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Abstract
Many weighted polynomial inequalities, such as the Bernstein, Marcinkiewicz, Schur,
Remez, Nikolskii inequalities, with doubling weights were proved by Mastroianni and
Totik for the case 1≤ p <∞, and by Tamás Erdélyi for 0 < p ≤ 1. In this paper we
extend such polynomial inequalities to those for generalized trigonometric
polynomials. We also prove the large sieve for generalized trigonometric polynomials
with doubling weights.
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1 Introduction
A generalized nonnegative trigonometric polynomial is a function of the type

f (x) = |α|
m∏

j=

∣∣∣∣sin

(
x – zj



)∣∣∣∣
rj

( �= α ∈ C) (.)

with rj ∈ R+, zj ∈C, and the number

n def=



m∑

j=

rj

is called the degree of f .
We denote by GTn (n ∈ R

+) the set of all generalized nonnegative trigonometric poly-
nomials of degree at most n and we denote by Tn (n ∈ N) the set of all real trigonometric
polynomials of degree at most n.

In this paper we work on the real line. If x ∈R, then

∣∣∣∣sin

(
x – zj



)∣∣∣∣ =
(

sin

(
x – zj



)
sin

(
x – z̄j



))/

=
√

(
cosh(Im zj) – cos(x – Re zj)

)/,
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therefore, f ∈GTn can be written as

f =
m∏

j=

Trj/
j ,

m∑

j=

rj/ ≤ n,

where Tj is a nonnegative real trigonometric polynomial of degree . Many inequalities
for generalized nonnegative polynomials are known; see [].

Note that if f ∈ GTn with each rj ≥  in its representation (.), then f is differentiable
for all x ∈R.

In this paper we deal with doubling weights and A∞ weights. An integrable, π-periodic
weight function W is called a doubling weight if there is a positive constant L such that

∫

J
W ≤ L

∫

J
W (.)

for any interval J ⊂ R, where J is the interval with length |J| (|J| denotes the Lebesgue
measure of the set J) and with midpoint at the midpoint of J . The constant L in (.) will
be called the doubling constant. A periodic weight function W on R is an A∞ weight if for
every ε > , there is a δ >  such that

∫

E
W ≥ δ

∫

J
W

for any interval J ⊂R and any measurable set E ⊂ J with |E| ≥ ε|J|. Obviously A∞ weights
are doubling weights. Many properties of doubling and A∞ weights are studied; see [].

Weighted polynomial inequalities, such as Bernstein, Marcinkiewicz, Remez, Schur,
Nikolskii inequalities, with doubling and A∞ weights were proved by G. Mastroianni and
V. Totik in [], where Lp norm is considered for  ≤ p < ∞. For  < p ≤ , Tamás Erdélyi []
proved such inequalities for the trigonometric case. Recently, it has been proved that in-
equalities of this kind hold also for more general weight functions, namely for the product
of a doubling and an exponential weight (see []) and for a class of nondoubling weights
(see []).

In this paper we show that many weighted polynomial inequalities hold for generalized
nonnegative trigonometric polynomials as well. We also prove the large sieve for general-
ized trigonometric polynomials with doubling weights.

The rest of this paper is organized as follows. In Section , we prove the basic theo-
rems which will be used in the proof of weighted inequalities for generalized trigonomet-
ric polynomials. In Section , we prove Bernstein, Marcinkiewicz, and Schur inequali-
ties for generalized trigonometric polynomials with doubling weights and in Section  we
prove Remez and Nikolskii inequalities for generalized trigonometric polynomials with
A∞ weights.

2 The basic theorems
The following theorem is a basic tool in proving the weighted inequalities for general-
ized trigonometric polynomials. For ordinary polynomials the theorem is proved by Mas-
troianni and Totik in [] for  ≤ p < ∞, and by Tamás Erdélyi in [] for  < p ≤ . The proof
is a modification of their arguments.



Joung Journal of Inequalities and Applications  (2017) 2017:91 Page 3 of 14

Theorem . Let  < p < ∞. Let W be a doubling weight, and let

Wn(x) := n
∫ x+/n

x–/n
W (t) dt. (.)

Then there is a constant C >  depending only on p and on the doubling constant L such
that for every f ∈GTn ( ≤ n ∈R

+) with each rj ≥  in its representation (.) we have

C–
∫ π

–π

f pW ≤
∫ π

–π

f pWn ≤ C
∫ π

–π

f pW . (.)

