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Abstract
In this paper, we investigate the admissible entire solutions of finite order of the
differential-difference equations (f ′(z))2 + P2(z)f 2(z + c) = Q(z)eα(z) and
(f ′(z))2 + [f (z + c) – f (z)]2 = Q(z)eα(z), where P(z), Q(z) are two non-zero polynomials,
α(z) is a polynomial and c ∈C\{0}. In addition, we investigate the non-existence of
entire solutions of finite order of the differential-difference equation
(f ′(z))n + P(z)f m(z + c) = Q(z), where P(z), Q(z) are two non-constant polynomials,
c ∈ C\{0},m, n are positive integers and satisfy 1

m + 1
n < 2 except form = 1, n = 2.
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1 Introduction and main results
In this paper, we assume that the reader is familiar with the standard symbols and funda-
mental results of Nevanlinna theory [, ]. In addition, we denote by S(r, f ) any quantify
satisfying S(r, f ) = o(T(r, f )), as r → ∞, outside of a possible exceptional set of finite log-
arithmic measure. We define the logarithmic measure of E to be lm(E) =

∫
E∩(,∞)

dr
r . A set

E ⊂ (,∞) is said to have finite logarithmic measure if lm(E) < ∞. Throughout this paper,
all constants are complex constants unless otherwise specified.

Nevanlinna’s value theory of meromorphic functions has been used to study the proper-
ties of entire or meromorphic solutions of differential equations and difference equations
in complex plane, such as [–]. In [], Montel stated the following theorem.

Theorem A Let f (z), g(z) be two transcendental entire functions. Then if m and n are
integers ≥ , the functional equation

f n(z) + gn(z) =  (.)

cannot hold.

However, when n =  and g(z) has a specific relationship with f (z) in (.), the problem
that whether we can obtain the accurate expressions of entire solutions or not is worth
to be considered. Recently, many results focused on this problem that were obtained by
using the Nevanlinna theory, such as [–].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1368-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1368-1&domain=pdf
mailto:chenminfeng198710@126.com


Chen et al. Journal of Inequalities and Applications  (2017) 2017:90 Page 2 of 17

In [], Liu et al. considered Fermat type differential-difference equation and obtained
the following results.

Theorem B The transcendental entire solutions with finite order of

(
f ′(z)

) + f (z + c) =  (.)

must satisfy f (z) = sin(z ± iB), where B is a constant and c = kπ or c = kπ + π , k is an
integer.

Theorem C The transcendental entire solutions with finite order of

(
f ′(z)

) +
(
f (z + c) – f (z)

) =  (.)

must satisfy f (z) = 
 sin(z + iB), where c = kπ + π

 , k is an integer, and B is a constant.

In [], Chen and Gao improved Theorem B and obtained the following result.

Theorem D Let P(z), Q(z) be two non-zero polynomials. If the differential-difference equa-
tion

(
f ′(z)

) + P(z)f (z + c) = Q(z) (.)

admits a transcendental entire solution of finite order, then P(z), Q(z) reduce to constants,
and

f (z) =
peaz+b – qe–(az+b)

a
,

where a = ±iA, A = (–)kkπ

c , k is an integer, b is a constant and p, q, c are non-zero constants.

Remark . Equation (.) is a special case of (.). Theorem D generalized Theorem B.
From Theorem D, we see that if P(z) and Q(z) are non-constant polynomials, then equa-
tion (.) has no transcendental entire solution of finite order.

In this paper, we generalize equations (.)-(.) and obtain the following results.

Theorem . Let P(z), Q(z) be two non-zero polynomials, c ∈ C\{} and α(z) be a polyno-
mial. If the differential-difference equation

(
f ′(z)

) + P(z)f (z + c) = Q(z)eα(z) (.)

admits a transcendental entire solution of finite order, then f (z) must satisfy one of the
following cases:

(i) P(z) and Q(z) reduce to constants, and

f (z) =
qeAz+B

A
+

qeAz+B

A
,
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where A = ieAcp, A = –ieAcp, B, B are constants and A, A, q, q, p, c are non-zero
constants;

(ii) P(z) reduces to a constant, Q(z) is a polynomial with degree , and

f (z) =
(az + a – a

A
)eAz+B

A
+

qeAz+B

A
,


A

= c,


A
	= c,

or

f (z) =
qeAz+B

A
+

(bz + b – b
A

)eAz+B

A
,


A

	= c,


A
= c,

where A = ieAcp, A = –ieAcp, B, B, a, b are constants and A, A, q, q, a, b, p, c
are non-zero constants;

(iii)

f (z) = B(z)eAz, α(z) = Az + D,

where B(z) satisfies [B′(z) + AB(z)] + P(z)B(z + c)eAc = Q(z)eD, A, c are non-zero con-
stants, D is a constant.

