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Abstract
Several refinements of the Finsler-Hadwiger inequality and its reverse in the triangle
are discussed. A new one parameter family of Finsler-Hadwiger inequalities and their
reverses are proved. This allows us to obtain new bounds for the sum of the squares
of the side lengths of a triangle in terms of other elements in the triangle. Finally,
these new bounds are compared to known ones.
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1 Introduction
In a triangle �ABC the angle measures are referred to as A, B and C and the lengths of
the sides BC, CA and AB are denoted by a, b and c, respectively. As is customary, the
circumradius, the inradius, the semiperimeter and the area of the triangle are denoted by
R, r, s and F , respectively. The deviation of the triangle from being equilateral is measured
by the quantity

Q = (a – b) + (b – c) + (c – a).

With the above notation, the celebrated Weitzenböck inequality [] states that

a + b + c ≥ 
√

F . (.)

This inequality was published in , but the authors in [] traced it back to  where
it was proposed as Problem  in the Romanian magazine Gazeta Matematică (III(),
p.) by Ionescu. So they proposed to call it the ‘Ionescu-Weitzenböck inequality’. At least
five distinct proofs of (.) could be found in [] and [].

The Ionescu-Weitzenbök inequality was later refined by Finsler and Hadwiger (see [,
]), to give birth to the Hadwiger-Finsler inequality,

a + b + c ≥ Q + 
√

F , (.)

and its reverse,

Q + 
√

F ≥ a + b + c, (.)
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with equality in each of these inequalities occurring if and only if the triangle is equilateral.
In [], pp.-,  proofs of (.) and several proofs of (.) are presented. In [] we find
the following equivalent form of (.):

(ab + bc + ac) –
(
a + b + c) ≥ 

√
F , (.)

and another chain of refinements of (.), namely

a + b + c ≥ ab + bc + ca ≥ (abc)/ ≥ 
√

F . (.)

Note that the rightmost inequality in this chain is called ‘the Polya-Szegö inequality’ (see
[], p., Problem . and [], p.).

It is proved in [], Theorem ., that inequalities (.) and (.) are optimal in the sense
that if for some real numbers λ and μ, we have

λQ + 
√

F ≥ a + b + c ≥ μQ + 
√

F (.)

in any triangle �ABC, then λ ≥  and μ ≤ . However, it is proved in [, ] that the least
λ for which the upper inequality holds in any non-obtuse triangle is ( –

√
)( + 

√
) ≈

..
Surprisingly, it was noted in [] that the Ionescu-Weitzenböck inequality (.) is equiv-

alent to Finsler-Hadwiger inequality (.) by showing that the second follows from the first
by applying the first to another triangle.

2 Results and discussion
In this paper we consider refinements of (.) and (.) in the following form:

Q + 
√

Fψ+
(

r
R

)
≥ a + b + c ≥ Q + 

√
Fψ–

(
r
R

)
, (.)

where ψ– and ψ+ are functions defined on [, ], such that ψ–() = ψ+() =  and ψ+(t) <
 < ψ–(t) for  ≤ t < . Recall that by Euler’s inequality we have r ≤ R with equality if and
only if �ABC is equilateral. We seek non-trivial ψ– and ψ+ but as beautiful and simple as
possible, clearly this requirement is not too mathematical, but I think no one would recall
an ugly complicated inequality even if it is very sharp. I will let the reader be the judge on
this statement.

In [] the authors show that one can take ψ– = ψ–
 where

ψ–
 (t) =

√
 – t
 + t

=
√

 – t


–
t( – t)
 + t

. (.)

This lower bound was later improved in [] where the authors proved using the
Garfunkel-Bankoff inequality [, ] that one can take ψ– = ψ–

 where

ψ–
 (t) =

√
 – t


, (.)

which is stronger than ψ–
 and more beautiful! In fact, we will see that this strengthened

inequality is equivalent to Kooi’s inequality [] (see also [], Inequality .).
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But what about the upper bound ψ+? To the best of the knowledge of the author, it seems
that no refinement better than the constant ψ+

 ≡  is known or has been published. In this
note we will prove that ψ+ = ψ+

 with ψ+
 (t) =

√
t is a refinement of the reverse Finsler-

Hadwiger inequality, and we will also provide an alternative proof (different from the one
given in []) of the lower bound with ψ–

 .
Therefore, our first result concerning the refinement of Finsler-Hadwiger inequality and

its reverse (Theorem .) will be the following:

Q + F
√

r
R

≥ a + b + c ≥ Q + F
√

 –
r
R

. (.)

