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Abstract
In this paper, we classify sets of solutions of the next generalized Cîrtoaje’s inequality
and its reverse, respectively.
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1 Introduction
In recent years, inequalities with power-exponential functions have been intensively stud-
ied [–]. They have many important applications. For example, they can be found in
mathematical analysis and in other theories like mathematical physics, mathematical bi-
ology, ordinary differential equations, probability theory and statistics, chemistry, eco-
nomics. For more details, a literature review and the history of inequalities with power-
exponential functions, see []. Cîrtoaje, in [], has introduced the following interesting
conjecture on the inequalities with power-exponential functions. The inequality is similar
to the reverse arithmetic-geometric mean inequality where its terms were rearranged.

Conjecture  If a, b ∈ (, ] and r ∈ (, e], then


√

arabrb ≥ arb + bra. ()

The conjecture was proved by Matejíčka []. Matejíčka also proved () under other con-
ditions in [, ]. For example, he showed that () is also valid for a, b, r ∈ (, e]. In [], one
interesting property of the generalized Cîrtoaje’s inequality (CI) was found. In [], a clas-
sification of sets of solutions of (CI)

n n

√
√
√
√

n
∏

i=

xrxi
i ≥ xrx

n +
n–
∑

i=

xrxi+
i ()

was made.

2 Methods
In this paper, methods of mathematical and numerical analysis are used. We make a clas-
sification of sets of solutions of the other generalization of (CI).
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Let ϕ, ψ be functions from {, . . . , n} to {, . . . , n}, where n ∈ N . Put

F(r) = ln n +
r
n

( n
∑

i=

xϕ(i) ln xi

)

– ln

( n
∑

i=

erxψ(i) ln xi

)

. ()

The function F(r) is defined on Rn
+ where n ∈ N, r ≥ , Rn

+ = {(x, . . . , xn), xi > , i = , . . . , n}.
We note that F(r) ≥  is equivalent to the following generalization of Cîrtoaje’s inequal-
ity (I):
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The reverse inequality to (I)
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we denote by (RI).

3 Results and discussion
We remark that in [] the special case of our classification for () was presented, where
ϕ(i) = i, ψ(i) = i + , i = , . . . , n – , ϕ(n) = n, ψ(n) = .

The following functions:

g(x, . . . , xn) =

n

n
∑

i=

xϕ(i) log(xi) – mx, ()

where mx = max
≤m≤n

{

xψ(m) log(xm)
}

,

h(x, . . . , xn) =
n

∑

i=

(xϕ(i) – xψ(i)) log(xi), ()

we will call characteristic functions of (I).
Put

Sn =
{

(x, . . . , xn) ∈ Rn
+; xi = xj, i, j = , . . . , n

}

.

We prove the following lemma.

Lemma  Let F(r) be defined by (). Let ϕ, ψ be arbitrary functions from {, . . . , n} to
{, . . . , n}, n ∈ N . Then F(r) is a concave function for each A ∈ Rn

+ – Sn, and F() = . If
there is i �= j; i, j ∈ N such that xψ(i) ln xi �= xψ(j) ln xj, then F(r) is a strongly concave function
in A.

Proof F() =  is evident. Easy calculation gives

F ′(r) =

n

( n
∑

i=

xϕ(i) ln xi

)

–
∑n

i= erxψ(i) ln xi xψ(i) ln xi
∑n

i= erxψ(i) ln xi
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and

F ′′(r) =
–L(r)

(
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i= exp(rxψ(i) ln xi))

where
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The proof is completed. �

Now we prove the following lemma.

Lemma  Let g , h be defined by (), (). Let ϕ, ψ be arbitrary functions from {, . . . , n} to
{, . . . , n}, n ∈ N . Then there are five cases.

. If h(x, . . . , xn) =
∑n

i=(xϕ(i) – xψ(i)) log(xi) <  for A = (x, . . . , xn) ∈ Rn
+ then (RI) is

valid for all r >  in A = (x, . . . , xn) ∈ Rn
+.

. If h(x, . . . , xn) =
∑n

i=(xϕ(i) – xψ(i)) log(xi) =  and
g(x, . . . , xn) = 

n
∑n

i= xϕ(i) log(xi) – max≤m≤n{xψ(m) log(xm)} <  for
A = (x, . . . , xn) ∈ Rn

+ then (RI) is valid for all r >  in A = (x, . . . , xn) ∈ Rn
+.

. If h(x, . . . , xn) =
∑n

i=(xϕ(i) – xψ(i)) log(xi) =  and
g(x, . . . , xn) = 

n
∑n

i= xϕ(i) log(xi) – max≤m≤n{xψ(m) log(xm)} =  for
A = (x, . . . , xn) ∈ Rn

+ then F(r) =  for r ≥  in A = (x, . . . , xn) ∈ Rn
+.

