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In this paper, we study three types of sums of products of ordered Bell and
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1 Introduction
The ordered Bell polynomials bm(x) are defined by the generating function


 – et ext =

∞∑

m=

bm(x)
tm

m!
. ()

Thus they form an Appell sequence. For x = , bm = bm(), (m ≥ ) are called ordered
Bell numbers which have been studied in various counting problems in number theory
and enumerative combinatorics (see [, , , , , ]). The ordered Bell numbers are all
positive integers, as we can see, for example, from

bm =
m∑

n=

n!S(m, n) =
∞∑

n=

nm

n+ (m ≥ ).

The first few ordered Bell polynomials are as follows:

b(x) = , b(x) = x + , b(x) = x + x + ,

b(x) = x + x + x + , b(x) = x + x + x + x + ,

b(x) = x + x + x + x + x + .

From (), we can derive

d
dx

bm(x) = mbm–(x) (m ≥ ),

–bm(x + ) + bm(x) = xm (m ≥ ).
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From these, in turn, we have

–bm() + bm = δm, (m ≥ ),
∫ 


bm(x) dx =


m + 

(
bm+() – mm+

)

=


m + 
bm+.

For any integer r, the poly-Bernoulli polynomials of index r B(r)
m (x) are given by the gen-

erating function (see [, , –, , , ])

Lir( – e–t)
et – 

ext =
∞∑

m=

B
(r)
m (x)

tm

m!
,

where Lir(x) =
∑∞

m=
xm

mr is the polylogarithmic function for r ≥  and a rational function
for r ≤ .

We note here that

d
dx

(
Lir+(x)

)
=


x

Lir(x).

Also, we need the following for later use.

d
dx

B
(r)
m (x) = mB

(r)
m–(x) (m ≥ ),

B
()
m (x) = Bm(x), B

(r)
 (x) = , B

()
m (x) = xm,

B
()
m = δm,, B

(r+)
m () – B

(r+)
m () = B

(r)
m– (m ≥ ),

∫ 


B

(r)
m (x) dx =


m + 

(
B

(r)
m+() – B

(r)
m+()

)

=


m + 
B

(r–)
m .

Here the Bernoulli polynomials Bm(x) are given by the generating function

t
et – 

ext =
∞∑

m=

Bm(x)
tm

m!
.

For any real number x, we let

〈x〉 = x – �x� ∈ [, )

denote the fractional part of x.
Finally, we recall the following facts about Bernoulli functions Bm(〈x〉):
(a) for m ≥ ,

Bm
(〈x〉) = –m!

∞∑

n=–∞
n
=

eπ inx

(π in)m ;
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(b) for m = ,

–
∞∑

n=–∞
n
=

eπ inx

π in
=

⎧
⎨

⎩
B(〈x〉), for x /∈ Z,

, for x ∈ Z.

Here we will study three types of sums of products of ordered Bell and poly-Bernoulli
functions and derive their Fourier series expansion. In addition, we will express those func-
tions in terms of Bernoulli functions.

() αm(〈x〉) =
∑m

k= bk(〈x〉)B(r+)
m–k (〈x〉), (m ≥ );

() βm(〈x〉) =
∑m

k=


k!(m–k)! bk(〈x〉)B(r+)
m–k (〈x〉), (m ≥ );

() γm(〈x〉) =
∑m–

k=


k(m–k) bk(〈x〉)B(r+)
m–k (〈x〉), (m ≥ ).

For elementary facts about Fourier analysis, the reader may refer to any book (for exam-
ple, see [, ]).

As to γm(〈x〉), we note that the next polynomial identity follows immediately from The-
orems . and ., which is in turn derived from the Fourier series expansion of γm(〈x〉):

m–∑

k=


k(m – k)

bk(x)B(r+)
m–k (x)

=

m

m∑

s=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs(x),

where Hl =
∑l

j=

j are the harmonic numbers and

�l =
l–∑

k=


k(l – k)

bkB
(r+)
l–k + 

l–∑

k=


k(l – k)

bkB
(r)
l–k–,

with � = .
The polynomial identities can be derived also for the functions αm(〈x〉) and βm(〈x〉) from

Theorems . and ., and Theorems . and ., respectively. We refer the reader to [,
, , ] for the recent papers on related works.