Further, in Theorem ., the next alternative ‘reverse Finsler-Hadwiger inequality’ is
proposed,

Q + F
√

 +
R
r

≥ a + b + c. (.)

These two reverses are then compared and it is proved in Corollary . that we have the
following chain of inequalities:

Q + F
√

r
R

≥ Q + F
√

 +
R
r

≥ a + b + c. (.)

In the final step of this investigation we consider a one parameter family of inequalities,
namely

( + λ)Q + F
(

( – λ)
√

 +
R
r

+ λ

√
r
R

)
≥ a + b + c (.)

and we prove in Corollary . that it holds for λ ≥ , its reverse holds for λ ≤ – +
√




and that the constants  and – +
√


 are the best possible.

3 Theorems and proofs
The main tool in our proofs is the fundamental inequality in the triangle. This inequality
has a long history, the reader may consult [] or [], Chapter , for more information.

Theorem . (The fundamental inequality) Consider three positive numbers s, r and R
with r ≤ R. Then s, r and R are, respectively, the semiperimeter, the inradius and the cir-
cumradius of a triangle if and only if

φ

(
r
R

)
≤ s

R ≤ �

(
r
R

)
, (.)

where

φ(t) =  + t –
t


– ( – t)/, (.)

�(t) =  + t –
t


+ ( – t)/. (.)
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Moreover, the upper equality holds in (.) if and only if the triangle is isosceles and the
radian measure of its apex is larger or equal to π/. Similarly, the lower equality holds in
(.) if and only if the triangle is isosceles and the radian measure of its apex is smaller or
equal to π/.

We will use also several algebraic inequalities that are gathered in the next two lemmas.

Lemma . The following inequalities hold.
(i) For t ∈ [, ] we have

 + t –
t


+ ( – t)/ ≤ ( + t)

( – t)
. (.)

(ii) For t ∈ [, ] we have

 + t –
t


– ( – t)/ ≥ t(

√
 + t + t –

√
t)


. (.)

(iii) For t ∈ [, ] we have

 + t –
t


– ( – t)/ ≥ t( + t)

( + t)
. (.)

Moreover, equality holds in any of the above inequalities if and only if t ∈ {, }.

Proof (i) Let

F(t) =
( + t)

( – t)
–

(
 + t –

t


+ ( – t)

√
 – t

)

then it is readily seen that

F(t) =
 – t

( – t)
(
 – t + t – ( – t)

√
 – t

)

=
 – t

( – t)
( – 

√
 – t – t)

=
( – t)t

( – t)

(


 +
√

 – t
– 

)

≥ ,

and (.) follows.
To prove (ii) we note that, after expanding the square, the proposed inequality is equiv-

alent to G(t) ≥  for t ∈ [, ] where

G(t) =  – 
√

( – t) – t –



t –



t +
t


√

 + t + t.

Now, for t ∈ [, ] we have

( –
√

 – t)( – t) =  – ( – t)
√

 – t – t + t,
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hence

G(t) – ( –
√

 – t)( – t) =
t


(√

 + t + t – t – 
)

=
t( – t)


√

 + t + t + (t + )
.

Finally

G(t) = t( – t)
(


( +

√
 – t)

+



√

 + t + t + (t + )

)
≥ .

This concludes the proof of (.).
(iii) According to (ii) we only have to prove that

(√
 + t + t –

√
t

) ≥ ( + t)

 + t
. (.)

Again, expanding the square we see that the proposed inequality is equivalent to H(t) ≥ 
for t ∈ [, ] where

H(t) =  + t + t –
( + t)

 + t
– t

√
 + t + t.

But

H(t) =
t + t + t

 + t
– t

√
 + t + t

= t
(

 + t + t

 + t
–

√
 + t + t

)

= t
(

 – t + t

 + t
+  –

√
 + t + t

)

= t
(

( – t)( – t)
 + t

+
 – t – t

 +
√

 + t + t

)

= t( – t)
(

 – t
 + t

+
 + t

 +
√

 + t + t

)
≥ ,

and (.) follows. �

Remark . The proof shows that the ‘ugly’ inequality (.) is stronger than (.).

