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Abstract
In this paper, we propose a smoothing inexact Newton method for solving variational
inequalities with nonlinear constraints. Based on the smoothed Fischer-Burmeister
function, the variational inequality problem is reformulated as a system of
parameterized smooth equations. The corresponding linear system of each iteration is
solved approximately. Under some mild conditions, we establish the global and local
quadratic convergence. Some numerical results show that the method is effective.
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1 Introduction
We consider the variational inequality problem (VI for abbreviation), which is to find a
vector x∗ ∈ � such that

VI(�, F)
(
x – x∗)�F

(
x∗) ≥ , ∀x ∈ �, ()

where � is a nonempty, closed and convex subset ofRn and F is a continuous differentiable
mapping from Rn into Rn. In this paper, without loss of generality, we assume that

� :=
{

x ∈ Rn|g(x) ≥ 
}

, ()

where g : Rn → Rm and gi : Rn → R, (i ∈ I = {, , . . . , m}) are twice continuously differ-
entiable concave functions. When � = Rn

+, VI reduces to the nonlinear complementarity
problem (NCP for abbreviation)

x∗ ∈ Rn
+, F

(
x∗) ∈ Rn

+, x∗�F
(
x∗) = . ()

Variational inequalities have important applications in mathematical programming,
economics, signal processing, transportation and structural analysis [–]. So, there are
various numerical methods which have been studied by many researchers; e.g., see [].

A popular way to solve the VI(�, F) is to reformulate () to a nonsmooth equation via
a KKT system of variational inequalities and an NCP-function. It is well known that the
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KKT system of VI(�, F) can be given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

F(x) – ∇g(x)�λ = ,

g(x) – z = ,

λ ≥ , z ≥ , λ�z = ,

()

and the NCP-function φ(a, b) is defined by the following condition:

φ(a, b) =  ⇐⇒ a ≥ , b ≥ , ab = . ()

Then problem () and () is equivalent to the following nonsmoothing equation:

⎛

⎜
⎝

F(x) – ∇g(x)�λ

g(x) – z
φ(λ, z)

⎞

⎟
⎠ = . ()

Hence, problem () and () can be translated into ().
We all know that the smoothing method is a fundamental approach to solve the nons-

mooth equation (). Recently, there has been strong interest in smoothing Newton meth-
ods for solving NCP [–]. The idea of this method is to construct a smooth function
to approximate φ(λ, z). In the past few years, there have been many different smoothing
functions which were employed to smooth equation (). Here, we define

H(μ, x,λ, z) :=

⎛

⎜⎜
⎜
⎝

μ

F(x) – ∇g(x)�λ

g(x) – z
�(μ,λ, z)

⎞

⎟⎟
⎟
⎠

, ()

where

�(μ,λ, z) :=

⎛

⎜⎜
⎝

ϕ(μ,λ, z)
...

ϕ(μ,λm, zm)

⎞

⎟⎟
⎠ ()

and

ϕ(μ, a, b) = a + b –
√

a + b + μ, ∀(μ, a, b) ∈ R. ()

It follows from equations ()-() that H(μ, x,λ, z) =  is equivalent to μ =  and (x,λ, z) is
the solution of (). Thus, we may solve the system of smoothing equation H(μ, x,λ, z) = 
and reduce μ to zero gradually while iteratively solving the equation.

Based on the above symmetric perturbed Fischer-Burmeister function (), Chen et al.
[] proposed the first globally and superlinearly convergent smoothing Newton method.
They dealt with general box constrained variational inequalities. And Rui et al. [] pro-
posed an inexact Newton-GMRES method for a large-scale variational inequality problem
under the assumption of linear inequality constraints.
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In reality, variational inequalities with nonlinear constraints are more attractive. These
problems have wide applications in economic networks [], image restoration [, ] and
so on. So, in this paper, under the framework of smoothing Newton method, we propose
a new inexact Newton method for solving VI(�, F) with nonlinear constraints, which ex-
tends the scope of constraints. We also prove the global and local quadratic convergence
and present some numerical results which show the efficiency of the proposed method.

Throughout this paper, we always assume that the solution set of problem () and (),
denoted by �∗, is nonempty. R+ and R++ mean the nonnegative and positive real sets.
Symbol ‖ · ‖ stands for the -norm.