Remark . In equation (.), when α(z) is a constant, then equation (.) reduces to equa-
tion (.). That is, Theorem . generalizes Theorems B and D.

Theorem . Let Q(z) be a non-zero polynomial, α(z) be a polynomial and c ∈ C\{}. If
the differential-difference equation

(
f ′(z)

) +
[
f (z + c) – f (z)

] = Q(z)eα(z) (.)

admits a transcendental entire solution of finite order, then f (z) must satisfy one of the
following cases:

(i)

f (z) = B(z)eAz + c, α(z) = Az + D,

where B(z) satisfies [B′(z) + AB(z)] + [B(z + c)eAc – B(z)] = Q(z)eD, A, c are non-zero con-
stants, c, D are constants; In particular, if A = ±i, then

f (z) =
qeB + qeB

–i
e–iz + c, qeB = qeB

(
eic – 

)
,

or

f (z) =
beB (iz + ) + i(qeB + beB )


e–iz + c, b(ic + ) = –iqeB–B , e–ic = ,

or

f (z) =
qeB + qeB

i
eiz + c, qeB = qeB

(
e–ic – 

)
,
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or

f (z) =
aeB (–iz + ) – i(aeB + qeB )


eiz + c, a(ic – ) = –iqeB–B , eic = ,

where c, c, c, c, B, B, a, b are constants and a, b, q, q, c are non-zero constants;
(ii)

f (z) =
qeB z


+

qeAz+B

A
+ c, eAc –  = iA, c = –i,

or

f (z) =
qeAz+B

A
+

qeB z


+ c, eAc –  = –iA, c = i,

where B, B, c, c are constants and A, A, q, q are non-zero constants;
(iii)

f (z) =
qeAz+B

A
+

qeAz+B

A
+ c,

or

f (z) =
(az + a – a

A
)eAz+B

A
+

qeAz+B

A
+ c,


A + i

= c,

or

f (z) =
qeAz+B

A
+

(bz + b – b
A

)eAz+B

A
+ c,


A – i

= c,

or

f (z) =
(az + a – a

A
)eAz+B

A
+

(bz + b – b
A

)eAz+B

A
+ c,


A + i

=


A – i
= c,

where eAc –  = –iA, eAc –  = iA, B, B, a, b are constants and A, A, q, q, a, b, c
are non-zero constants.

Remark . In equation (.), when Q(z) is non-zero constant and α(z) is a constant, then
equation (.) reduces to equation (.). That is, Theorem . generalizes Theorem C.

Fermat type functional equations were investigated by Gross [, ] and many others.
In [], Yang studied the Fermat type functional equation

a(z)f n(z) + b(z)gm(z) = , (.)

where a(z), b(z) are small functions with respect to f (z) and obtained the following result.

Theorem E Let m, n be positive integers satisfying 
m + 

n < . Then there are no non-
constant entire solutions f (z) and g(z) that satisfy (.).
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When g(z) has a specific relationship with f (z) in (.), Liu et al. [] studied the
differential-difference equation

(
f ′(z)

)n + f m(z + c) = , (.)

and obtained the following result.

Theorem F Equation (.) has no transcendental entire solutions with finite order, pro-
vided that m 	= n, where m, n are positive integers.

Now, we generalize (.) and obtain the following result.

Theorem . Let P(z), Q(z) be two non-constant polynomials and c ∈ C\{}, then the
equation

(
f ′(z)

)n + P(z)f m(z + c) = Q(z) (.)

has no transcendental entire solutions with finite order, provided that 
m + 

n <  except for
m = , n = , where m, n are positive integers.

2 Some lemmas
In order to prove our conclusions, we need some lemmas.

Lemma . (see [, ]) Let f (z) be a transcendental meromorphic solution of

f nP(z, f ) = Q(z, f ),

where P(z, f ) and Q(z, f ) are polynomials in f (z) and its derivatives with meromorphic co-
efficients, say {aλ|λ ∈ I}, such that m(r, aλ) = S(r, f ) for all λ ∈ I . If the total degree of Q(z, f )
as a polynomial in f (z) and its derivatives is ≤ n, then m(r, P(z, f )) = S(r, f ).

Lemma . (see []) Suppose that f(z), f(z), . . . , fn(z) (n ≥ ) are meromorphic functions
and g(z), g(z), . . . , gn(z) are entire functions satisfying the following conditions:

()
∑n

j= fj(z)egj(z) ≡ .
() gj(z) – gk(z) are not constants for  ≤ j < k ≤ n.
() For  ≤ j ≤ n,  ≤ h < k ≤ n, T(r, fj(z)) = o(T(r, egh(z)–gk (z))) (r → ∞, r /∈ E).

Then fj(z) ≡  (j = , . . . , n).

