty}(-1)^{k}\left(\frac{1+\gamma}{1-\gamma}\right)^{k+1}\left(\frac{1}{k+\frac{1}{p}}+\frac{1}{k+\frac{1}{q}}\right) \tag{45}
\end{align*}
$$

(iii) For $\gamma=0$, (43) reduces to the following more accurate Hardy-Mulholland-type inequality (7):

$$
\begin{equation*}
\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_{m} b_{n}}{\ln \left(\alpha \beta U_{m} V_{n}\right)}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left[\sum_{m=2}^{\infty}\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1} a_{m}^{p}\right]^{\frac{1}{p}}\left[\sum_{n=2}^{\infty}\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1} b_{n}^{q}\right]^{\frac{1}{q}} . \tag{46}
\end{equation*}
$$

In particular, for $\mu_{i}=v_{j}=1(i, j \in \mathbb{N})$, (46) reduces to the following more accurate Mulholland's inequality ($\frac{2}{3} \leq \alpha, \beta \leq 1$):

$$
\begin{equation*}
\sum_{m=2}^{\infty} \sum_{n=2}^{\infty} \frac{a_{m} b_{n}}{\ln (\alpha \beta m n)}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left(\sum_{m=2}^{\infty} m^{p-1} a_{m}^{p}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} n^{q-1} b_{n}^{q}\right)^{\frac{1}{q}} . \tag{47}
\end{equation*}
$$

For $p>1, \Psi_{\lambda}^{1-p}(n)=\frac{v_{n+1}}{V_{n}}\left(\ln \beta V_{n}\right)^{p \lambda_{2}-1}$, we define the following normed spaces:

$$
\begin{aligned}
& l_{p, \Phi_{\lambda}}:=\left\{a=\left\{a_{m}\right\}_{m=2}^{\infty} ;\|a\|_{p, \Phi_{\lambda}}<\infty\right\}, \\
& l_{q, \Psi_{\lambda}}:=\left\{b=\left\{b_{n}\right\}_{n=2}^{\infty} ;\|b\|_{q, \Psi_{\lambda}}<\infty\right\}, \\
& l_{p, \Psi_{\lambda}^{1-p}}:=\left\{c=\left\{c_{n}\right\}_{n=2}^{\infty} ;\|c\|_{p, \Psi_{\lambda}^{1-p}}<\infty\right\} .
\end{aligned}
$$

Assuming that $a=\left\{a_{m}\right\}_{m=2}^{\infty} \in l_{p, \Phi_{\lambda}}$, setting

$$
c=\left\{c_{n}\right\}_{n=2}^{\infty}, \quad c_{n}:=\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}, n \in \mathbb{N} \backslash\{1\},
$$

we can rewrite (37) as follows:

$$
\|c\|_{p, \Psi_{\lambda}^{1-p}}<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}}<\infty,
$$

namely, $c \in l_{p, \Psi_{\lambda}^{1-p}}$.
Definition 2 Define a Hardy-Mulholland-type operator $T: l_{p, \Phi_{\lambda}} \rightarrow l_{p, \Psi_{\lambda}^{1-p}}$ as follows: For any $a=\left\{a_{m}\right\}_{m=2}^{\infty} \in l_{p, \Phi_{\lambda}}$, there exists a unique representation $T a=c \in l_{p, \Psi_{\lambda}^{1-p}}$. Define the formal inner product of Ta and $b=\left\{b_{n}\right\}_{n=2}^{\infty} \in l_{q, \Psi_{\lambda}}$ as follows:

$$
\begin{equation*}
(T a, b):=\sum_{n=2}^{\infty}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right) b_{n} . \tag{48}
\end{equation*}
$$

Then we can rewrite (36) and (37) as follows:

$$
\begin{align*}
& (T a, b)<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}}\|b\|_{q, \Psi_{\lambda}}, \tag{49}\\
& \|T a\|_{p, \Psi_{\lambda}^{1-p}}<K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}} . \tag{50}
\end{align*}
$$

Define the norm of operator T as follows:

$$
\|T\|:=\sup _{a(\nexists \theta) \in l_{p, \Phi_{\lambda}}} \frac{\|T a\|_{p, \Psi_{\lambda}}^{1-p}}{\|a\|_{p, \Phi_{\lambda}}} .
$$