The rest of this paper is organized as follows. In Section , we summarize some useful
properties and definitions. In Section , we describe the inexact Newton method formally
and then prove its local quadratic convergence. We also give global convergence in Sec-
tion . In Section , we report our numerical results. Finally, we give some conclusions in
Section .

2 Preliminaries
In this section, we denote some basic definitions and properties that will be used in the
subsequent sections.

Definition . The operator F is monotone if, for any u, v ∈Rn,

(u – v)�
(
F(u) – F(v)

) ≥ ;

F is strongly monotone with modulus μ >  if, for any u, v ∈Rn,

(u – v)�
(
F(u) – F(v)

) ≥ μ‖u – v‖;

F is Lipschitz continuous with a positive constant L >  if, for any u, v ∈Rn,

∥∥F(u) – F(v)
∥∥ ≤ L‖u – v‖.

The following lemma gives some properties of H and its corresponding Jacobian.

Lemma . Let H(μ, x,λ, z) be defined by (). Assume that F is continuously differentiable
and strongly monotone, g is twice continuously differentiable concave, (μ∗, x∗,λ∗, z∗) in
R+ × Rn × Rm × Rm is the solution of H(μ, x,λ, z) = , the rows of ∇g(x∗) are linearly
independent and (λ∗, z∗) satisfies the strict complementarity condition. Then

(i) H(μ, x,λ, z) is continuously differentiable on R+ ×Rn ×Rm ×Rm.
(ii) ∇H(μ∗, x∗,λ∗, z∗) is nonsingular, where

∇H(μ, x,λ, z) =

⎛

⎜⎜
⎜
⎝

   
 ∇F(x) – ∇g(x)�λ –∇g(x)� 
 ∇g(x)  –I

Dμ  Dλ Dz

⎞

⎟⎟
⎟
⎠

, ()

Dμ = vec

(
–

μ
√

λ
i + z

i + μ

)
,
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Dλ = diag

(
 –

λi√
λ

i + z
i + μ

)
(i = , . . . , m),

Dz = diag

(
 –

zi√
λ

i + z
i + μ

)
(i = , . . . , m) and

∇g(x)�λ =
m∑

j=

∇gj(x)�λj.

Proof It is not hard to show that H is continuously differentiable onR++ ×Rn ×Rm ×Rm.
From H(μ∗, x∗,λ∗, z∗) = , by () we get that μ∗ =  easily. Since (λ∗, z∗) satisfies the strict
complementarity condition, i.e., λ∗

i , z∗
i are not equal to  at the same time, we have that H

is also continuously differentiable on (μ∗, x∗,λ∗, z∗). That is, (i) holds.
Now, we prove (ii). Let q = (q, q, q, q)� ∈ R+ × Rn × Rm × Rm, q = (q), q =

(q, q, . . . , qn), q = (q, q, . . . , qm), q = (q, q, . . . , qm), and

∇H
(
μ∗, x∗,λ∗, z∗)

⎛

⎜⎜⎜
⎝

q

q

q

q

⎞

⎟⎟⎟
⎠

= . ()

Hence, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

q = , ()

(∇F(x∗) – ∇g(x∗)�λ∗)q – ∇g(x∗)�q = , ()

∇g(x∗)q – q = , ()

Dλ∗q + Dz∗q = , ()

where

Dλ∗ = diag

(
 –

λ∗
i√

λ∗
i + z∗

i

)
, Dz∗ = diag

(
 –

z∗
i√

λ∗
i + z∗

i

)
.

We can observe q =  easily by ().
Next, we discuss formula (). The full form of () can be described as follows:

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

( – λ∗
√

λ∗
 +z∗


)q + ( – z∗

√
λ∗

 +z∗


)q

( – λ∗
√

λ∗
 +z∗


)q + ( – z∗

√
λ∗

 +z∗


)q

...
( – λ∗

m√
λ∗

m +z∗
m

)qm + ( – z∗
m√

λ∗
m +z∗

m
)qm

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

= . ()