Lemma . (see []) Suppose that f(z), f(z), . . . , fn(z) (n ≥ ) are meromorphic functions
which are not constants except for fn(z). Furthermore, let

∑n
j= fj(z) ≡ . If fn(z) 	≡  and

n∑

j=

N
(

r,


fj(z)

)

+ (n – )
n∑

j=

N
(
r, fj(z)

)
<

(
λ + o()

)
T

(
r, fk(z)

)
,

where r ∈ I , k = , , . . . , n –  and λ < , then fn(z) ≡ .
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Lemma . Let Q(z) be a non-zero polynomial and satisfy

Q(z + c) – Q(z) ≡ aQ′(z) + b, (.)

where a, c are non-zero constants, b is a constant, then one of the following cases holds:
(i) if b =  and a 	= c, then Q(z) reduces to a non-zero constant;

(ii) if b =  and a = c, then Q(z) reduces to a non-zero constant or Q(z) = az + a, where
a is a non-zero constant, a is a constant;

(iii) if b 	=  and a 	= c, then Q(z) = az + a and b = a(c – a), where a is a non-zero
constant, a is a constant;

(iv) if b 	=  and a = c, then Q(z) = az + az + a and b = ac, where a is a non-zero
constant, a, a are constants.

Proof Denote

Q(z) = aszs + as–zs– + · · · + a (as 	= ).

Then

Q′(z) = saszs– + (s – )as–zs– + · · · + a,

Q(z + c) = as(z + c)s + as–(z + c)s– + · · · + a,

Q(z + c) – Q(z) = sasczs– +
(
asC

s c + as–C
s–c

)
zs– + · · · .

(i) If b =  and a 	= c, comparing the coefficients of zs– on both sides of (.), we see that
sasc = asas, it contradicts with a 	= c and as 	= .

(ii) If b = , a = c and s ≥ , comparing the coefficients of zs– on both sides of (.), we
see that asC

s c + as–C
s–c = a(s – )as–, then asC

s c = , a contradiction. Thus s ≤ , that
is, Q(z) reduces to a non-zero constant or Q(z) is a non-constant polynomial with degree .

(iii) If b 	=  and a 	= c, Q(z) is a non-zero constant, note that b 	= , clearly (.) is a
contradiction. If s ≥ , comparing the coefficients of zs– on both sides of (.), we see that
sasc = asas, a contradiction. If s = , by (.), we see that b = a(c – a) 	= .

(iv) If b 	=  and a = c, Q(z) is a non-zero constant, note that b 	= , clearly (.) is a contra-
diction. If s = , by (.), we see that b = a(c – a) = , a contradiction. If s ≥ , comparing
the coefficients of zs– on both sides of (.), we see that asC

s c + as–C
s–c = a(s – )as–,

then asC
s c = , a contradiction. If s = , by (.), we see that b = ac 	= . �

Lemma . (see []) Let η, η be two complex numbers such that η 	= η and let f (z) be a
finite order meromorphic function. Then we have

m
(

r,
f (z + η)
f (z + η)

)

= S(r, f ).

3 Proof of Theorem 1.1
Suppose that f (z) is a transcendental entire solution of finite order of (.), then

[
f ′(z) + iP(z)f (z + c)

][
f ′(z) – iP(z)f (z + c)

]
= Q(z)eα(z). (.)
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Thus, both f ′(z)+ iP(z)f (z+c) and f ′(z)– iP(z)f (z+c) are entire functions with finitely many
zeros. Combining (.) with the Hadamard factorization theorem [], Theorem ., we
assume that

f ′(z) + iP(z)f (z + c) = Q(z)eα(z)

and

f ′(z) – iP(z)f (z + c) = Q(z)eα(z),

where Q(z), Q(z) are two non-zero polynomials, α(z), α(z) are two polynomials and
cannot be constants simultaneously, otherwise f (z) is a polynomial. Thus, we have

f ′(z) =
Q(z)eα(z) + Q(z)eα(z)


(.)

and

f (z + c) =
Q(z)eα(z) – Q(z)eα(z)

iP(z)
. (.)

Differentiating (.) and shifting (.) by replacing z with z + c, we have

[Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z)
iP(z)Q(z + c)

eα(z)–α(z+c)

–
[Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z)

iP(z)Q(z + c)
eα(z)–α(z+c)

–
Q(z + c)
Q(z + c)

eα(z+c)–α(z+c) ≡ . (.)

We deduce that [Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z) 	≡  and [Q′
(z) + Q(z)α′

(z)]P(z) –
Q(z)P′(z) 	≡ . If [Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z) ≡ , then P(z) ≡ AQ(z)eα(z), where

A is a non-zero constant. Note that P(z), Q(z) are non-zero polynomials, then α(z) must
be a constant. Let α(z) ≡ A. Since α(z) and α(z) cannot be constants simultaneously,
thus α(z) cannot be a constant, then [Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z) 	≡ . Then (.)

can be rewritten as

[(
Q′

(z) + Q(z)α′
(z)

)
P(z) – Q(z)P′(z)

]
eα(z) + iP(z)Q(z + c)eα(z+c)

+ iP(z)Q(z + c)eA = . (.)