2 Fourier series of functions of the first type
Let

αm(x) =
m∑

k=

bk(x)B(r+)
m–k (x),

where r, m are integers with m ≥ . Then we will study the function

αm
(〈x〉) =

m∑

k=

bk
(〈x〉)B(r+)

m–k
(〈x〉) (m ≥ ),

defined on R which is periodic with period .
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The Fourier series of αm(〈x〉) is

∞∑

n=–∞
A(m)

n eπ inx,

where

A(m)
n =

∫ 


αm

(〈x〉)e–π inx dx

=
∫ 


αm(x)e–π inx dx.

Before proceeding further, we observe the following

α′
m(x) =

m∑

k=

{
kbk–(x)B(r+)

m–k (x) + (m – k)bkB
(r+)
m–k–(x)

}

=
m∑

k=

kbk–(x)B(r+)
m–k (x) +

m–∑

k=

(m – k)bk(x)B(r+)
m–k–(x)

=
m–∑

k=

(k + )bk(x)B(r+)
m–k–(x) +

m–∑

k=

(m – k)bk(x)B(r+)
m–k–(x)

= (m + )αm–(x).

Thus ( αm+(x)
m+ )′ = αm(x), and so

∫ 
 αm(x) dx = 

m+ (αm+() – αm+()). For m ≥ , we put

�m = αm() – αm()

=
m∑

k=

bk()B(r+)
m–k () –

m∑

k=

bkB
(r+)
m–k

=
m–∑

k=

(bk – δk,)
(
B

(r+)
m–k + B

(r)
m–k–

)
+ bm – δm, –

m∑

k=

bkB
(r+)
m–k

= 
m–∑

k=

bkB
(r+)
m–k + 

m–∑

k=

bkB
(r)
m–k– – B

(r+)
m – B

(r)
m– + bm –

m–∑

k=

bkB
(r+)
m–k

=
m∑

k=

bkB
(r+)
m–k + 

m–∑

k=

bkB
(r)
m–k– – B

(r)
m–.

Thus, αm() = αm() ⇐⇒ �m =  and
∫ 

 αm(x) dx = 
m+�m+.

Now, we want to determine the Fourier coefficients A(m)
n .

Case : n 
= .

A(m)
n =

∫ 


αm(x)e–π inx dx

= –


π in
[
αm(x)e–π inx]

 +


π in

∫ 


α′

m(x)e–π inx dx
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=
m + 
π in

∫ 


αm–(x)e–π inx dx –


π in

(
αm() – αm()

)

=
m + 
π in

A(m–)
n –


π in

�m

=
m + 
π in

(
m

π in
A(m–)

n –


π in
�m–

)
–


π in

�m

=
(m + )

(π in) A(m–)
n –

∑

j=

(m + )j–

(π in)j �m–j+

= · · ·

=
(m + )m

(π in)m A()
n –

m∑

j=

(m + )j–

(π in)j �m–j+

= –


m + 

m∑

j=

(m + )j

(π in)j �m–j+,

where we note that A()
n =

∫ 
 e–π inx dx = .

Case : n = .

A(m)
 =

∫ 


αm(x) dx =


m + 

�m+.

αm(〈x〉), (m ≥ ) is piecewise C∞. Moreover, αm(〈x〉) is continuous for those positive in-
tegers m with �m =  and discontinuous with jump discontinuities at integers for those
positive integers m with �m 
= .

Assume first that m is a positive integer with �m = . Then αm() = αm(). Hence αm(〈x〉)
is piecewise C∞ and continuous. Thus the Fourier series of αm(〈x〉) converges uniformly
to αm(〈x〉), and

αm
(〈x〉) =


m + 

�m+ +
∞∑

n=–∞
n
=

(
–


m + 

m∑

j=

(m + )j

(π in)j �m–j+

)
eπ inx

=


m + 
�m+ +


m + 

m∑

j=

(
m + 

j

)
�m–j+

(
–j!