According to the strict complementarity condition of (λ∗, z∗), we have λ∗
i ≥ , z∗

i ≥ ,
λ∗

i �z∗
i =  and λ∗

i , z∗
i are not equal to  at the same time. If z∗

i = , then λ∗
i > , and

(
 –

λ∗
i√

λ∗
i + z∗

i

)
= ,

(
 –

z∗
i√

λ∗
i + z∗

i

)
= .
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From () we get that qi =  and q�
iqi = . Similarly, if λ∗

i = , then z∗
i > . We get that

qi =  and q�
iqi = . Hence, q�

 q = .
Multiplying the equation of () by q�

 on the left-hand side and using q�
 q = , we have

q�
 ∇g

(
x∗)q = . ()

Multiplying the equation of () by q�
 on the left-hand side and using (), we have

q�

(∇F

(
x∗) – ∇g

(
x∗)�

λ∗)q = . ()

Meanwhile, because F is strongly monotone, we have that ∇F(x∗) is a positive defi-
nite matrix. Besides, since g is concave and λ∗ is nonnegative, we have that ∇g(x∗)�λ∗ =
∑m

j= ∇gj(x∗)�λ∗
j are nonpositive definite matrices, which implies that (∇F(x∗) –

∇g(x∗)�λ∗) is a positive definite matrix. So, we get that q =  by ().
Substituting q =  into () and using the rows of ∇g(x∗) are linearly independent, we

get q = . Substituting q =  into (), we get q = . Hence we have q = , which implies
that ∇H(μ∗, x∗,λ∗, z∗) is nonsingular. This completes the proof. �

3 The inexact algorithm and its convergence
We are now in the position to describe our smoothing inexact Newton method formally by
using the smoothed Fischer-Burmeister function () to solve the variational inequalities
with nonlinear constraints. We also show that this method has local quadratic conver-
gence.

Algorithm . (Inexact Newton method)

Step . Let w = (x,λ, z) and (μ, w) ∈ R++ × Rn+m be an arbitrary point. Choose μ > 
and γ ∈ (, ) such that γμ < 

 .
Step . If ‖H(μk , wk)‖ = , then stop.
Step . Compute (�μk ,�wk) by

H(μk , wk) + ∇H
(
μk , wk)

(
�μk

�wk

)

=

(
ρkμ



rk

)

, ()

where ρk = ρ(μk , wk) := γ min{,‖H(μk , wk)‖}, and rk ∈Rn+m such that ‖rk‖ ≤ ρkμ
.

Step . Set μk+ = μk + �μk and wk+ = wk + �wk . Set k := k +  and go to Step .

Remark 
() In theory, we use ‖H(μk , wk)‖ =  as a termination of Algorithm .. In practice, we

use ‖H(μk , wk)‖ ≤ ε as a termination rule, where ε is a pre-set tolerance error.
() It is obvious that we have ρk ≤ γ ‖H(μk , wk)‖.
() From () and (), we have μk+ = ρkμ

 >  for any k ≥ .

Now, we are ready to analyze the convergence. The quadratic convergence of Algo-
rithm . is given below.

Theorem . Assume that (μ∗, w∗) satisfies H(μ∗, w∗) = . Suppose that H(μ, w) satisfies
the condition of Lemma . and ∇H(μ, w) is Lipschitz continuous with the constant L. Then
we have the following conclusions:
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() There exists a set D ⊂R+ ×Rn+m which contains (μ∗, w∗) such that for any
(μ, w) ∈ D, the iterate points (μk , wk) generated by Algorithm . are well defined,
remain in D and converge to (μ∗, w∗);

()

∥∥(
μk+ – μ∗, wk+ – w∗)∥∥ ≤ β

∥∥(
μk – μ∗, wk – w∗)∥∥, ()

where β := (L + γμ‖∇H(μ∗, w∗)‖)‖∇H(μ∗, w∗)–‖.

Proof According to Theorem .. in [] and Lemma ., we give the proof in detail.
Denote

u =

(
μ

w

)

, u∗ =

(
μ∗

w∗

)

, �u =

(
�μ

�w

)

, vk =

(
ρkμ



rk

)

.