If degα(z) ≥ , then degα(z) = degα(z + c) ≥ , deg(α(z + c) – α(z)) ≥ , and eα(z),
eα(z+c), eα(z+c)–α(z) are of regular growth, by Lemma ., we have

[
Q′

(z) + Q(z)α′
(z)

]
P(z) – Q(z)P′(z) ≡ iP(z)Q(z + c) ≡ iP(z)Q(z + c) ≡ ,

a contradiction. Thus degα(z) ≤ , note that α(z) cannot be a constant, then α(z) =
Az + B, where A is a non-zero constant. Rewriting (.) as

H(z)eAz ≡ –iP(z)Q(z + c)eA , (.)
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where H(z) = iP(z)Q(z + c)eAc+B + [(Q′
(z) + Q(z)α′

(z))P(z) – Q(z)P′(z)]eB . If H(z) ≡ ,
since iP(z)Q(z + c)eA 	≡ , clearly (.) is a contradiction. If H(z) 	≡ , we can see that the
left side of (.) is a transcendental entire function, and the right side of (.) is a non-zero
polynomial, a contradiction.

Similarly, we can prove that [Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z) 	≡ .
Thus, [Q′

(z)+Q(z)α′
(z)]P(z)–Q(z)P′(z) 	≡  and [Q′

(z)+Q(z)α′
(z)]P(z)–Q(z)P′(z) 	≡

, by (.) and Lemma ., we see that if any two of eα(z)–α(z+c), eα(z)–α(z+c) and
eα(z+c)–α(z+c) are not constants, then the third term must be constant. If any two of them
are constants, then the third term also must be constant. In what follows, we discuss
four cases: Case , eα(z)–α(z+c) and eα(z)–α(z+c) are not constants; Case , eα(z)–α(z+c) and
eα(z+c)–α(z+c) are not constants; Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are not constants;
Case , eα(z)–α(z+c), eα(z)–α(z+c) and eα(z+c)–α(z+c) are all constants.

Case , eα(z)–α(z+c) and eα(z)–α(z+c) are not constants, by (.) and Lemma ., we have

–
Q(z + c)
Q(z + c)

eα(z+c)–α(z+c) ≡ , (.)

which implies that α(z + c) – α(z + c) is a constant, and

[Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z)
[Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z)

eα(z)–α(z) ≡ , (.)

which implies that α(z) – α(z) is a constant.
Denote eα(z+c)–α(z+c) = eα(z)–α(z) = k ( 	= ), by (.), we get Q(z) = –kQ(z), substituting

it into (.) yields


[
P′(z)Q(z) – P(z)Q′

(z)
] ≡ P(z)Q(z)

[
α′

(z) + α′
(z)

]
.

Since P(z) and Q(z) are non-zero polynomials, α(z) and α(z) are polynomials, from the
above identity, we get α′

(z) + α′
(z) ≡ , that is, α(z) + α(z) is a constant. Note that α(z) –

α(z) is a constant, then both α(z) and α(z) are constants, a contradiction.
Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are not constants, by (.) and Lemma ., we have

–
[Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z)

iP(z)Q(z + c)
eα(z)–α(z+c) ≡ ,

which implies that α(z)–α(z +c) is a constant, then α(z +c)–α(z +c) is also a constant,
and

[Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z)
iP(z)Q(z + c)

eα(z)–α(z+c) ≡ ,

which implies that α(z) – α(z + c) is a constant.
By α(z)–α(z+c) = [α(z)–α(z+c)]+[α(z+c)–α(z+c)], we see that α(z)–α(z+c)

is a constant, then α(z) is a constant or a polynomial with degree , which implies that
α(z) – α(z + c) is also a constant, a contradiction.

Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are not constants, by (.) and Lemma ., we have

[Q′
(z) + Q(z)α′

(z)]P(z) – Q(z)P′(z)
iP(z)Q(z + c)

eα(z)–α(z+c) ≡ , (.)
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which implies that α(z) – α(z + c) is a constant, note that [Q′
(z) + Q(z)α′

(z)]P(z) –
Q(z)P′(z) 	≡ , then α(z) cannot be a constant, therefore, α(z) can only be a polyno-
mial with degree . Denote α(z) = Az + B, where A is a non-zero constant, and B is a
constant. Rewriting (.) as

AP(z)Q(z) + P(z)Q′
(z) – P′(z)Q(z) ≡ ieAcP(z)Q(z + c), (.)

P(z) must be a constant, denoted P(z) ≡ p ( 	= ). Then (.) can be rewritten as

Q(z + c) – Q(z) ≡ 
A

Q′
(z) and A = ieAcp.