Proposition . Let the semiperimeter, the inradius and the circumradius of a triangle be
denoted by s, r and R, respectively. Then

s
√

 –
r
R

≤ R + r, (.)

s
√

 +
R
r

≥ R + r, (.)

r(R + r) ≤ sr
√

r
R

+ s. (.)
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Moreover, equality holds in any of the above inequalities if and only if the triangle is equi-
lateral.

Proof The well-known Euler inequality states that r ≤ R (with equality if and only if the
triangle is equilateral) so we may apply (.) from Lemma . with t = r/R and then mul-
tiply both sides of the resulting inequality by R to obtain

R + rR – r + 
√

R(R – r) ≤ (r + R)R
R – r

. (.)

Combining this with Theorem . we get

s ≤ (r + R)R
R – r

,

or equivalently

s
√

 –
r
R

≤ r + R. (.)

Similarly, applying (.) from Lemma . with t = r/R, multiplying both sides of the re-
sulting inequality by R, and finally making use of Theorem . we obtain

s ≥ r(R + r)

R + r
,

which is equivalent to (.).
Doing the same manipulation with (.) we get

R + rR – r – 
√

R(R – r) ≥ r(
√

R + rR + r –
√

r)

R
, (.)

and according to Theorem . we obtain

s ≥ r(
√

R + rR + r –
√

r)

R
,

or equivalently

s
√

R
r

+
√

r ≥ √
R + rR + r.

Finally, squaring and rearranging we get (.). �

Remark . Inequalities (.) and (.) are not new, see [], Inequality ., and partic-
ularly, (.) is Kooi’s inequality [].

Now we are ready to give an alternative proof of the refinement of Finsler-Hadwiger
inequality given in [] and to present our refinement of its reverse, as announced in the
Introduction.
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Theorem . In a triangle �ABC let the inradius, the circumradius, the area and the
lengths of sides opposite to angles A, B and C be denoted by r, R, F , a, b and c, respectively.
If Q = (a – b) + (b – c) + (c – a) then the following two inequalities hold:

a + b + c ≥ Q + F
√

 –
r
R

, (.)

a + b + c ≤ Q + F
√

r
R

. (.)

Moreover, equality holds in any of the above inequalities if and only if the triangle is equi-
lateral.

Proof Using Heron’s formula and the facts that F = rs and abc = RF we obtain

rs =
F

s
= (s – a)(s – b)(s – c) = –s + s(ab + bc + ca) – Rrs.

Hence

ab + bc + ca = s + r + Rr. (.)

Moreover, because s = a + b + c + (ab + bc + ca) we also conclude that

a + b + c = 
(
s – r – Rr

)
. (.)

It follows that

a + b + c – Q = (ab + bc + ca) – a – b – c

= r + Rr = r(r + R). (.)

So (.) follows from (.) by multiplying both sides by r and using (.).
Similarly, from (.) and (.) we conclude that

a + b + c – Q = (ab + bc + ca) – 
(
a + b + c)

= Rr + r – s. (.)

So (.) follows from (.). �

In the next result we provide an alternative ‘reverse Finsler-Hadwiger inequality’.

Theorem . Let �ABC be a triangle, and let the lengths of sides opposite to angles A,
B and C be denoted by a, b and c, respectively. If F represents the area of �ABC, and if
Q = (a – b) + (b – c) + (c – a) then the following inequality holds:

a + b + c ≤ Q + F
√

 +
R
r

,

with equality if and only if the triangle is equilateral.
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Proof Indeed, this follows from

a + b + c – Q = r(r + R) ≤ rs
√

 +
R
r

= F
√

 +
R
r

,

where we used (.) from Proposition . and (.). �

In fact Theorems . and . yield two different upper bounds for the sum of squares of
the side lengths of a triangle in terms of its area, and they are both candidates to be called
the ‘reverse Finsler-Hadwiger inequality’. A legitimate question is the following: Are these
two bounds comparable? Some numerical experimentation shows that the upper bound
given in Theorem . is better than the corresponding upper bound given in Theorem ..
This suggests that the inequality

F
√

 +
R
r

≤ Q + F
√

r
R

is valid in any triangle. Rearranging this inequality we see that it is equivalent to

rs
√

 +
R
r

≤ a + b + c – ab – bc – ca + rs
√

r
R

or, by (.) and (.), to

r(r + R) + rs
√

 +
R
r

≤ s + rs
√

r
R

.