Then, by (50), we find $\|T\| \leq K_{\gamma}\left(\lambda_{1}\right)$. Since the constant factor in (50) is the best possible, we have

$$
\begin{equation*}
\|T\|=K_{\gamma}\left(\lambda_{1}\right)=\int_{0}^{1} \frac{t^{\lambda_{1}-1}+t^{\lambda_{2}-1}}{1+\gamma+(1-\gamma) t^{\lambda}} d t \tag{51}
\end{equation*}
$$

4 Some reverses

In the following, we also set

$$
\begin{align*}
& \tilde{\Omega}_{\lambda}(m):=\left(1-\theta\left(\lambda_{2}, m\right)\right)\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln \alpha U_{m}\right)^{p\left(1-\lambda_{1}\right)-1}, \\
& \tilde{\Upsilon}_{\lambda}(n):=\left(1-\vartheta\left(\lambda_{1}, n\right)\right)\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1}\left(\ln \beta V_{n}\right)^{q\left(1-\lambda_{2}\right)-1} \quad(m, n \in \mathbb{N} \backslash\{1\}) . \tag{52}
\end{align*}
$$

For $0<p<1$ or $p<0$, we still use the formal symbols $\|a\|_{p, \Phi_{\lambda}},\|b\|_{q, \Psi_{\lambda}},\|a\|_{p, \tilde{\Omega}_{\lambda}}$ and $\|b\|_{q, \tilde{r}_{\lambda}}$ et al.

Theorem 3 If $0<p<1,\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are decreasing, $U_{\infty}=V_{\infty}=\infty,\|a\|_{p, \Phi_{\lambda}} \in \mathbb{R}_{+}$ and $\|b\|_{q^{\prime} \Psi_{\lambda}}^{q} \in \mathbb{R}_{+}$, then we have the following equivalent inequalities with the best possible constant factor $K_{\gamma}\left(\lambda_{1}\right)$:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m} b_{n}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \tilde{\Omega}_{\lambda}}\|b\|_{q, \Psi_{\lambda}}, \tag{53}\\
& \left\{\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}} \ln ^{p \lambda_{2}-1} \beta V_{n}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \tilde{\Omega}_{\lambda}} . \tag{54}
\end{align*}
$$

Proof Using (20) and (19) in the reverses of (28) and (29), since

$$
\begin{aligned}
& \left(\omega\left(\lambda_{2}, m\right)\right)^{\frac{1}{p}}>\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{\frac{1}{p}}\left(1-\theta\left(\lambda_{2}, m\right)\right)^{\frac{1}{p}} \quad(0<p<1), \\
& \left(\varpi\left(\lambda_{1}, n\right)\right)^{\frac{1}{q}}>\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{\frac{1}{q}} \quad(q<0),
\end{aligned}
$$

and

$$
\frac{1}{\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{p-1}}>\frac{1}{\left(\varpi\left(\lambda_{1}, n\right)\right)^{p-1}} \quad(0<p<1),
$$

we obtain equivalent inequalities (53) and (54).
For $\varepsilon \in\left(0, \min \left\{p \lambda_{1}, p\left(1-\lambda_{2}\right)\right\}\right)$, we set $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \tilde{a}_{m}$ and \tilde{b}_{n} as (38). Then, by (24), (25) and (19), we find