By Step  of Algorithm ., we have

∥∥vk∥∥ ≤ ρkμ
 +

∥∥rk∥∥ ≤ ρkμ
 ≤ γμ∥∥H

(
uk)∥∥. ()

According to Lemma ., we get that ∇H(u∗) is nonsingular. Then there exist a positive
constant t̄ < 

β
and a neighborhood N(u∗, t̄) of u∗ such that Lt̄ ≤ ‖∇H(u∗)‖, and for any

u ∈ N(u∗, t̄), we have that ∇H(u) is nonsingular and

∥
∥∇H(u)

∥
∥ –

∥
∥∇H

(
u∗)∥∥ ≤ ∥

∥∇H(u) – ∇H
(
u∗)∥∥ ≤ L

∥
∥u – u∗∥∥, ()

where the first inequality follows from the triangle inequality and the second inequality
follows from the Lipschitz continuity. Hence we have

∥
∥∇H(u)

∥
∥ ≤ 

∥
∥∇H

(
u∗)∥∥ ()

for any u ∈ N(u∗, t̄). Similarly, by the perturbation relation (..) in [], we know that
∇H(u) is nonsingular and

∥∥∇H(u)–∥∥ ≤ ‖∇H(u∗)–‖
 – ‖∇H(u∗)–(∇H(u) – ∇H(u∗))‖ ≤ 

∥∥∇H
(
u∗)–∥∥. ()

Besides, for any t ∈ [, ], we have
u∗ + t(u – u∗) ∈ N(u∗, t̄) and H(u) – H(u∗) =

∫ 
 ∇H[u∗ + t(u – u∗)](u – u∗) dt.

From ‖H(u∗)‖ = , we have

∥
∥H(u)

∥
∥ ≤

∫ 



∥
∥∇H

(
u∗ + t

(
u – u∗))∥∥∥

∥(
u – u∗)∥∥dt ≤ 

∥
∥∇H

(
u∗)∥∥∥

∥u – u∗∥∥. ()

According to Algorithm ., for any uk ∈ N(u∗, t̄), k ≥ , we have

uk+ – u∗

= uk – u∗ – ∇H
(
uk)–(H

(
uk) – vk)
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= ∇H
(
uk)–(∇H

(
uk)(uk – u∗) –

(
H

(
uk) – H

(
u∗)) + vk)

= ∇H
(
uk)–

×
(∫ 



(∇H
(
uk) – ∇H

(
u∗ + t

(
uk – u∗)))(uk – u∗)dt + vk

)
. ()

Taking norm of both sides, we get

∥
∥uk+ – u∗∥∥

≤ ∥
∥∇H

(
uk)–∥∥

(∫ 


L( – t)

∥
∥uk – u∗∥∥ dt +

∥
∥vk∥∥

)

≤ 
∥∥∇H

(
u∗)–∥∥

(



L
∥∥uk – u∗∥∥ + γμ∥∥H

(
uk)∥∥

)

≤ 
∥∥∇H

(
u∗)–∥∥

(



L
∥∥uk – u∗∥∥ + γμ∥∥∇H

(
u∗)∥∥∥∥uk – u∗∥∥

)

=
(
L + γμ∥∥∇H

(
u∗)∥∥)∥∥∇H

(
u∗)–∥∥

∥
∥uk – u∗∥∥, ()

where the first inequality follows from the Lipschitz continuity, the second inequality fol-
lows from (), and the third inequality follows from ().

According to the definition of β and the condition of t̄ < 
β

, we get that uk converges
to u∗. Besides, () also holds. This completes the proof. �

4 The global inexact algorithm and its convergence
Now, we start our globally convergent method by using the global technique in Algo-
rithm .. We choose a merit function h(μ, w) = 

‖H(μ, w)‖ and modify (�μk ,�wk) such
that

–
(
�μk ,�wk)�∇h

(
μk , wk) ≥ δ

∥∥(
�μk ,�wk)∥∥∥∥∇h

(
μk , wk)∥∥. ()

We use line search to find a step-length tk ∈ (, ] such that

h
(
μk + tk�μk , wk + tk�wk) ≤ h

(
μk , wk) + ρ̄tk∇h

(
μk , wk)�(

�μk ,�wk), ()

∇h
(
μk + tk�μk , wk + tk�wk)�(

�μk ,�wk) ≥ σ̄∇h
(
μk , wk)�(

�μk ,�wk) ()

and

μk + tk�μk ∈R++, wk + tk�wk ∈Rn+m, ()

where ρ̄ ∈ (, .), σ̄ ∈ (ρ̄, ), δ ∈ (, ).