∞∑

n=–∞
n
=

eπ inx

(π in)j

)

=


m + 
�m+ +


m + 

m∑

j=

(
m + 

j

)
�m–j+Bj

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉), for x /∈ Z,

, for x ∈ Z.

Now, we can state our first theorem.

Theorem . For each positive integer l, we let

�l =
l∑

k=

bkB
(r+)
l–k + 

l–∑

k=

bkB
(r)
l–k– – B

(r)
l–.

Assume that �m =  for a positive integer m. Then we have the following
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(a)
∑m

k= bk(〈x〉)B(r+)
m–k (〈x〉) has the Fourier series expansion

m∑

k=

bk
(〈x〉)B(r+)

m–k
(〈x〉)

=


m + 
�m+ +

∞∑

n=–∞
n
=

(
–


m + 

m∑

j=

(m + )j

(π in)j �m–j+

)
eπ inx,

for all x ∈R, where the convergence is uniform.
(b)

m∑

k=

bk
(〈x〉)B(r+)

m–k
(〈x〉) =


m + 

�m+ +


m + 

m∑

j=

(
m + 

j

)
�m–j+Bj

(〈x〉),

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that �m 
=  for a positive integer m. Then αm() 
= αm(). So αm(〈x〉) is
piecewise C∞ and discontinuous with jump discontinuities at integers. The Fourier series
of αm(〈x〉) converges pointwise to αm(〈x〉), for x /∈ Z, and converges to



(
αm() + αm()

)
= αm() +



�m,

for x ∈ Z.
Now, we can state our second theorem.

Theorem . For each positive integer l, we let

�l =
l∑

k=

bkB
(r+)
l–k + 

l–∑

k=

bkB
(r)
l–k– – B

(r)
l–.

Assume that �m 
=  for a positive integer m. Then we have the following.
(a)


m + 

�m+ +
∞∑

n=–∞
n
=

(
–


m + 

m∑

j=

(m + )j

(π in)j �m–j+

)
eπ inx

=

⎧
⎨

⎩

∑m
k= bk(〈x〉)B(r+)

m–k (〈x〉), for x /∈ Z,
∑m

k= bkB
(r+)
m–k + 

�m, for x ∈ Z;

(b)


m + 

�m+ +


m + 

m∑

j=

(
m + 

j

)
�m–j+Bj

(〈x〉)

=
m∑

k=

bk
(〈x〉)B(r+)

m–k
(〈x〉), for x /∈ Z;
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m + 

�m+ +


m + 

m∑

j=

(
m + 

j

)
�m–j+Bj

(〈x〉)

=
m∑

k=

bkB
(r+)
m–k +



�m, for x ∈ Z.

3 Fourier series of functions of the second type
Let βm(x) =

∑m
k=


k!(m–k)! bk(x)B(r+)

m–k (x), where r, m are integers with m ≥ . Then we will
investigate the function

βm
(〈x〉) =

m∑

k=


k!(m – k)!

bk
(〈x〉)B(r+)

m–k
(〈x〉),

defined on R, which is periodic with period .
The Fourier series of βm(〈x〉) is

∞∑

n=–∞
B(m)

n eπ inx,

where

B(m)
n =

∫ 


βm

(〈x〉)e–π inx dx

=
∫ 


βm(x)e–π inx dx.

Before proceeding further, we note the following.

β ′
m(x) =

m∑

k=

{
k

k!(m – k)!
bk–(x)B(r+)

m–k (x) +
m – k

k!(m – k)!
bk(x)B(r+)

m–k–(x)
}

=
m∑

k=


(k – )!(m – k)!

bk–(x)B(r+)
m–k (x) +

m–∑

k=


k!(m – k – )!

bk(x)B(r+)
m–k–(x)

=
m–∑

k=


k!(m – k – )!

bk(x)B(r+)
m–k–(x) +

m–∑

k=


k!(m –  – k)!

bk(x)B(r+)
m–k–(x)

= βm–(x).

Thus

(
βm+(x)



)′
= βm(x), and

∫ 


βm(x) dx =



(
βm+() – βm+()

)
.