The function Wn in (.) is continuous and can be approximated by polynomials as fol-
lows. If  ≤ n ∈R

+, thena


L

Wn(x) ≤ W[n](x) ≤ LWn(x),

uniformly in x ∈ R, hence, by Theorem . in [], for  < p < ∞, for each n ∈ R
+ (n ≥ )

there is a nonnegative real trigonometric polynomial Pn of degree at most ( log L
p + )n such

thatb

(
Pn(x)

)p ∼ Wn(x) (.)

and

∣∣P′
n(x)

∣∣p ≤ CnpWn(x), (.)

uniformly in x ∈ R.
The following lemma plays a crucial role in proving Theorem ..

Lemma . Let  < p < ∞ and let W be a doubling weight, and

Wn(x) := n
∫ x+/n

x–/n
W (t) dt.

Let

 ≤ τ < τ < · · · < τm ≤ π

and

δ = min
{
τ – τ, . . . , τm – τm–, π – (τm – τ)

}
> .

Then there is a constant C >  depending only on p and on the weight W such that for every
f ∈GTn (n ∈R

+) we have

m∑

j=

f p(τj)Wn(τj) ≤ C
(

bn + 
π

+ δ–
)∫ π


f p(x)Wn(x) dx,

where b := ( log L
p + ).
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Proof Applying Theorem . in [] to f p ∈GTnp with r = p and �(x) = x, we have

m∑

j=

f p(τj) ≤
(

n + 
π

+ δ–
)

e(p + )


∫ π


f p(x) dx. (.)

The polynomial Pn in (.) has degree at most ( log L
p + )n, hence, fPn ∈ GTbn where b =

( log L
p + ). Applying (.) and (.) we have

m∑

j=

f p(τj)Wn(τj) ≤ C

m∑

j=

(
f (τj)Pn(τj)

)p

≤ C

(
bn + 

π
+ δ–

)∫ π



(
f (x)Pn(x)

)p dx

≤ C

(
bn + 

π
+ δ–

)∫ π


f p(x)Wn(x) dx,

which completes the proof. �

As an application of Theorem . we have the following weighted analog of a large sieve.

Theorem . Let  < p < ∞ and let W be a doubling weight. With the same notations as
in Lemma ., there is a constant B >  depending only on p and on the weight W such that
for every f ∈GTn ( ≤ n ∈ R+) with each rj ≥  in its representation (.) we have

m∑

j=

f p(τj)Wn(τj) ≤ B
(

bn + 
π

+ δ–
)∫ π


f p(x)W (x) dx,

where b := ( log L
p + ).

Proof Applying Lemma . and Theorem ., we have

m∑

j=

f p(τj)Wn(τj) ≤ C
(

bn + 
π

+ δ–
)∫ π


f p(x)Wn(x) dx

≤ B
(

bn + 
π

+ δ–
)∫ π


f p(x)W (x) dx,

which completes the proof. �

We now prove Theorem ..

Proof of Theorem . We closely follow the proof of Theorem . in []. Let  < p < ∞.
First we show that there is a constant C >  depending only on p and on the doubling
constant L such that for every f ∈ GTn ( ≤ n ∈ R

+) with each rj ≥  in its representation
(.) we have

∫ π

–π

∣∣f ′∣∣pWn ≤ Cnp
∫ π

–π

|f |pWn. (.)
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In fact by (.), there is a polynomial Pn of degree at most N = ( log L
p + )n such that

∫ π

–π

∣∣f ′∣∣pWn ∼
∫ π

–π

∣∣f ′∣∣p|Pn|p.

Using

f ′Pn = (fPn)′ – fP′
n

and (a + b)p ≤ p(ap + bp) for any a, b, p > , we have

∫ π

–π

∣∣f ′∣∣p|Pn|p ≤ p
(∫ π

–π

∣∣(fPn)′
∣∣p +

∫ π

–π

∣∣fP′
n
∣∣p

)
.

For the first term in the right hand side of the above inequality, we use Bernstein’s in-
equality (Theorem  and its Remark in []) for generalized trigonometric polynomials of
degree at most (n + N), and (.), then we have

∫ π

–π

∣∣(fPn)′
∣∣p ≤ C(n + N)p

∫ π

–π

|fPn|p

≤ C(n + N)p
∫ π

–π

|f |pWn.