By Lemma ., we have (i) if 
A

	= c, then Q(z) ≡ q (constant); (ii) if 
A

= c, then Q(z) ≡ q

(constant) or Q(z) = az + a, where a is a non-zero constant and a is a constant.
By (.) and (.), we have

–
[Q′

(z) + Q(z)α′
(z)]P(z) – Q(z)P′(z)

iP(z)Q(z + c)
eα(z)–α(z+c) ≡ , (.)

which implies that α(z) – α(z + c) is a constant, note that [Q′
(z) + Q(z)α′

(z)]P(z) –
Q(z)P′(z) 	≡ , so α(z) cannot be a constant, then α(z) can only be a polynomial with
degree , denote α(z) = Az + B, where A is a non-zero constant and B is a constant.
Note that P(z) ≡ p ( 	= ), then (.) can be rewritten as

Q(z + c) – Q(z) ≡ 
A

Q′
(z) and A = –ieAcp.

By Lemma ., we have (i) if 
A

	= c, then Q(z) ≡ q (constant); (ii) if 
A

= c, then Q(z) ≡ q

(constant) or Q(z) = bz + b, where b is a non-zero constant and b is a constant.
Note that A = ieAcp and A = –ieAcp, we see that A 	= A, that is, 

A
	= 

A
. In what

follows, we discuss three subcases: Subcase ., 
A

	= c and 
A

	= c; Subcase ., 
A

= c and


A
	= c; Subcase ., 

A
	= c and 

A
= c.

Subcase ., 
A

	= c and 
A

	= c, then Q(z) ≡ q and Q(z) ≡ q, by (.), (.) and (.),
we obtain

f ′(z) =
qeAz+B + qeAz+B



and

f (z) =
qeAz+B

A
+

qeAz+B

A
.

Subcase ., 
A

= c and 
A

	= c, then Q(z) ≡ q and Q(z) ≡ q or Q(z) = az + a and
Q(z) ≡ q. If Q(z) ≡ q and Q(z) ≡ q, the same as Subcase .. If Q(z) = az + a and
Q(z) ≡ q, by (.), (.) and (.), we obtain

f ′(z) =
(az + a)eAz+B + qeAz+B
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and

f (z) =
(az + a – a

A
)eAz+B

A
+

qeAz+B

A
.

Subcase ., 
A

	= c and 
A

= c, then Q(z) ≡ q and Q(z) ≡ q or Q(z) ≡ q and Q(z) =
bz + b. If Q(z) ≡ q and Q(z) ≡ q, the same as Subcase .. If Q(z) ≡ q and Q(z) =
bz + b, by (.), (.) and (.), we obtain

f ′(z) =
qeAz+B + (bz + b)eAz+B



and

f (z) =
qeAz+B

A
+

(bz + b – b
A

)eAz+B

A
.

Case , eα(z)–α(z+c), eα(z)–α(z+c) and eα(z+c)–α(z+c) are all constants, that is, α(z)–α(z+c),
α(z) – α(z + c) and α(z + c) – α(z + c) are all constants. Note that α(z) and α(z) are not
constants simultaneously, then α(z) = Az + B, α(z) = Az + B and α(z) = Az + D, where
A is non-zero constant and B, B, D (= B + B) are constants. Therefore, by (.), (.)
and (.), we have f (z) = B(z)eAz , where B(z) satisfies [B′(z) + AB(z)] + P(z)B(z + c)eAc =
Q(z)eD.

This completes the proof of Theorem ..

4 Proof of Theorem 1.2
As in the beginning of the proof of Theorem ., from (.), we have

f ′(z) =
Q(z)eα(z) + Q(z)eα(z)


(.)

and

f (z + c) – f (z) =
Q(z)eα(z) – Q(z)eα(z)

i
. (.)

where Q(z), Q(z) are two non-zero polynomials, α(z), α(z) are two polynomials and
cannot be constants simultaneously, otherwise f (z) is a polynomial. Differentiating (.),
shifting (.) by replacing z with z + c and combining (.), we have

Q′
(z) + Q(z)α′

(z) + iQ(z)
iQ(z + c)

eα(z)–α(z+c)

–
Q′

(z) + Q(z)α′
(z) – iQ(z)

iQ(z + c)
eα(z)–α(z+c) –

Q(z + c)
Q(z + c)

eα(z+c)–α(z+c) ≡ . (.)