For m ≥ , we put

	m = βm() – βm()

=
m∑

k=


k!(m – k)!

bk()B(r+)
m–k () –

m∑

k=


k!(m – k)!

bkB
(r+)
m–k



Kim et al. Journal of Inequalities and Applications  (2017) 2017:84 Page 8 of 17

=
m–∑

k=


k!(m – k)!

(bk – δk,)
(
B

(r+)
m–k + B

(r)
m–k–

)

+


m!
(bm – δm,) –

m∑

k=


k!(m – k)!

bkB
(r+)
m–k

= 
m–∑

k=


k!(m – k)!

bkB
(r+)
m–k + 

m–∑

k=


k!(m – k)!

bkB
(r)
m–k–

–


m!
B

(r+)
m –


m!

B
(r)
m– +


m!

bm –
m–∑

k=


k!(m – k)!

bkB
(r+)
m–k

=
m∑

k=


k!(m – k)!

bkB
(r+)
m–k + 

m–∑

k=


k!(m – k)!

bkB
(r)
m–k– –


m!

B
(r)
m–.

Hence

βm() = βm() ⇐⇒ 	m = , and
∫ 


βm(x) dx =



	m+.

We now would like to determine the Fourier coefficients B(m)
n .

Case : n 
= .

B(m)
n =

∫ 


βm(x)e–π inx dx

= –


π in
[
βm(x)e–π inx]

 +


π in

∫ 


β ′

m(x)e–π inx dx

= –


π in
(
βm() – βm()

)
+


π in

∫ 


βm–(x)e–π inx dx

=


π in
B(m–)

n –


π in
	m

=


π in

(


π in
B(m–)

n –


π in
	m–

)
–


π in

	m

=
(


π in

)

B(m–)
n –

∑

j=

j–

(π in)j 	m–j+

= · · ·

=
(


π in

)m

B()
n –

m∑

j=

j–

(π in)j 	m–j+

= –
m∑

j=

j–

(π in)j 	m–j+.

Case : n = .

B(m)
 =

∫ 


βm(x) dx =



	m+.
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βm(〈x〉), (m ≥ ) is piecewise C∞. Moreover, βm(〈x〉) is continuous for those positive in-
tegers m with 	m =  and discontinuous with jump discontinuities at integers for those
positive integers m with 	m 
= .

Assume first that m is a positive integer with 	m = . Then βm() = βm(). Thus βm(〈x〉)
is piecewise C∞ and continuous. Hence the Fourier series of βm(〈x〉) converges uniformly
to βm(〈x〉), and

βm
(〈x〉) =



	m+ +

∞∑

n=–∞
n
=

(
–

m∑

j=

j–

(π in)j 	m–j+

)
eπ inx

=


	m+ +

m∑

j=

j–

j!
	m–j+

(
–j!

∞∑

n=–∞
n
=

eπ inx

(π in)j

)

=


	m+ +

m∑

j=

j–

j!
	m–j+Bj

(〈x〉)

+ 	m ×
⎧
⎨

⎩
B(〈x〉), for x /∈ Z,

, for x ∈ Z.

Now, we can state our first result.

Theorem . For each positive integer l, we let

	l =
l∑

k=


k!(l – k)!

bkB
(r+)
l–k + 

l–∑

k=


k!(l – k)!

bkB
(r)
l–k– –


l!
B

(r)
l–.

Assume that 	m =  for a positive integer m. Then we have the following.
(a)

∑m
k=


k!(m–k)! bk(〈x〉)B(r+)

m–k (〈x〉) has the Fourier series expansion

m∑

k=


k!(m – k)!

bk
(〈x〉)B(r+)

m–k
(〈x〉)

=


	m+ +

∞∑

n=–∞
n
=

(
–

m∑

j=

j–

(π in)j 	m–j+

)
eπ inx,

for all x ∈R, where the convergence is uniform.
(b)

m∑

k=


k!(m – k)!

bk
(〈x〉)B(r+)

m–k
(〈x〉) =



	m+ +

m∑

j=

j–

j!
	m–j+Bj

(〈x〉),

for all x ∈R, where Bj(〈x〉) is the Bernoulli function.