$$
\begin{aligned}
& \|\tilde{a}\|_{p, \tilde{\Omega}_{\lambda}}\|\tilde{b}\|_{q, \Psi_{\lambda}} \\
& \quad=\left(\sum_{m=2}^{\infty} \frac{\left(1-\theta\left(\lambda_{2}, m\right)\right) \mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}\right)^{\frac{1}{q}} \\
& \quad=\left(\sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}-\sum_{m=2}^{\infty} O\left(\frac{\mu_{m+1}}{U_{m} \ln ^{1+\left(\lambda_{2}+\varepsilon\right)} \alpha U_{m}}\right)\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}\right)^{\frac{1}{q}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\varepsilon}\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon\left(O(1)-O_{1}(1)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right]^{\frac{1}{q}},\right. \\
\tilde{I} & :=\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \tilde{a}_{m} \tilde{b}_{n} \\
& =\sum_{n=2}^{\infty}\left[\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{\mu_{m+1} \ln ^{\tilde{\lambda}_{2}} \beta V_{n}}{U_{m} \ln ^{1-\tilde{\lambda}_{1}} \alpha U_{m}}\right] \frac{v_{n+1}}{V_{n}} \ln ^{-\varepsilon-1} \beta V_{n} \\
& =\sum_{n=2}^{\infty} \frac{v_{n+1} \varpi\left(\tilde{\lambda}_{1}, n\right)}{V_{n} \ln ^{\varepsilon+1} \beta V_{n}} \leq K_{\gamma}\left(\tilde{\lambda}_{1}\right) \sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{\varepsilon+1} \beta V_{n}} \\
& =\frac{1}{\varepsilon} K_{\gamma}\left(\tilde{\lambda}_{1}\right)\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right] .
\end{aligned}
$$

If there exists a positive constant $K \geq K_{\gamma}\left(\lambda_{1}\right)$ such that (53) is valid when replacing $K_{\gamma}\left(\lambda_{1}\right)$ by K, then, in particular, we have $\varepsilon \tilde{I}>\varepsilon K\|\tilde{a}\|_{p, \Phi_{\lambda}}\|\tilde{b}\|_{q, \Psi_{\lambda}}$, namely,

$$
\begin{aligned}
& K_{\gamma}\left(\lambda_{1}-\frac{\varepsilon}{p}\right)\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right] \\
& \quad>K\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon\left(O(1)-O_{1}(1)\right)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon \tilde{O}(1)\right]^{\frac{1}{q}} .
\end{aligned}
$$

It follows that $K_{\gamma}\left(\lambda_{1}\right) \geq K\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, $K=K_{\gamma}\left(\lambda_{1}\right)$ is the best possible constant factor of (53).
The constant factor $K_{\gamma}\left(\lambda_{1}\right)$ in (54) is still the best possible. Otherwise, we would reach the contradiction by the reverse of (39) that the constant factor in (53) is not the best possible.

Remark 2 For $\alpha=\beta=1$, set

$$
\begin{aligned}
& \tilde{\theta}\left(\lambda_{2}, m\right)=\frac{k_{\lambda}\left(1, \frac{\ln \left(1+v_{2} \theta(m)\right)}{\ln U_{m}}\right)}{\lambda_{2} K_{\gamma}\left(\lambda_{1}\right)} \frac{\ln ^{\lambda_{2}}\left(1+v_{2}\right)}{\ln ^{\lambda_{2}} U_{m}}=O\left(\frac{1}{\ln ^{\lambda_{2}} U_{m}}\right) \in(0,1) \quad(\theta(m) \in(0,1)) \\
& \tilde{\phi}_{\lambda}(m):=\left(1-\tilde{\theta}\left(\lambda_{2}, m\right)\right)\left(\frac{U_{m}}{\mu_{m+1}}\right)^{p-1}\left(\ln U_{m}\right)^{p\left(1-\lambda_{1}\right)-1}
\end{aligned}
$$

It is evident that (53) and (54) are extensions of the following equivalent inequalities:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln U_{m}, \ln V_{n}\right) a_{m} b_{n}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \tilde{\phi}_{\lambda}}\|b\|_{q, \psi_{\lambda}}, \tag{55}\\
& \left\{\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n}} \ln ^{p \lambda_{2}-1} V_{n}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln U_{m}, \ln V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \tilde{\phi}_{\lambda}}, \tag{56}
\end{align*}
$$

where the constant factor $K_{\gamma}\left(\lambda_{1}\right)$ is the best possible.