If Q′
(z)+Q(z)α′

(z)+ iQ(z) ≡ , that is, –Q′
(z) = (α′

(z)+ i)Q(z), then we have α′
(z)+ i ≡ 

and Q(z) ≡ q (constant). Thus α(z) = –iz + B, where B is a constant, substitute it into
(.) yields

[
Q′

(z) + Q(z)
(
α′

(z) – i
)]

eα(z) + iQ(z + c)eα(z+c) + iQ(z + c)eα(z+c) ≡ . (.)
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Suppose degα(z) ≥ . Clearly, Q′
(z) + Q(z)(α′

(z) – i) 	≡ . According to degα(z) =
degα(z + c) ≥ , degα(z + c) = , deg(α(z + c) – α(z + c)) = deg(α(z) – α(z + c)) ≥  and
deg(α(z + c) – α(z)) ≥ , and eα(z), eα(z+c), eα(z+c), eα(z+c)–α(z+c), eα(z)–α(z+c), eα(z+c)–α(z)

are of regular growth, by Lemma ., we have

Q′
(z) + Q(z)

(
α′

(z) – i
) ≡ iQ(z + c) ≡ iQ(z + c) ≡ ,

a contradiction. Thus degα(z) ≤ , that is, α(z) = B (constant) or α(z) = Az + B, where
A is a non-zero constant. If α(z) ≡ B, by (.), we have eα(z+c) ≡ – eB [Q′

(z)–iQ(z)+iQ(z+c)]
iQ(z+c) ,

the left side of this identity is a transcendental entire function, and the right side of this
identity is a rational function, a contradiction. Hence, α(z) = Az + B. Rewriting (.) as

–iqe(–i–A)z–ic+B–B ≡ Q′
(z) + (A – i)Q(z) + ieAcQ(z + c).

If –i–A 	= , clearly the above identity is a contradiction. Then A = –i. The above identity
can be rewritten as

iQ(z) – Q′
(z) – iqe–ic+B–B ≡ ie–icQ(z + c). (.)

If Q(z) ≡ q (constant), by (.), we get qeB = qeB (eic – ). By (.), (.) and (.), we
have

f ′(z) =
qeB + qeB


e–iz

and

f (z) =
qeB + qeB

–i
e–iz + c.

If Q(z) is a non-constant polynomial, by (.), we obtain

i
[
Q(z + c) – Q(z)

]
= –Q′

(z) – iqe–ic+B–B , i = ie–ic.

Note that –iqe–ic+B–B 	=  and – 
i 	= c, by Lemma ., we see that Q(z) = bz + b, where

b is a non-zero constant and b is a constant. From (.), we get b(ic + ) = –iqeB–B ,
by (.), (.) and (.), we have

f ′(z) =
(bz + b)eB + qeB


e–iz

and

f (z) =
beB (iz + ) + i(qeB + beB )


e–iz + c.

Similarly, if Q′
(z) + Q(z)α′

(z) – iQ(z) ≡ , then we have

f (z) =
qeB + qeB

i
eiz + c, qeB = qeB

(
e–ic – 

)
,
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or

f (z) =
aeB (–iz + ) – i(aeB + qeB )


eiz + c, a(ic – ) = –iqeB–B , eic = ,

where c, c, B, B, a are constants and a, q, q are non-zero constants.
According to the above proof, we can see that Q′

(z) + Q(z)α′
(z) + iQ(z) ≡  and

Q′
(z) + Q(z)α′

(z) – iQ(z) ≡  cannot be valid simultaneously. In what follows, we as-
sume that Q′

(z) + Q(z)α′
(z) + iQ(z) 	≡  and Q′

(z) + Q(z)α′
(z) – iQ(z) 	≡ . By (.)

and Lemma ., we see that if any two of eα(z)–α(z+c), eα(z)–α(z+c) and eα(z+c)–α(z+c) are
not constants, then the third term must be constant. If any two of them are constants,
then the third term also must be constant. In the following, we discuss four cases: Case
, eα(z)–α(z+c) and eα(z)–α(z+c) are not constants; Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are
not constants; Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are not constants; Case , eα(z)–α(z+c),
eα(z)–α(z+c) and eα(z+c)–α(z+c) are all constants.

Case  and Case , similarly to the proof of Case  and Case  of Theorem ., we can
obtain a contradiction.

Case , eα(z)–α(z+c) and eα(z+c)–α(z+c) are not constants, by (.) and Lemma ., we have

Q′
(z) + Q(z)α′

(z) + iQ(z)
iQ(z + c)

eα(z)–α(z+c) ≡ , (.)

which implies that α(z) – α(z + c) is a constant, then α(z) = Az + B or α(z) ≡ B, where
A is a non-zero constant and B is a constant. By (.) and (.), we also have

–
Q′

(z) + Q(z)α′
(z) – iQ(z)

iQ(z + c)
eα(z)–α(z+c) ≡ , (.)

which implies that α(z) – α(z + c) is a constant, then α(z) = Az + B or α(z) ≡ B,
where A is a non-zero constant and B is a constant. Note that α(z) and α(z) cannot be
constants simultaneously, In what follows, we discuss three subcases: Subcase ., α(z) ≡
B and α(z) = Az + B; Subcase ., α(z) = Az + B and α(z) ≡ B; Subcase ., α(z) =
Az + B and α(z) = Az + B.