Assume next that 	m 
=  for a positive integer m. Then βm() 
= βm(). So βm(〈x〉) is
piecewise C∞ and discontinuous with jump discontinuities at integers. The Fourier series
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of βm(〈x〉) converges pointwise to βm(〈x〉), for x /∈ Z, and converges to



(
βm() + βm()

)
= βm() +



	m,

for x ∈ Z.
Now, we can state our second theorem.

Theorem . For each positive integer l, we let

	l =
l∑

k=


k!(l – k)!

bkB
(r+)
l–k + 

l–∑

k=


k!(l – k)!

bkB
(r)
l–k– –


l!
B

(r)
l–.

Assume that 	m 
=  for a positive integer m. Then we have the following.
(a)



	m+ +

∞∑

n=–∞
n
=

(
–

m∑

j=

j–

(π in)j 	m–j+

)
eπ inx

=

⎧
⎨

⎩

∑m
k=


k!(m–k)! bk(〈x〉)B(r+)

m–k (〈x〉), for x /∈ Z,
∑m

k=


k!(m–k)! bkB
(r+)
m–k + 

	m, for x ∈ Z.

(b)



	m+ +

m∑

j=

j–

j!
	m–j+Bj

(〈x〉)

=
m∑

k=


k!(m – k)!

bk
(〈x〉)B(r+)

m–k
(〈x〉), for x /∈ Z;



	m+ +

m∑

j=

j–

j!
	m–j+Bj

(〈x〉)

=
m∑

k=


k!(m – k)!

bkB
(r+)
m–k +



	m, for x ∈ Z.

4 Fourier series of functions of the third type
Let

γm(x) =
m–∑

k=


k(m – k)

bk(x)B(r+)
m–k (x),

where r, m are integers with m ≥ . Then we will consider the function

γm
(〈x〉) =

m–∑

k=


k(m – k)

bk
(〈x〉)B(r+)

m–k
(〈x〉),

defined on R, which is periodic with period .
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The Fourier series of γm(〈x〉) is

∞∑

n=–∞
C(m)

n eπ inx,

where

C(m)
n =

∫ 


γm

(〈x〉)e–π inx dx

=
∫ 


γm(x)e–π inx dx.

Before proceeding further, we need to observe the following.

γ ′
m(x) =

m–∑

k=


m – k

bk–(x)B(r+)
m–k (x) +

m–∑

k=


k

bk(x)B(r+)
m–k–(x)

=
m–∑

k=


m – k – 

bk(x)B(r+)
m–k–(x) +

m–∑

k=


k

bk(x)B(r+)
m–k–(x)

=
m–∑

k=

(


m – k – 
+


k

)
bk(x)B(r+)

m–k–(x) +


m – 
B

(r+)
m– (x) +


m – 

bm–(x)

= (m – )γm–(x) +


m – 
B

(r+)
m– (x) +


m – 

bm–(x).

From this, we see that

(

m

(
γm+(x) –


m(m + )

B
(r+)
m+ (x) –


m(m + )

bm+(x)
))′

= γm(x),

and

∫ 


γm(x) dx

=

m

[
γm+(x) –


m(m + )

B
(r+)
m+ (x) –


m(m + )

bm+(x)
]



=

m

(
γm+() – γm() –


m(m + )

(
B

(r+)
m+ () – B

(r+)
m+ ()

)

–


m(m + )
(
bm+() – bm+()

))

=

m

(
γm+() – γm+() –


m(m + )

B
(r)
m –


m(m + )

bm+

)
.

For m ≥ , we let

�m = γm() – γm()

=
m–∑

k=


k(m – k)

(
bk()B(r+)

m–k () – bkB
(r+)
m–k

)
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=
m–∑

k=


k(m – k)

(
(bk – δk,)

(
B

(r+)
m–k + B

(r)
m–k–

)
– bkB

(r+)
m–k

)

=
m–∑

k=


k(m – k)

bkB
(r+)
m–k + 

m–∑

k=


k(m – k)

bkB
(r)
m–k–.

Then

γm() = γm() ⇐⇒ �m = ,

and

∫ 


γm(x) dx =


m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)
.

Now, we would like to determine the Fourier coefficients C(m)
n .