Theorem 4 If $p<0,\left\{\mu_{m}\right\}_{m=1}^{\infty}$ and $\left\{v_{n}\right\}_{n=1}^{\infty}$ are decreasing, $U_{\infty}=V_{\infty}=\infty,\|a\|_{p, \Phi_{\lambda}} \in \mathbb{R}_{+}$ and $\|b\|_{q, \Psi_{\lambda}}^{q} \in \mathbb{R}_{+}$, then we have the following equivalent inequalities with the best possible
constant factor $K_{\gamma}\left(\lambda_{1}\right)$:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m} b_{n}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}}\|b\|_{q, \tilde{r}_{\lambda}} \tag{57}\\
& J_{2}:=\left\{\sum_{n=2}^{\infty} \frac{v_{n+1} \ln \ln ^{p \lambda_{2}-1} \beta V_{n}}{\left(1-\vartheta\left(\lambda_{1}, n\right)\right)^{p-1} V_{n}}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \Phi_{\lambda}} . \tag{58}
\end{align*}
$$

Proof Using (18) and (21) in the reverses of (28) and (29), since

$$
\begin{aligned}
& \left(\omega\left(\lambda_{2}, m\right)\right)^{\frac{1}{p}}>\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{\frac{1}{p}} \quad(p<0), \\
& \left(\varpi\left(\lambda_{1}, n\right)\right)^{\frac{1}{q}}>\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{\frac{1}{q}}\left(1-\vartheta\left(\lambda_{1}, n\right)\right)^{\frac{1}{q}} \quad(0<q<1),
\end{aligned}
$$

and

$$
\left[\frac{1}{\left(K_{\gamma}\left(\lambda_{1}\right)\right)^{p-1}\left(1-\vartheta\left(\lambda_{1}, n\right)\right)^{p-1}}\right]^{\frac{1}{p}}>\left[\frac{1}{\left(\varpi\left(\lambda_{1}, n\right)\right)^{p-1}}\right]^{\frac{1}{p}} \quad(p<0),
$$

we obtain equivalent inequalities (57) and (58).
For $\varepsilon \in\left(0, \min \left\{q \lambda_{2}, q\left(1-\lambda_{1}\right)\right\}\right)$, we set $\tilde{\lambda}_{1}=\lambda_{1}+\frac{\varepsilon}{q}(\in(0,1)), \tilde{\lambda}_{2}=\lambda_{2}-\frac{\varepsilon}{q}(\in(0,1))$, and

$$
\begin{aligned}
& \tilde{a}_{m}:=\frac{\mu_{m+1}}{U_{m}} \ln ^{\tilde{\lambda}_{1}-\varepsilon-1} \alpha U_{m}=\frac{\mu_{m+1}}{U_{m}} \ln ^{\lambda_{1}-\frac{\varepsilon}{p}-1} \alpha U_{m} \\
& \tilde{b}_{n}:=\frac{v_{n+1}}{V_{n}} \ln ^{\tilde{\lambda}_{2}-\varepsilon-1} \beta V_{n}=\frac{v_{n+1}}{V_{n}} \ln ^{\lambda_{2}-\frac{\varepsilon}{q}-1} \beta V_{n} .
\end{aligned}
$$

Then, by (24), (25) and (18), we have

$$
\begin{aligned}
&\|\tilde{a}\|_{p, \Phi_{\lambda}}\|\tilde{b}\|_{q, \tilde{r}_{\lambda}} \\
&=\left(\sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{\left(1-\vartheta\left(\lambda_{1}, n\right)\right) v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}\right)^{\frac{1}{q}} \\
&=\left(\sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}\right)^{\frac{1}{p}}\left(\sum_{n=2}^{\infty} \frac{v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}-\sum_{n=2}^{\infty} O\left(\frac{v_{n+1}}{V_{n} \ln ^{1+\varepsilon} \beta V_{n}}\right)\right)^{\frac{1}{q}} \\
&=\frac{1}{\varepsilon}\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon O(1)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon\left(\tilde{O}(1)-O_{1}(1)\right)\right]^{\frac{1}{q}}, \\
& \tilde{I}=\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \tilde{a}_{m} \tilde{b}_{n} \\
&=\sum_{m=2}^{\infty}\left[\sum_{n=2}^{\infty} k_{\lambda}\left(\ln \alpha U_{m}, \ln \beta V_{n}\right) \frac{v_{n+1} \ln ^{\tilde{\lambda}_{1}} \alpha U_{m}}{V_{n} \ln ^{1-\tilde{\lambda}_{2}} \beta V_{n}} \frac{\mu_{m+1}}{U_{m} \ln ^{1+\varepsilon} \alpha U_{m}}\right. \\
&=\sum_{m=2}^{\infty} \frac{\mu_{m+1} \omega\left(\tilde{\lambda}_{2}, m\right)}{U_{m} \ln ^{\varepsilon+1} \alpha U_{m}} \leq K_{\gamma}\left(\tilde{\lambda}_{1}\right) \sum_{m=2}^{\infty} \frac{\mu_{m+1}}{U_{m} \ln ^{\varepsilon+1} \alpha U_{m}} \\
&=\frac{1}{\varepsilon} K_{\gamma}\left(\tilde{\lambda}_{1}\right)\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon O(1)\right] .
\end{aligned}
$$