For the second term, we use (.), then we have
∫ π

–π

∣∣fP′
n
∣∣p ≤ Cnp

∫ π

–π

|f |pWn.

Since

n ∼ N =
(

log L
p

+ 
)

n,

we have, for  < p < ∞,

∫ π

–π

∣∣f ′∣∣pWn ≤ Cnp
∫ π

–π

|f |pWn.

Thus the proof of (.) is complete.
Note that the case  < p < ∞ of the theorem follows from the case  < p ≤ . In fact, if

 < p < ∞ then we may apply the theorem for the case  < p ≤  with f and p replaced by
f p and , respectively. Since


p

Wpn(x) ≤ Wn(x) ≤ L(log p)

p
Wpn(x),

uniformly in x ∈ R, the case  < p < ∞ of the theorem follows.
So from now on we assume that  < p ≤ . Now let K be a large positive even integer

which will be chosen later, and set n∗ = [n] and

Ji :=
[

iπ
Kn∗ ,

(i + )π
Kn∗

]
, i = , , . . . , Kn∗ – .
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Let αi ∈ Ji be a point such that f (αi) = maxx∈Ji f (x) and let βi ∈ Ji be a point such that
Wn(βi) = maxx∈Ji Wn(x). Let

Mn =
∑

f p(αi)Wn(βi),

where the summation is taken for i = , , . . . , Kn∗ – , unless stated otherwise. Now let
ξi ∈ Ji be arbitrary. Using ap – bp ≤ (a – b)p for a ≥ b ≥ ,  < p ≤ , we have

Mn –
∑

f p(ξi)Wn(βi) =
∑(

f p(αi) – f p(ξi)
)
Wn(βi)

≤
∑(

f (αi) – f (ξi)
)pWn(βi)

≤
∑∣∣f ′(τi)(αi – ξi)

∣∣pWn(βi)

≤
(

π

Kn∗

)p ∑∣∣f ′(τi)
∣∣pWn(βi) (.)

with some τi ∈ Ji. Since, uniformly for x, y ∈ Ji,

L–Wn(x) ≤ Wn(y) ≤ LWn(x),

we can continue this:

≤
(

π

Kn∗

)p

C
∑∣∣f ′(τi)

∣∣pWn(τi). (.)

Now we write

∑∣∣f ′(τi)
∣∣pWn(τi) =

∑

i=l

∣∣f ′(τi)
∣∣pWn(τi) +

∑

i=l+

∣∣f ′(τi)
∣∣pWn(τi)

and then applying Lemma ., we have

∑

i=l

∣∣f ′(τi)
∣∣pWn(τi) ≤ C

(
bn + 

π
+

Kn∗

π

)∫ π



∣∣f ′∣∣pWn

and

∑

i=l+

∣∣f ′(τi)
∣∣pWn(τi) ≤ C

(
bn + 

π
+

Kn∗

π

)∫ π



∣∣f ′∣∣pWn,

hence

∑∣∣f ′(τi)
∣∣pWn(τi) ≤ C

π

(
bn +  + Kn∗)

∫ π



∣∣f ′∣∣pWn

≤ CKn
∫ π



∣∣f ′∣∣pWn,
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where we assume that K ≥ ( log L
p + ) so that bn +  ≤ Kn (b is defined in Lemma .).

Thus, by using the above inequality and (.), we can continue the inequality (.) thus:

Mn –
∑

f p(ξi)Wn(βi) ≤ C

(
π

Kn∗

)p

Kn
∫ π



∣∣f ′∣∣pWn

≤ CK –pn
∫ π


|f |pWn. (.)

Since

∫ π


|f |pWn =

∑∫

Ji

f pWn

≤
∑

|Ji|f p(αi)Wn(βi) =
π

Kn∗ Mn,

we have

Mn –
∑

f p(ξi)Wn(βi) ≤ C
π

Kp Mn,

from which it follows that

Mn –
∑

f p(ξi)Wn(βi) ≤ 


Mn,

or, equivalently,




Mn ≤
∑

f p(ξi)Wn(βi),

provided

K ≥ (Cπ )/p +
log L

p
+ .