Writing this as

rs
√

 +
R
r

– rs
√

r
R

– s ≤ r
(

s
√

 +
R
r

– R – r
)

leads to the following question what the least constant μ is such that the following in-
equality holds:

rs
√

 +
R
r

– rs
√

r
R

– s ≤ μr
(

s
√

 +
R
r

– R – r
)

.

Indeed, this inequality holds clearly for μ ≥  because we have s
√

 + R
r ≥ R + r, and it

does hold for μ =  according to Proposition .. Testing it with a triangle �ABC having
side lengths a = , b = c = t with t > / but near / shows that a necessary condition
for such an inequality to hold is μ ≥ λ =  – 

√
 = 

+
√


≈ .. This observation is

confirmed in the next theorem.

Theorem . Let �ABC be a triangle, and let r, R and s represent the inradius, the circum-
radius and the semiperimeter of �ABC, respectively. Then the following inequality holds:

rs
√

 +
R
r

– rs
√

r
R

– s ≤ μr
(

s
√

 +
R
r

– R – r
)

for all μ ≥ λ =  – 
√

 = 
+

√


, with equality if and only if the triangle is equilateral.
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Proof The previous discussion shows that it is enough to prove the inequality for μ = λ.
Note that the proposed inequality is equivalent to the fact that s is larger than the positive
root of a second degree polynomial, that is,

s
r

≥ ( – λ)
√

 +
R
r

–



√
r
R

+

√(
( – λ)

√

 +
R
r

–
√

r
R

)

+ λ

(
 +

R
r

)

and according to Theorem ., for a given r and R, the smallest possible value of s is at-
tained when �ABC is isosceles. Therefore, it is enough to prove the proposed inequality
for isosceles triangles.

Now, consider an isosceles triangle �ABC. Since the desired inequality is homogeneous
we may suppose that the side lengths are a =  and b = c = /(x) with  < x < . In this case
we have

s =
 + x
x

, r =



√
 – x
 + x

, R =


x
√

 – x
.

Let f (x) be defined for x ∈ (, ) by

f (x) = s + rs
√

r
R

– ( – λ)rs
√

 +
R
r

– λr(r + R).

That is,

f (x) =


x

(
(x + ) + ( – x)x

√
x(x + )

– (
√

 – )
√

x
(
 + x – x

)
– ( – 

√
)x( – x)

)
.

We can arrange this as follows:

f (x) =


x

(
( – 

√
)( – x) + ( – x)

(
x
√

x(x + ) –
√


)

+ (
√

 – )
(
 – x – 

√
x

(
 + x – x

)))

=
( – x)

x

(
 – 

√
 + 

x
√

x(x + ) –
√


 – x

+ (
√

 – )
 – x – 

√
x( + x – x)

( – x)

)

=
( – x)

x

(
 + (

√
 – )x – 

√
 – x

√
x(x + )

 – x

+ (
√

 – )
(

 – x – 
√

x( + x – x)
( – x) – ( + x)

))

=
( – x)

x

(
g(x) + (

√
 – )h(x)

)
,
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where

g(x) =  + (
√

 – )x – 
√

 – x
√

x(x + )
 – x

,

h(x) =
 – x – 

√
x( + x – x)

( – x) – ( + x).

Now, in g we consider u =
√

+x
x as a new variable so that x = 

u– for u >
√

. We have

g
(


u – 

)
=  +

(
√

 – )
u – 

– 
√


√

(u – ) –
√

u
(u – )(u – )

=
P(u)

(u – )(u – )

with

P(u) = ( – 
√

)u – ( – 
√

)u + 
√

u +  – 
√

.

Noting that P(
√

) = P(
√

) = P′(
√

) =  we conclude that P factors as follows:

P(u) = ( – 
√

)(u –
√

)(u –
√

)(u +
√

 + 
√

).