If there exists a positive constant $K \geq K_{\gamma}\left(\lambda_{1}\right)$ such that (57) is valid when replacing $K_{\gamma}\left(\lambda_{1}\right)$ by K, then, in particular, we have $\varepsilon \tilde{I}>\varepsilon K\|\tilde{a}\|_{p, \Phi_{\lambda}}\|\tilde{b}\|_{q^{\prime}, \tilde{\Upsilon}_{\lambda}}$, namely,

$$
\begin{aligned}
& K_{\gamma}\left(\lambda_{1}+\frac{\varepsilon}{q}\right)\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon O(1)\right] \\
& \quad>K\left[\frac{1}{\ln ^{\varepsilon} \alpha\left(1+\mu_{2}\right)}+\varepsilon O(1)\right]^{\frac{1}{p}}\left[\frac{1}{\ln ^{\varepsilon} \beta\left(1+v_{2}\right)}+\varepsilon\left(\tilde{O}(1)-O_{1}(1)\right)\right]^{\frac{1}{q}} .
\end{aligned}
$$

It follows that $K_{\gamma}\left(\lambda_{1}\right) \geq K\left(\varepsilon \rightarrow 0^{+}\right)$. Hence, $K=K_{\gamma}\left(\lambda_{1}\right)$ is the best possible constant factor of (57).

Similarly to the reverse of (32), we still can find that

$$
\begin{equation*}
I \geq J_{2}\|b\|_{q, \tilde{r}_{\lambda}} . \tag{59}
\end{equation*}
$$

Hence, the constant factor $K_{\gamma}\left(\lambda_{1}\right)$ in (58) is still the best possible. Otherwise, we would reach the contradiction by (59) that the constant factor in (57) is not the best possible.

Remark 3 For $\alpha=\beta=1$, set

$$
\begin{aligned}
& \tilde{\vartheta}\left(\lambda_{1}, n\right)=\frac{k_{\lambda}\left(\frac{\ln \left(1+\mu_{2} \vartheta(n)\right)}{\ln U_{m}}, 1\right)}{\lambda_{1} K_{\gamma}\left(\lambda_{1}\right)} \frac{\ln ^{\lambda_{1}}\left(1+\mu_{2}\right)}{\ln ^{\lambda_{1}} \beta V_{n}}=O\left(\frac{1}{\ln ^{\lambda_{2}} U_{m}}\right) \in(0,1) \quad(\vartheta(n) \in(0,1)), \\
& \tilde{\psi}_{\lambda}(n):=\left(1-\tilde{\vartheta}\left(\lambda_{1}, n\right)\right)\left(\frac{V_{n}}{v_{n+1}}\right)^{q-1}\left(\ln V_{n}\right)^{q\left(1-\lambda_{2}\right)-1} .
\end{aligned}
$$

It is evident that (57) and (58) are extensions of the following equivalent inequalities:

$$
\begin{align*}
& \sum_{n=2}^{\infty} \sum_{m=2}^{\infty} k_{\lambda}\left(\ln U_{m}, \ln V_{n}\right) a_{m} b_{n}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \phi_{\lambda}}\|b\|_{q, \tilde{\psi}_{\lambda}}, \tag{60}\\
& \left\{\sum_{n=2}^{\infty} \frac{v_{n+1} \ln ^{p \lambda_{2}-1} V_{n}}{V_{n}\left(1-\tilde{\vartheta}\left(\lambda_{1}, n\right)\right)}\left(\sum_{m=2}^{\infty} k_{\lambda}\left(\ln U_{m}, \ln V_{n}\right) a_{m}\right)^{p}\right\}^{\frac{1}{p}}>K_{\gamma}\left(\lambda_{1}\right)\|a\|_{p, \phi_{\lambda}}, \tag{61}
\end{align*}
$$

where the constant factor $K_{\gamma}\left(\lambda_{1}\right)$ is the best possible.