Using

L–Wn(βi) ≤ Wn(ηi) ≤ LWn(βi),

uniformly whenever ηi ∈ Ji, we have, for any ξi, ηi ∈ Ji,


L

Mn ≤
∑

f p(ξi)Wn(ηi).

In particular, this is true for the points γi ∈ Ji and δi ∈ Ji where f (γi) = minx∈Ji f (x) and
Wn(δi) = minx∈Ji Wn(x); hence, we have, for any xi, yi ∈ Ji,


L

Mn =


L
∑

f p(αi)Wn(βi)

≤
∑

f p(xi)Wn(yi)

≤ Mn ≤ L
∑

f p(γi)Wn(δi).
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If we also note that yi ∈ Ji implies

n
∫

Ji

W (x) dx ≤ Wn(yi) ≤ L(log K )n
∫

Ji

W (x) dx,

it follows that

n
L

∑∫

Ji

f p(αi)W (x) dx

≤
∑

f p(xi)Wn(yi)

≤ LL(log K )n
∑∫

Ji

f p(γi)W (x) dx, (.)

whenever xi, yi ∈ Ji. Letting xi = yi = iπ/(Kn∗) + x and integrating the above inequality
with respect to x ∈ [, (π )/(Kn∗)], we obtain

π

LK
∑∫

Ji

f p(αi)W (x) dx ≤
∑∫

Ji

f p(x)Wn(x) dx

≤ πLL(log K )

K
∑∫

Ji

f p(γi)W (x) dx.

Since f (αi) = maxx∈Ji f (x) and f (γi) = minx∈Ji f (x), we obtain

π

LK
∑∫

Ji

f p(x)W (x) dx ≤
∑∫

Ji

f p(x)Wn(x) dx

≤ πLL(log K )

K
∑∫

Ji

f p(x)W (x) dx,

which proves the theorem. �

3 Results on weighted inequalities for generalized trigonometric polynomials
with doubling weights

In this section we apply the basic theorem to prove the weighted inequalities for general-
ized trigonometric polynomials with doubling weights.

3.1 Bernstein inequality
Bernstein type inequalities have numerous applications in approximation theory. The fol-
lowing is a Bernstein type inequality for generalized trigonometric polynomials with dou-
bling weights.

Theorem . Let W be a doubling weight and let  < p < ∞. Then there is a constant C > 
depending only on p and on the weight W such that for every f ∈ GTn ( ≤ n ∈ R

+) with
each rj ≥  in its representation (.) we have

∫ π

–π

∣∣f ′∣∣pW ≤ Cnp
∫ π

–π

|f |pW . (.)

Proof By Theorem . we can replace Wn by W in (.). �
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3.2 Marcinkiewicz inequality
A Marcinkiewicz type inequality is useful when we need to estimate Lp norms of a trigono-
metric polynomials by a finite sum. The following theorem describes such inequalities for
generalized trigonometric polynomials with doubling weights.

Theorem . Let W be a doubling weight and let  < p < ∞. Then there are two constants
K >  and C >  depending only on p and on the weight W such that for every f ∈ GTn

( ≤ n ∈R
+) with each rj ≥  in its representation (.) we have

∫ π

–π

f pW ≤ C
n

m∑

j=

f p(τj)Wn(τj)

provided the points τ < τ < · · · < τm satisfy τj+ – τj ≤ π/(Kn) and τm ≥ τ + π .

Proof Let n∗ = [n]. In the proof of Theorem . we have proved in (.) that there exists
a positive integer K such that if Ji = [ iπ

Kn∗ , (i+)π
Kn∗ ], i = , , . . . , Kn∗ – , and xi ∈ Ji arbitrary,

then

n
L

∑∫

Ji

f p(αi)W (x) dx ≤
∑

f p(xi)Wn(xi).

Since f (αi) = maxx∈Ji f (x), we have

n
L

∑∫

Ji

f p(x)W (x) dx ≤
∑

f p(xi)Wn(xi).

Thus, the theorem is true if there is at least one point τj (mod π ) in every Ji, i =
, , . . . , Kn∗ – , or if the points τ < τ < · · · < τm satisfy τj+ – τj ≤ π/(Kn) and τm ≥
τ + π . �

3.3 Schur inequality
The following is a Schur type inequality for generalized trigonometric polynomials with
doubling weights involving generalized Jacobi weights.