Subcase ., α(z) ≡ B and α(z) = Az + B, by (.), we have

Q(z + c) – Q(z) ≡ –iQ′
(z).

By Lemma ., we see that if c 	= –i, then Q(z) ≡ q (constant); If c = –i, then Q(z) ≡ q

(constant) or Q(z) = az + a, where a is a non-zero constant and a is a constant.
By (.), we have

Q(z + c) – Q(z) ≡ 
A – i

Q′
(z) and A – i = –ieAc.

By Lemma ., we see that if 
A–i 	= c, then Q(z) = q (constant); If 

A–i = c, then Q(z) ≡
q (constant) or Q(z) = bz + b, where b is a non-zero constant and b is a constant.

If Q(z) ≡ q and Q(z) ≡ q, by (.), (.) and (.), we get c = –i. Note that A – i =
–ieAc, then 

A–i 	= –i. Therefore, we only need to consider three subcases: Subcase ..,
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A–i 	= c (= –i), Q(z) ≡ q and Q(z) ≡ q; Subcase .., 

A–i 	= c (= –i), Q(z) = az + a

and Q(z) ≡ q; Subcase .., 
A–i = c ( 	= –i), Q(z) ≡ q and Q(z) = bz + b.

Subcase .., 
A–i 	= c (= –i), Q(z) ≡ q and Q(z) ≡ q, by (.), (.) and (.), we get

f ′(z) =
qeB + qeAz+B



and

f (z) =
qeB z


+

qeAz+B

A
+ c.

Subcase .., 
A–i 	= c (= –i), Q(z) = az + a and Q(z) ≡ q, by (.), (.) and (.), we

have

f ′(z) =
(az + a)eB + qeAz+B


,

f (z) =
aeB z


+

aeB z


+
qeAz+B

A
+ c′

,

and

f (z + c) – f (z) =
(az + a)eB – qeAz+B

i
–

aeB



=
(az + a)eB – qeAz+B

i
,

then a must be zero, a contradiction.
Subcase .., 

A–i = c ( 	= –i), Q(z) ≡ q and Q(z) = bz + b, by (.), (.) and (.), we
have

f ′(z) =
qeB + (bz + b)eAz+B


,

f (z) =
qeB z


+

(bz + b – b
A

)eAz+B

A
+ c′′

,

and

f (z + c) – f (z) =
qeB c


–

(bz + b)eAz+B

i

=
qeB – (bz + b)eAz+B

i
,

then c = –i, note that c 	= –i, a contradiction.
Subcase ., α(z) = Az + B and α(z) ≡ B, similarly to the proof of Subcase ., (.)

admits a transcendental entire solution, if and only if 
A+i 	= c (= i), Q(z) ≡ q and Q(z) ≡

q. By (.), (.) and (.), we get

f ′(z) =
qeAz+B + qeB
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and

f (z) =
qeAz+B

A
+

qeB z


+ c, eAc –  = –iA, c = i,

where B, B, c are constants and q, q are non-zero constants.
Subcase ., α(z) = Az + B and α(z) = Az + B, by (.) and (.), we obtain, respec-

tively,

Q(z + c) – Q(z) ≡ 
A + i

Q′
(z) and A + i = ieAc (.)

and

Q(z + c) – Q(z) ≡ 
A – i

Q′
(z) and A – i = –ieAc. (.)

Clearly, A 	= A. In what follows, we discuss four subcases: Subcase .., 
A+i 	= c and


A–i 	= c; Subcase .., 

A+i = c and 
A–i 	= c; Subcase .., 

A+i 	= c and 
A–i = c; Sub-

case .., 
A+i = 

A–i = c.
Subcase .., 

A+i 	= c and 
A–i 	= c, by (.), (.) and Lemma ., we have Q(z) ≡ q

and Q(z) ≡ q, where q and q are non-zero constants. By (.), (.) and (.), we get

f ′(z) =
qeAz+B + qeAz+B



and

f (z) =
qeAz+B

A
+

qeAz+B

A
+ c.

Subcase .., 
A+i = c and 

A–i 	= c. By 
A+i = c, (.) and Lemma ., we have Q(z) ≡ q

or Q(z) = az + a, where a, q are non-zero constants and a is a constant. By 
A–i 	= c,

(.) and Lemma ., we have Q(z) ≡ q, where q is a non-zero constant. If Q(z) ≡ q

and Q(z) ≡ q, the same as Subcase ... If Q(z) = az + a and Q(z) ≡ q, by (.), (.)
and (.), we get

f ′(z) =
(az + a)eAz+B + qeAz+B



and

f (z) =
(az + a – a

A
)eAz+B

A
+

qeAz+B

A
+ c.