Case : n 
= . For this computation, we need to know the following:

∫ 


B

(r+)
l (x)e–π inx dx =

⎧
⎨

⎩
–

∑l
k=

(l)k–
(π in)k B

(r)
l–k , for n 
= ,


l+B

(r)
l , for n = ,

∫ 


bl(x)e–π inx dx =

⎧
⎨

⎩
–

∑l
k=

(l)k–
(π in)k bl–k+, for n 
= ,


l+ bl+, for n = ,

C(m)
n =

∫ 


γm(x)e–π inx dx

= –


π in
[
γm(x)e–π inx]

 +


π in

∫ 


γ ′

m(x)e–π inx dx

= –


π in
(
γm() – γm()

)

+


π in

∫ 



(
(m – )γm–(x) +


m – 

B
(r+)
m– (x) +


m – 

bm–(x)
)

e–π inx dx

=
m – 
π in

C(m–)
n –


π in

�m +


π in(m – )

∫ 


B

(r+)
m– (x)e–π inx dx

+


π in(m – )

∫ 


bm–(x)e–π inx dx

=
m – 
π in

C(m–)
n –


π in

�m –


π in(m – )

m –


π in(m – )

�m,

where

�m = γm() – γm()

=
m–∑

k=


k(m – k)

bkB
(r+)
m–k + 

m–∑

k=


k(m – k)

bkB
(r)
m–k–,


m =
m–∑

k=

(m – )k–

(π in)k B
(r)
m–k–, �m =

m–∑

k=

(m – )k–

(π in)k bm–k .
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C(m)
n =

m – 
π in

C(m–)
n –


π in

�m –


π in(m – )

m –


π in(m – )

�m

=
m – 
π in

(
m – 
π in

C(m–)
n –


π in

�m– –


π in(m – )

m– –


π in(m – )

�m–

)

–


π in
�m –


π in(m – )


m –


π in(m – )
�m

=
(m – )

(π in) C(m–)
n –

∑

j=

(m – )j–

(π in)j �m–j+

–
∑

j=

(m – )j–

(π in)j(m – j)

m–j+ –

∑

j=

(m – )j–

(π in)j(m – j)
�m–j+

= · · ·

= –
m–∑

j=

(m – )j–

(π in)j �m–j+ –
m–∑

j=

(m – )j–

(π in)j(m – j)

m–j+ –

m–∑

j=

(m – )j–

(π in)j(m – j)
�m–j+.

We note here that

m–∑

j=

(m – )j–

(π in)j(m – j)
�m–j+

=
m–∑

j=

(m – )j–

(π in)j(m – j)

m–j∑

k=

(m – j)k–

(π in)k bm–j–k+

=
m–∑

j=

m–j∑

k=

(m – )j+k–

(π in)j+k(m – j)
bm–j–k+

=
m–∑

j=


m – j

m–j∑

k=

(m – )j+k–

(π in)j+k bm–j–k+

=
m–∑

j=


m – j

m∑

s=j+

(m – )s–

(π in)s bm–s+

=
m∑

s=

(m – )s–

(π in)s bm–s+

s–∑

j=


m – j

=
m∑

s=

(m – )s–

(π in)s bm–s+(Hm– – Hm–s)

=

m

m∑

s=

(m)s

(π in)s
Hm– – Hm–s

m – s + 
bm–s+.

Putting everything together, we get

C(m)
n = –


m

m∑

s=

(m)s

(π in)s

{
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

)}
.
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Case : n = .

C(m)
 =

∫ 


γm(x) dx

=

m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)
.

γm(〈x〉), m ≥  is piecewise C∞. Moreover, γm(〈x〉) is continuous for those integers m ≥ 
with �m =  and discontinuous with jump discontinuities at integers for those integers
m ≥  with �m 
= .