Theorem . Let W be a doubling weight and let  < p < ∞. Let V be a generalized Jacobi
weight of the form

V (x) = v(x)
m∏

i=

|x – xi|γi , xi, x ∈ [–π ,π ),γi > ,

where v is a positive measurable function bounded away from  and ∞. Then there is a
constant C >  independent of n such that for every f ∈ GTn ( ≤ n ∈ R

+) with each rj ≥ 
in its representation (.) we have

∫ π

–π

f pW ≤ Cn�

∫ π

–π

f pWV ,

where � = max≤i≤m{γi}.
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Proof By the Lemma . in [], WV is also a doubling weight and it is easy to see that
(WV )n(x) ∼ Wn(x)Vn(x) and Vn(x) ≥ cn–� . Thus, by Theorem ., we have

∫ π

–π

f pWV ∼
∫ π

–π

f p(WV )n

∼
∫ π

–π

f pWnVn

≥ c
n�

∫ π

–π

f pWn

∼ 
n�

∫ π

–π

f pW ,

which completes the proof. �

4 Results on weighted inequalities for generalized trigonometric polynomials
with A∞ weights

In this section we prove the weighted inequalities for generalized trigonometric polyno-
mials with A∞ weights.

4.1 Remez inequality
The Remez inequality is useful because we can exclude exceptional sets of measure at
most . The following describes such inequalities for generalized trigonometric polyno-
mials with A∞ weights.

Theorem . Let  < p < ∞ and let W be an A∞ weight. Then there is a constant C > 
depending only on p and on the weight W such that if f ∈ GTn ( ≤ n ∈ R

+) with each
rj ≥  in its representation (.) and E is a measurable subset of [, π ] of measure at most
λ ∈ (, ], then

∫

[,π ]
f pW ≤ C+nλ

∫

[,π ]\E
f pW . (.)

Proof First we show that if we replace W by Wn in (.), then inequality holds. By (.),
we have a trigonometric polynomial Pn of degree at most ( log L

p + )n such that

Pp
n ∼ Wn.

Then we apply the Remez inequality for generalized trigonometric polynomials (see The-
orem  in []) to fPn ∈ GTbn where b = ( log L

p + ) as follows:

∫

[,π ]
f pWn ≤ C

∫

[,π ]
(fPn)p

≤ CC+bnλ

∫

[,π ]\E
(fPn)p

≤ C
 C+bnλ

∫

[,π ]\E
f pWn. (.)
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Note that the case  < p < ∞ of the theorem follows from the case  < p ≤ . So from
now on we assume that  < p ≤ . Next we follow the proof of Theorem .. Let K be a
large positive even integer which will be chosen later, and set n∗ = [n] and

Ji :=
[

iπ
Kn∗ ,

(i + )π
Kn∗

]
, i = , , . . . , Kn∗ – .

Define the set J by

J :=
{

i : |E ∩ Ji| ≥ |Ji|/
}

,

and let

I∗ =
⋃

i∈J

Ji.

Then

∣∣I∗∣∣ ≤ 
∑

i∈J

|E ∩ Ji| ≤ |E| ≤ λ.

Let αi ∈ Ji be a point such that f (αi) = maxx∈Ji f (x) and let βi ∈ Ji be a point such that
Wn(βi) = maxx∈Ji Wn(x). Let

Mn =
∑

i /∈J

f p(αi)Wn(βi).

Now let ξi ∈ Ji be arbitrary. Using exactly the same method as in the proof of Theorem .
(from (.) to (.)), we have

Mn –
∑

i /∈J

f p(ξi)Wn(βi) ≤ CK –pn
∫ π


f pWn.

By (.) we have

∫ π


f pWn ≤ C

 C+bnλ

∫

[,π ]\I∗
f pWn = C

 C+bnλ
∑

i /∈J

∫

Ji

f pWn

≤ C
 C+bnλ

∑

i /∈J

|Ji|f p(αi)Wn(βi) = C
 C+bnλ π

Kn∗ Mn,

hence,

Mn –
∑

i /∈J

f p(ξi)Wn(βi) ≤ CC+bnλ 
Kp Mn,

from which it follows that

Mn –
∑

i /∈J

f p(ξi)Wn(βi) ≤ 


Mn,
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provided

K =
(
CC+bnλ

)/p. (.)