Algorithm . (Global inexact Newton method)

Step . Choose (μ, w) ∈R++ ×Rn+m to be an arbitrary point. Choose γ ∈ (, ) such that
γμ < 

 . Choose ρ̄ ∈ (, .), σ̄ ∈ (ρ̄, ), δ ∈ (, ).
Step . If ‖H(μk , wk)‖ = , then stop.
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Step . Find (�μk ,�wk) by solving (). If () is not satisfied, then choose τk and compute

(
�μk ,�wk) = –

(∇H
(
μk , wk)�∇H

(
μk , wk) + τkI

)–∇h
(
μk , wk), ()

such that () is satisfied.
Step . Find a step-length tk ∈ (, ] satisfying ()-().
μk+ = μk + tk�μk , wk+ = wk + tk�wk . Set k := k +  and go to Step .

Remark  In Step , if () is not satisfied, then the technique in [], pp.-, is used
to choose τk . From Lemma . in [], it is not difficult to find tk that can satisfy ()-().

In order to obtain the global convergence of Algorithm ., throughout the rest of this
paper, we define the level set L(μ, w) = {(μ, w)|h(μ, w) ≤ h(μ, w)} for (μ, w) ∈R++ ×
Rn+m.

Theorem . Suppose that ∇H(μ, w) is Lipschitz continuous in L(μ, w). Then we have

lim
k→∞

∇h
(
μk , wk) = .

Proof The proof follows Theorem . in [] and condition (). �

Theorem . Let (μ, w) ∈ R++ × Rn+m, H(μ, x,λ, z) be defined by (). Assume that
∇H(μ, w) is Lipschitz continuous in L(μ, w), tk =  is admissible and () is satisfied for
all k ≥ k, ∇H(μ∗, w∗) is nonsingular where k is sufficiently great, and (μ∗, w∗) is a lim-
ited point of {(μk , wk)} generated by Algorithm .. Then the sequence {(μk , wk)} converges
to (μ∗, w∗) quadratically.

Proof From Theorem ., we have

lim
k→∞

∇h
(
μk , wk) = ,

where ∇h(μk , wk) = ∇H(μk , wk)H(μk , wk). That is, the sequence {(μk , wk)} is convergent.
Since ∇H(μ∗, w∗) is nonsingular and (μ∗, w∗) is a limited point of {(μk , wk)} generated by
Algorithm ., we have

lim
k→∞

H
(
μk , wk) = .

According to the assumption that there exists k such that tk =  is admissible and ()
is satisfied for all k ≥ k, {(μk , wk)} can be generated by Algorithm . for k > k. We can
get the conclusion from Theorem . directly. This completes the proof. �

5 Numerical results
In this section, we present some numerical results for Algorithm .. All codes are written
in Matlab and run on a RTM i-M personal computer. In the algorithm, we choose
γ = .. We also use ‖H(μk , wk)‖ ≤ – as the stopping rule for all examples.

It is not easy to find proper test examples for the variational inequalities with nonlin-
ear constraints. Hence, we modify some test examples in references and solve them by
Algorithm ..
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Table 1 Numerical results for Example 5.1 with x0 = (0, 1, 1)

Example 5.1

k x1 x2 x3 ‖H(μk , wk)‖
1 1.6663 0.1527 0.7730 4.0941
2 1.6460 0.3416 0.0000 2.9087
3 1.6431 0.3212 0.0000 1.7601
4 1.2659 0.3957 0.0000 0.8018
5 1.0386 0.1050 0.0007 0.2139
6 1.0019 0.0174 0.0008 0.0301
7 1.0021 0.0005 0.0000 0.0043
8 1.0003 0.0000 0.0000 7.2097e–04
9 1.0000 0 0 1.8416e–05
10 1.0000 0.0000 0.0000 9.6147e–06

Example . (see []) Let

F(x) =

⎛

⎜
⎝

x + .x
 – .x + .x – 

–.x + x + .x
 + .

.x – .x + x – .

⎞

⎟
⎠

and

g(x) = –x
 – .x

 – .x
 + .

It is verified that the problem has the solution x∗ = (, , ) easily. The initial point is x =
(, , ) and μ = ..

Example . This example is derived from []. Because the original problem is an opti-
mization problem, we give its form of variational inequalities by the optimality condition,
i.e.,

F(x) =

⎛

⎜
⎜⎜
⎝

x – 
x – 

x – 
x + 

⎞

⎟
⎟⎟
⎠

, g(x) =

⎛

⎜
⎝

–x
 – x

 – x
 – x

 – x + x – x + x + 
–x

 – x
 – x

 – x
 + x + x + 

–x
 – x

 – x
 – x + x + x + 

⎞

⎟
⎠ .