Assume first that �m = . Then γm() = γm(). Thus γm(〈x〉) is piecewise C∞ and con-
tinuous. Hence the Fourier series of γm(〈x〉) converges uniformly to γm(〈x〉), and

γm
(〈x〉) =


m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)

+
∞∑

n=–∞
n
=

{
–


m

m∑

s=

(m)s

(π in)s

(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
}

eπ inx

=

m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)

+

m

m∑

s=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
(

–s!
∞∑

n=–∞
n
=

eπ inx

(π in)s

)

=

m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)

+

m

m∑

s=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉), for x /∈ Z,

, for x ∈ Z

=

m

m∑

s=
s 
=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs

(〈x〉)

+ �m ×
⎧
⎨

⎩
B(〈x〉), for x /∈ Z,

, for x ∈ Z.

Now, we can state our first result.

Theorem . For each integer l ≥ , we let

�l =
l–∑

k=


k(l – k)

bkB
(r+)
l–k + 

l–∑

k=


k(l – k)

bkB
(r)
l–k–,

with � = . Assume that �m =  for an integer m ≥ . Then we have the following.
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(a)
∑m–

k=


k(m–k) bk(〈x〉)B(r+)
m–k (〈x〉) has Fourier series expansion

m–∑

k=


k(m – k)

bk
(〈x〉)B(r+)

m–k
(〈x〉)

=

m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)

+
∞∑

n=–∞
n
=

{
–


m

m∑

s=

(m)s

(π in)s

(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
}

eπ inx,

for all x ∈R, where the convergence is uniform.
(b)

m–∑

k=


k(m – k)

bk
(〈x〉)B(r+)

m–k
(〈x〉)

=

m

m∑

s=
s 
=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs

(〈x〉),

for all x ∈R, where Bs(〈x〉) is the Bernoulli function.

Assume next that m is an integer ≥  with �m 
= . Then γm() 
= γm(). Hence γm(〈x〉) is
piecewise C∞ and discontinuous with jump discontinuities at integers. Then the Fourier
series of γm(〈x〉) converges pointwise to γm(〈x〉), for x /∈ Z, and converges to



(
γm() + γm()

)
= γm() +



�m

=
m–∑

k=


k(m – k)

bkB
(r+)
m–k +



�m,

for x ∈ Z.
Now, we can state our second result.

Theorem . For each integer l ≥ , let

�l =
l–∑

k=


k(l – k)

bkB
(r+)
l–k + 

l–∑

k=


k(l – k)

bkB
(r)
l–k–,

with � = . Assume that �m 
=  for an integer m ≥ . Then we have the following.
(a)

=

m

(
�m+ –


m(m + )

B
(r)
m –


m(m + )

bm+

)

+
∞∑

n=–∞
n
=

{
–


m

m∑

s=

(m)s

(π in)s

(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
}

eπ inx
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=

⎧
⎨

⎩

∑m–
k=


k(m–k) bk(〈x〉)B(r+)

m–k (〈x〉), for x /∈ Z,
∑m–

k=


k(m–k) bkB
(r+)
m–k + 

�m, for x ∈ Z.

(b)


m

m∑

s=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs

(〈x〉)

=
m–∑

k=


k(m – k)

bk
(〈x〉)B(r+)

m–k
(〈x〉), for x /∈ Z;


m

m∑

s=
s 
=

(
m
s

)(
�m–s+ +

Hm– – Hm–s

m – s + 
(
B

(r)
m–s + bm–s+

))
Bs

(〈x〉)

=
m–∑

k=


k(m – k)

bkB
(r+)
m–k +



�m, for x ∈ Z.

5 Results and discussion
In this paper, we study three types of sums of products of ordered Bell and poly-Bernoulli
functions and derive their Fourier series expansion. In addition, we express those func-
tions in terms of Bernoulli functions. The Fourier series expansion of the ordered Bell
and poly-Bernoulli functions are useful in computing the special values of the poly-zeta
and multiple zeta function. For details, one is referred to [, –]. It is expected that
the Fourier series of the ordered Bell functions will find some applications in connection
with a certain generalization of the Euler zeta function and the higher-order generalized
Frobenius-Euler numbers and polynomials.

6 Conclusion
In this paper, we considered the Fourier series expansion of the ordered Bell and poly-
Bernoulli functions which are obtained by extending by periodicity of period  the ordered
Bell and poly-Bernoulli polynomials on [, ). The Fourier series are explicitly determined.
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