5 Conclusions

In this paper, by using the way of weight coefficients, the technique of real analysis, and Hermite-Hadamard's inequality, a more accurate Hardy-Mulholland-type inequality with multi-parameters and a best possible constant factor is given by Theorems 1, 2, and the equivalent forms are considered. The equivalent reverses with the best possible constant factor are obtained by Theorems 3, 4. Moreover, the operator expressions and some particular cases are considered. The method of weight coefficients is very important, which helps us to prove the main inequalities with the best possible constant factor. The lemmas and theorems provide an extensive account of this type of inequalities.

Acknowledgements

This work is supported by the National Natural Science Foundation (No. 61370186, No. 61640222), and Appropriative Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25). We are grateful for this help.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

BY carried out the mathematical studies, participated in the sequence alignment and drafted the manuscript. QC participated in the design of the study and performed the numerical analysis. All authors read and approved the fina manuscript.

Author details

'Department of Mathematics, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China
${ }^{2}$ Department of Computer Science, Guangdong University of Education, Guangzhou, Guangdong 510303, P.R. China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 March 2017 Accepted: 16 June 2017 Published online: 12 July 2017

References

1. Hardy, GH, Littlewood, JE, Pólya, G: Inequalities. Cambridge University Press, Cambridge (1934)
2. Yang, BC: Discrete Hilbert-Type Inequalities. Bentham Science Publishers Ltd., The United Arab Emirates (2011)
3. Mulholland, HP: Some theorems on Dirichlet series with positive coefficients and related integrals. Proc. Lond. Math. Soc. 29(2), 281-292 (1929)
4. Mitrinović, DS, Pečarić, JE, Fink, AM: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Acaremic, Boston (1991)
5. Yang, BC: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., The United Arab Emirates (2009)
6. Yang, BC: On Hilbert's integral inequality. J. Math. Anal. Appl. 220, 778-785 (1998)
7. Yang, BC: An extension of Mulholland's inequality. Jordan J. Math. Stat. 3(3), 151-157 (2010)
8. Yang, BC: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijin (2009)
9. Rassias, M, Yang, BC: On half-discrete Hilbert's inequality. Appl. Comput. Math. 220, 75-93 (2013)
10. Rassias, M, Yang, $B C$: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Comput. Math. 225, 263-277 (2013)
11. Huang, QL, Yang, BC: A more accurate half-discrete Hilbert inequality with a non-homogeneous kernel. J. Funct. Spaces Appl. 2013, 628250 (2013)
12. Huang, QL, Wang, AZ, Yang, BC: A more accurate half-discrete Hilbert-type inequality with a general non-homogeneous kernel and operator expressions. Math. Inequal. Appl. 17(1), 367-388 (2014)
13. Liu, T, Yang, BC: On a half-discrete reverse Mulholland-type inequality and extension. J. Inequal. Appl. 2014, 103 (2014)
14. Rassias, M, Yang, BC: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Comput. Math. 242, 800-813 (2014)
15. Huang, QL, Wu, SH, Yang, BC: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, 169061 (2014)
16. Chen, Q, Yang, BC: On a more accurate multidimensional Mulholland-type inequality. J. Inequal. Appl. 2014, 322 (2014)
17. Rassias, M, Yang, BC: On a multidimensional Hilbert-type integral inequality associated to the gamma function. Appl. Comput. Math. 249, 408-418 (2014)
18. Rassias, M, Yang, $B C$: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286-1308 (2015)
19. Yang, BC: An extension of a Hardy-Hilbert-type inequality. J. Guangdong Univ. Educ. 35(3), 1-7 (2015)
20. Kuang, JC: Applied Inequalities. Shangdong Science Technic Press, Jinan (2004)
21. Kuang, JC: Real and Functional Analysis (Continuation), vol. 2. Higher Education Press, Beijing (2015)

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