Using

L–Wn(βi) ≤ Wn(ηi) ≤ LWn(βi)

uniformly whenever ηi ∈ Ji, we have, for any ξi, ηi ∈ Ji,


L

Mn ≤
∑

i /∈J

f p(ξi)Wn(ηi).

In particular, this is true for the points γi ∈ Ji and δi ∈ Ji where f (γi) = minx∈Ji f (x) and
Wn(δi) = minx∈Ji Wn(x), hence, we have, for any xi, yi ∈ Ji,


L

Mn ≤
∑

i /∈J

f p(xi)Wn(yi)

≤ Mn ≤ L
∑

i /∈J

f p(γi)Wn(δi).

Now we use the property of the A∞ weight. If i /∈ J , then |Ji \ E| ≥ |Ji|/ = π/(Kn∗), hence,
by Lemma .(vi)′ in [], there are constants s and D such that, for yi ∈ Ji, i /∈ J ,

Wn(yi) = n
∫ yi+/n

yi–/n
W ≤ nD

(
/n

|Ji \ E|
)s ∫

Ji\E
W

≤ nD
(

K
π

)s ∫

Ji\E
W . (.)

Similarly to (.), we have

∑

i /∈J

f p(xi)Wn(yi) ≤ CnD
(

K
π

)s ∑

i /∈J

∫

Ji\E

(
min
x∈Ji

f p(x)
)

W (x) dx,

whenever xi, yi ∈ Ji. Letting xi = yi = iπ/(Kn∗) + x and integrating the above inequality
with respect to x ∈ [, (π )/(Kn∗)], we obtain

∑

i /∈J

∫

Ji

f p(x)Wn(x) dx =
∫

[,π ]\I∗
f pWn

≤
(

π

Kn∗

)
CnD

(
K
π

)s ∑

i /∈J

∫

Ji\E

(
min
x∈Ji

f p(x)
)

W (x) dx

≤ C+sD
(

π

K

)–s ∑

i /∈J

∫

Ji\E
f p(x)W (x) dx

≤ CKs–
∫

[,π ]\(I∗∪E)
f p(x)W (x) dx.
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Applying Theorem ., (.), and the definition of K in (.), we have

∫

[,π ]
f pW ≤ C

∫

[,π ]
f pWn ≤ CC

 C+bnλ

∫

[,π ]\I∗
f pWn

≤ CC+bnλKs–
∫

[,π ]\(I∗∪E)
f pW

≤ C
(
C(p+s–)/p)+bnλ

∫

[,π ]\E
f pW ,

which proves the theorem. �

4.2 Nikolskii inequality
Nikolskii inequality is used to compare the Lp and Lq norms of polynomials. The following
theorem describes such inequalities for generalized trigonometric polynomials with A∞
weights.

Theorem . Let W be an A∞ weight and let  < p < q < ∞. Then there is a constant C > 
depending only on p and q and on the weight W such that for every f ∈ GTn ( ≤ n ∈ R

+)
with each rj ≥  in its representation (.) we have

(∫ π

–π

f qW
)/q

≤ Cn/p–/q
(∫ π

–π

f pW p/q
)/p

.

Proof Define the set E by

E =
{

x ∈ [–π ,π ] : f q(x)W (x) ≥ n
∫ π

–π

f qW
}

.

Then
∫

E f qW ≥ n|E| ∫ π

–π
f qW , hence, |E| ≤ /n. Now applying the Theorem ., we have

∫ π

–π

f qW ≤ C
∫

[–π ,π ]\E
f qW

≤ C
∥∥f qW

∥∥(q–p)/q
L∞

[–π ,π ]\E

(∫ π

–π

f pW p/q
)

≤ Cn(q–p)/q
(∫ π

–π

f qW
)(q–p)/q(∫ π

–π

f pW p/q
)

.

Taking pth root yields the theorem. �

5 Conclusions
In this paper, we have established weighted inequalities, such as the Bernstein,
Marcinkiewicz, Schur, Remez, Nikolskii inequalities, for generalized trigonometric poly-
nomials with doubling weights. We also have established the large sieve for generalized
trigonometric polynomials with doubling weights.
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Endnotes
a Here, and in what follows, [x] denotes the integer part of x.
b In what follows A ∼ Bmeans that there are two positive constants C1 and C2 such that C1 ≤ B/A≤ C2 .
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