Subcase .., 
A+i 	= c and 

A–i = c, similarly to the proof of Subcase .., we can ob-
tain

f (z) =
qeAz+B

A
+

qeAz+B

A
+ c,
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or

f (z) =
qeAz+B

A
+

(bz + b – b
A

)eAz+B

A
+ c,

where B, B, b, c, c are constants and A, A, q, q, b, c are non-zero con-
stants.

Subcase .., 
A+i = 

A–i = c. By 
A+i = c, (.) and Lemma ., we have Q(z) ≡ q or

Q(z) = az + a, where a, q are non-zero constants and a is a constant. By 
A–i = c,

(.) and Lemma ., we have Q(z) ≡ q or Q(z) = bz + b, where b, q are non-zero
constants and b is a constant. If Q(z) ≡ q and Q(z) ≡ q, the same as Subcase ...
If Q(z) = az + a and Q(z) ≡ q, the same as Subcase ... If Q(z) ≡ q and Q(z) =
bz + b, the same as Subcase ... If Q(z) = az + a and Q(z) = bz + b, by (.), (.)
and (.), we get

f ′(z) =
(az + a)eAz+B + (bz + b)eAz+B



and

f (z) =
(az + a – a

A
)eAz+B

A
+

(bz + b – b
A

)eAz+B

A
+ c.

Case , eα(z)–α(z+c), eα(z)–α(z+c) and eα(z+c)–α(z+c) are all constants, that is, α(z)–α(z+c),
α(z) – α(z + c) and α(z + c) – α(z + c) are all constants. Note that α(z) and α(z) are not
constants simultaneously, then α(z) = Az + B, α(z) = Az + B and α(z) = Az + D, where
A is non-zero constant and B, B, D (= B + B) are constants. Therefore, by (.), (.) and
(.), we have f (z) = B(z)eAz +c, where B(z) satisfies [B′(z)+AB(z)] +[B(z +c)eAc –B(z)] =
Q(z)eD.

This completes the proof of Theorem ..

5 Proof of Theorem 1.3
Suppose that f (z) is a transcendental entire function of finite order satisfying (.). In what
follows, we will discuss four cases: Case , m = n ≥ ; Case , m > n; Case , n > m ≥ ;
Case , n ≥ , m = .

Case , m = n ≥ . If m = n = , note that P(z) and Q(z) are non-constant polynomials,
by Theorem D, we see that (.) has no transcendental entire solutions of finite order. If
m = n ≥ , rewriting (.) as 

Q(z) (f ′(z))n + P(z)
Q(z) f m(z + c) = , by Theorem E, we see that (.)

has no transcendental entire solutions of finite order.
Case  and Case , similarly to the proof of the Case  and Case  of [], Theorem .,

we can also obtain (.) has no transcendental entire solutions of finite order.
Case , n ≥ , m = . Differentiating (.), we get

n
(
f ′(z)

)n–f ′′(z) + P′(z)f (z + c) + P(z)f ′(z + c) = Q′(z).

Substituting (.) into the above equation yields

(
f ′(z)

)n–
[

nf ′′(z) –
P′(z)
P(z)

f ′(z)
]

= –P(z)f ′(z + c) + Q′(z) – Q(z)
P′(z)
P(z)

. (.)
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Denote F(z) = f ′(z), ϕ(z) = nf ′′(z) – P′(z)
P(z) f ′(z) = nF ′(z) – P′(z)

P(z) F(z). Then (.) can be rewrit-
ten as

Fn–(z)ϕ(z) = –P(z)
F(z + c)

F(z)
F(z) + Q′(z) – Q(z)

P′(z)
P(z)

. (.)

By Lemma ., we see that m(r, F(z+c)
F(z) ) = S(r, F) and m(r, Q′(z) – Q(z) P′(z)

P(z) ) = S(r, F), note
that n –  ≥ , by Lemma ., we have

m
(
r,ϕ(z)

)
= S(r, F) and m

(
r, F(z)ϕ(z)

)
= S(r, F).

We see that ϕ(z) 	≡ , otherwise (f ′(z))n = Fn(z) ≡ AP(z), where A is a non-zero constant,
a contradiction. Note that f (z) is a transcendental entire function, then N(r,ϕ(z)) = S(r, F)
and

T
(
r, F(z)

)
= m

(
r, F(z)

) ≤ m
(
r, F(z)ϕ(z)

)
+ m

(

r,


ϕ(z)

)

≤ m
(
r,ϕ(z)

)
+ N

(
r,ϕ(z)

)
+ S(r, F) = S(r, F),

that is, T(r, f ′(z)) = T(r, F(z)) ≤ S(r, F) = S(r, f ′), a contradiction.
This completes the proof of Theorem ..
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