Thus

g
(


u – 

)
= λ

(u –
√

)(u +
√

 + 
√

)
(u – )(u +

√
)

.

Or

g(x) = λ
(x – )(

√
 + x +

√
x + 

√
x)

(
√

x +  +
√

x)(
√

 + x +
√

x)
,

which is clearly positive for x ∈ (, ) and vanishes only if x = /. On the other hand

( – x)h(x) =  + x + x( – x) – 
√

x
(
 + x – x

)

=
( + x + x( – x)) – x( + x – x)
 + x + x( – x) + 

√
x( + x – x)

=
( – x – x + x)

 + x + x( – x) + 
√

x( + x – x)

=
( – x)(x – )(x + )

 + x + x( – x) + 
√

x( + x – x)
,

and consequently

h(x) =
(x – )(x + )

 + x + x( – x) + 
√

x( + x – x)
,
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which is also positive for x ∈ (, ) and vanishes only if x = /. Thus f (x) ≥  for x ∈ (, )
with equality if and only if x = /. The theorem is proved. �

Taking μ = / we obtain the next corollary.

Corollary . Let �ABC be a triangle, and let the lengths of sides opposite to angles A,
B and C be denoted by a, b and c respectively. If r, R and F represent the inradius, the
circumradius and the area of �ABC, and if Q = (a–b) +(b–c) +(c–a) then the following
inequality holds:

F
√

 +
R
r

≤ Q + F
√

r
R

(.)

with equality if and only if the triangle is equilateral. Consequently

a + b + c ≤ Q + F
√

 +
R
r

≤ Q + F
√

r
R

.

In fact Theorem . allows us to give the following ‘parametric Finsler-Hadwiger in-
equality’.

Corollary . Let a, b, c, R, r and F be the side lengths of a triangle �ABC, its circum-
radius, inradius and its area, respectively, and let Q = (a – b) + (b – c) + (c – a). The
following inequality:

a + b + c ≤ ( + λ)Q + F
(

( – λ)
√

 +
R
r

+ λ

√
r
R

)
(.)

holds for λ ≥ , and its reverse holds for λ ≤ – 
√

+
 ≈ –., with equality if and only

if the triangle is equilateral.

Proof Note that (.) is equivalent to

a + b + c ≤ Q + F
√

 +
R
r

+ λ

(
Q + F

√
r
R

– F
√

 +
R
r

)
.

So, according to Theorem . and Corollary ., the proposed inequality (.) does hold
for λ ≥ .

Now, using (.) and the fact that s = (a + b + c) – Q we see that Theorem . can
be rephrased as follows:

F
(

( – μ)
√

 +
R
r

–
√

r
R

)
+ ( – μ)Q ≤ ( – μ)

(
a + b + c)

for μ ≥  – 
√

. Now if we suppose that μ ∈ [ – 
√

, /) we conclude that

F
(

( – μ)
 – μ

√

 +
R
r

–


 – μ

√
r
R

)
+

 – μ

 – μ
Q ≤ a + b + c.
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Setting λ = 
μ– we get

F
(

( – λ)
√

 +
R
r

+ λ

√
r
R

)
+ ( + λ)Q ≤ a + b + c

for λ ∈ (–∞, – 

√

–
], and the corollary is proved. �

Remark . This inequality is the best of its kind in the sense that if λ ∈ (– 
√

+
 , ) then

there are triangles �ABC that satisfy (.) and others that violate it. Indeed, testing (.)
with an isosceles triangle with side lengths a = , b = c = t ≥ / for large t shows that the
condition λ ≥  is necessary for its validity. Testing its reverse for t near / (but larger
than /) shows that the condition λ ≤ – 

√
+
 is necessary for the validity of the reverse.

Remark . For λ ≤ – 
√

+
 we have two different lower bounds for a + b + c given

by Theorem . and Corollary ., respectively. Testing the difference with our famous
isosceles triangle with side lengths a = , b = c = t ≥ / shows that these two lower bounds
are not comparable.

4 Conclusion
In this work, we considered the problem of refining the Finsler-Hadwiger inequality and
its reverse in the triangle. Several refinements are proposed and compared, and an optimal
parametric refinement of this inequality and its reverse is proved.
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