. If h(x, . . . , xn) =
∑n

i=(xϕ(i) – xψ(i)) log(xi) >  and
g(x, . . . , xn) = 

n
∑n

i= xϕ(i) log(xi) – max≤m≤n{xψ(m) log(xm)} ≥  for
A = (x, . . . , xn) ∈ Rn

+ then (I) is valid for all r ≥  in A = (x, . . . , xn) ∈ Rn
+.

. If h(x, . . . , xn) =
∑n

i=(xϕ(i) – xψ(i)) log(xi) >  and
g(x, . . . , xn) = 

n
∑n

i= xϕ(i) log(xi) – max≤m≤n{xψ(m) log(xm)} <  for
A = (x, . . . , xn) ∈ Rn

+ then there is r >  such that (I)is valid for r ∈ (, r] and (RI) is
valid for r ∈ (r,∞) in A = (x, . . . , xn) ∈ Rn

+.

Proof The proof is evident. It follows from Lemma . �
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Note  It is easy to see that if g(x, . . . , xn) =  and h(x, . . . , xn) =  then F(r) =  for
all r ≥ . Really, from Lemma  we have F ′() =  and limr→∞ F ′(r) = . If F(r) �= 
for some r >  then F(r) < . Then there exists z such that F(r) – F() = F ′(z)r and
 < z < r. It implies F ′(z) < . Because of F ′′(r) ≤  we get F ′ is non-increasing for r ≥ .
For r > z >  we obtain F ′(r) ≤ F ′(z) so limr→∞ F ′(r) ≤ F ′(z) < . This is a contradic-
tion.

4 Conclusion
In this paper, we showed the following. If (I) is valid in (x, . . . , xn) for some r >  then (I)
is valid in (x, . . . , xn) for all  < r ≤ r. Similarly, if (RI) is valid in (x, . . . , xn) for some r > 
then (RI) is valid in (x, . . . , xn) for all r > r.

We think that the way how to classify sets of solutions of the power-exponential inequal-
ities could be used for other suitable inequalities.

Now we give examples of concrete applications of our results. We make the complete
classification of sets of solutions for (I) and (RI) inequalities where n = . Using Matlab for
plotting graphs of the solution curves for the characteristic equations g(X) = , h(X) = 
we obtain the following figures for (I) and (RI). In the figures we denote by I + RI the points
where (I) and also (RI) are locally valid. By I we denote points where (I) is valid for all r > 
and by RI we denote points where (RI) is valid for all r > .

It is easy to show that for n =  there are only  basic cases of inequalities (I). The other
four cases of (I) can be transformed to the previous cases.

Example  Let n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we have (I):


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x) = ,

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .

Figure 1 Solution points for inequalities
Examples 1, 7, 8, 11.
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Figure 2 Solution points for inequalities
Example 2.

Figure 3 Solution points for inequalities
Example 3.

Example  Let us consider that n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then by (I)


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) =



(x – x) log(x) +



(x – x) log(x) =



(x – x) ln

(
x

x

)

,

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .

Example  Put n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we obtain by (I)


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) =



(x – x) log(x) +



(x – x) log(x),

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .
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Figure 4 Solution points for inequalities
Example 4.

Figure 5 Solution points for inequalities
Example 5.

Example  Let us consider n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we get by (I)


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x)

= (/)(x – x) log(x),

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .

Example  Let n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we have by (I)


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x)

= (/)(x – x) log(xx),

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .
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Figure 6 Solution points for inequalities
Example 6.

Example  Put n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then by (I)
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)

,

g(x, x) = (/)
(
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)
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.
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See Figure .

Example  Let us consider n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we obtain
by (I)
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 ,
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g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.
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See Figure .

Example  Put n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then by (I)
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 ≥ xrx
 + xrx

 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x) = ,

g(x, x) = (/)
(
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)
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{
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}

.
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See Figure .
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Figure 7 Solution points for inequalities
Example 9.

Figure 8 Solution points for inequalities
Example 10.

Example  Let us consider n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we get by (I)


√

xrx
 xrx

 ≥ xrx
 + xrx

 ,

h(x, x) =



(x – x) log(x) +



(x – x) log(x) =



(x – x) ln x,

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .

Example  Let n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then by (I)
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(x – x) log(x),

g(x, x) = (/)
(
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)
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}

.

()

See Figure .
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Figure 9 Solution points for inequalities
Example 12.

Example  Put n = , ϕ() = , ϕ() = , ψ() = , ψ() = . We obtain by (I)
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 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x) = ,

g(x, x) = (/)
(

x log(x) + x log(x)
)

– max
{

x log(x), x log(x)
}

.

()

See Figure .

Example  Let n = , ϕ() = , ϕ() = , ψ() = , ψ() = . Then we have by (I)
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 ,

h(x, x) = (/)(x – x) log(x) + (/)(x – x) log(x) = (/)(x – x) log(x),
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(
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)
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See Figure .
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Matejíčka Journal of Inequalities and Applications  (2017) 2017:159 Page 10 of 10
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