The solution of Example . is x∗ = (, , , –). The initial point is x = (, , , ) and
μ = ..

In Tables -, ‘k’ means the number of iterations, ‘‖H(μk , wk)‖’ means the -norm of
H(μk , wk). From Tables -, we can observe that Algorithm . can find the solution in a
smaller number of iterations for the above two examples. In order to further show the effi-
ciency of Algorithm ., we give other two examples where the dimension of the problems
is from  to ,.

In the following tests, we solve �w of the linear systems by using GMRES(m) package
with m = , allowing a maximum of  cycles (, iterations). And we choose μ as a
random number in (, ).

Example . We consider the problem with nonlinear constraints. The problem is de-
rived from [] with different sizes. Based on the linear constraints of the original problem,
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Table 2 Numerical results for Example 5.2 with x0 = (0, 0, 0, 0)

Example 5.2

k x1 x2 x3 x4 ‖H(μk , wk)‖
1 0.3330 1.0661 4.0792 –4.3984 0.7137
2 3.7727 3.2371 5.7749 –2.3704 0.4308
3 1.8029 2.4677 2.9939 –1.3529 0.1151
4 0.6067 1.7571 2.2497 –0.9003 0.0399
5 0.4095 1.1936 2.1080 –0.7000 0.0076
6 0.0093 1.0500 2.1182 –0.8442 0.0045
7 0.0009 0.9994 2.0014 –0.9991 7.8889e–04
8 0.0002 1.0000 2.0005 –1.0000 3.2619e–05
9 0.0000 1.0000 2.0000 –1.0000 1.3066e–06

Table 3 Numerical results for Example 5.3

Example 5.3

n No.it CPU ‖H(μk , wk)‖
100 8 0.3120 7.7321e–06
200 8 0.4992 2.9356e–06
300 9 0.7956 2.5000e–06
400 9 1.1700 1.3077e–06
600 9 2.1840 1.8843e–06
800 9 3.8220 2.1879e–06

1,000 9 5.6004 2.0789e–06

we also add some nonlinear constraints to the problem. In this example,

F(x) =

⎛

⎜⎜
⎜⎜⎜
⎜
⎝

 – · · ·  
  · · ·  

· · ·
  · · ·  –
  · · ·  

⎞

⎟⎟
⎟⎟⎟
⎟
⎠

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

x

x

x
...

xn

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

+

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

–
–
–
...

–

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

, g(x) =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

x + 
x + 

· · ·
xn + 

 – x


 – x


· · ·
 – x

n

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Example . The example is the NCP. F(x) = D(x) + Mx + q. The components of D(x) are
Dj(x) = dj · arctan(xj), where dj is a random variable in (, ). The matrix M = A�A + B,
where A is an n × n matrix whose entries are randomly generated in the interval (–, ),
and the skew-symmetric matrix B is generated in the same way. The vector q is generated
from a uniform distribution in the interval (–, ).

In Tables -, ‘n’ means the dimension of problems, ‘No.it’ means the number of itera-
tions, ‘CPU’ means the cpu time in seconds. ‘‖H(μk , wk)‖’ means the -norm of H(μk , wk).
From Tables -, we find that Algorithm . is robust to the different sizes for these two
problems. Moreover, the iterative number is insensitive to the size of problems in our al-
gorithm. In other words, our algorithm is more effective for two problems.

6 Conclusions
Based on the framework of smoothing Newton method, we propose a new smoothing
inexact Newton algorithm for variational inequalities with nonlinear constraints. Under
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Table 4 Numerical results for Example 5.4

Example 5.4

n No.it CPU ‖H(μk , wk)‖
100 8 0.4992 3.5558e–07
200 8 1.1388 3.0105e–06
300 8 2.3244 4.7536e–06
400 8 4.5552 7.7267e–06
600 9 13.1665 8.8521e–07
800 9 25.3346 1.4537e–06

1,000 9 41.4027 2.0736e–06

some mild conditions, we establish the global and local quadratic convergence. Further-
more, we also present some preliminary numerical results which show efficiency of the
algorithm.
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