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Abstract
Let T be a tree with at least four vertices, none of which has degree 2, embedded in
the plane. A Halin graph is a plane graph constructed by connecting the leaves of T
into a cycle. Thus the cycle C forms the outer face of the Halin graph, with the tree
inside it. Let G be a Halin graph with order n. Denote by μ(G) the Laplacian spectral
radius of G. This paper determines all the Halin graphs with μ(G)≥ n – 4. Moreover,
we obtain the graphs with the first three largest Laplacian spectral radius among all
the Halin graphs on n vertices.
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1 Introduction
In this paper, we consider simple and undirected connected graphs. Let G = G(V , E) be a
simple graph with n vertices and m edges. Let NG(v) be the set of vertices adjacent to v in
G and d(v) = |NG(v)| be the degree of v. As usual, we denote by � and δ the maximum and
minimum degree of G, respectively. Denote by G[S] the induced subgraph of G. Let G – v
be the graph obtained from G by deleting the vertex v ∈ V (G). Similarly, G – e denote the
graph obtained from G by deleting an edge e ∈ G. Let G and G be two vertex disjoint
graphs. The graph G ∪G is the graph with vertex set V (G)∪V (G) and edge set E(G)∪
E(G). The join of graphs G and G is the graph G ∨G obtained from G ∪G by joining
each vertex of G with every vertex of G. As usual, we denote by Pn, Cn and Kn the path,
cycle and complete graph on n vertices, respectively.

A Halin graph is a plane graph constructed as follows. Let T be a tree on at least four
vertices. All vertices of T have degree  or at least . The vertices with degree  are called
leaves. Let C be a cycle connecting the leaves of T in such a way that C forms the boundary
of the unbounded face. We always say the tree T is the characteristic tree of G and the
cycle C is the primary cycle. Moreover, the vertices of C are called exterior vertices and
the other vertices are called interior vertices. The Halin graphs was introduced by Halin
[]. We call K ∨ Cn– the wheel graph, denoted by Wn. Clearly, Wn is the unique Halin
graph with only one interior vertex. In particular, we use H(t, t) and H(t, t, t, t) to
denote the Halin graphs with two interior vertices and three interior vertices, respectively
(see Figure ).

For a graph G, we assume d ≥ d ≥ · · · ≥ dn is the degree sequence of G and D(G) =
diag(d, d, . . . , dn) is the diagonal matrix of vertex degree. Let A(G) be the adjacency ma-
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Figure 1 Halin graphs H(t1, t2) and H(t1, t2, t3, t4).

trix. The Laplacian matrix of G is defined as L(G) = D(G) – A(G). Obviously, L(G) is a pos-
itive semi-definite symmetric matrix, and its eigenvalues are denoted by μ(G) ≥ μ(G) ≥
· · · ≥ μn(G) = . Moreover, μ(G) = μ(G) is called the Laplacian spectral radius of G. Let
Gc be the complement graph of G. It is well known that

μi
(
Gc) = n – μn–i(G) for i = , , . . . , n – .

Consequently, we obtain a trivial upper bound of the Laplacian spectral radius: μ(G) ≤ n.
Let G be a Halin graph on n vertices, μ(G) ≥ �(G) +  ≥ , the equality holds if and only
if G ∼= W.

The Laplacian eigenvalues of G can be used in several physical and chemical problems.
Many researchers pay attention to the Laplacian spectra of graphs (see [–]). Halin graph
is very important in the mathematical literature. In this paper we study the Laplacian spec-
tral radii of Halin graphs. The following are our main results.

Theorem . Let G be a Halin graph on n vertices.
(i) n ≥ μ(G) > n –  if and only if G = Wn.

(ii) n –  ≥ μ(G) > n –  if and only if G = H(n – , ).
(iii) n –  ≥ μ(G) > n –  if and only if G ∈ {H(n – , ), H(, , , )}.
(iv) n –  ≥ μ(G) ≥ n –  if and only if G ∈ {H(n – , ), H(, , , ), H(n – , , , ),

H(, , t, t)} where t + t ≥ .
(v) If G /∈ {Wn, H(n – , ), H(n – , )}, μ(Wn) > μ(H(n – , )) > μ(H(n – , )) > μ(G).

2 Preliminaries
In order to prove the theorem, we present some lemmas which will be used frequently in
the proof.

Lemma . ([]) Let G be a connected graph on n vertices with at least one edge. Then
μ(G) ≥ �(G) +  with equality holding if and only if �(G) = n – .

Lemma . ([]) Let G be a graph and q(G) be the signless Laplacian spectral radius.
Then μ(G) ≤ q(G). Moreover, if G is connected, then the equality holds if and only if G is a
bipartite graph.
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Lemma . ([]) Let G be a simple connected graph with n vertices and degree sequence
d ≥ d ≥ · · · ≥ dn. Then

q(G) ≤ min
≤i≤n

{
d + di –  +

√
(di – d + ) + (i – )(d – di)



}
.

Lemma . ([]) Let G be a connected graph. Then

μ(G) ≤ max
{

d(u) + d(v) | uv ∈ E(G)
}

.

Moreover, the equality holds if and only if G is a regular bipartite graph or a semiregular
bipartite graph.

For a graph G, we denote by m(v) the average of degrees of the vertices adjacent to v,
that is,

m(v) =
∑

u∈N(v) d(u)
d(v)

.

As usual, d(v)m(v) is called the -degree of vertex v.

Lemma . ([, ]) Let G be a simple graph. Then

μ(G) ≤ max

{
d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))

d(u) + d(v)

∣∣∣
∣ uv ∈ E(G)

}
.

If G is connected, then equality holds if and only if G is a regular bipartite graph or a
semiregular bipartite graph.

Lemma . ([]) Let G be a Halin graph with k interior vertices. Then |E(G)| = n – k – 
and n ≥ k + .

First, we discuss the Halin graphs with at least four interior vertices.

Lemma . Let G be a Halin graph with k interior vertices. If k ≥ , then μ(G) < n – .

Proof Let G be a Halin graph with the primary cycle C. It follows from Lemma . that
n ≥ k +  ≥ . Consider any edge uv ∈ E(G). If u, v ∈ V (C), then d(u) + d(v) =  ≤ n – .
If u ∈ V (C) and v /∈ V (C). Suppose that d(v) = t + . Note that t +  + (k – ) – (k – ) =
t + k ≥ t + , there are at least t +  vertices in C. Then n – k = |V (C)| ≥ t + , and thus
d(u) + d(v) = t +  +  ≤ n – k ≤ n – . If u, v /∈ V (C), and let d(u) = t +  and d(v) = t + .
Similarly, t +  + t +  + (k – ) – (k – ) = t + t + k –  ≥ t + t + , so there are at
least t + t +  vertices in C. Then n – k = |V (C)| ≥ t + t + , and therefore d(u) + d(v) =
t +  + t +  ≤ n – k ≤ n – . In each case, we always have d(u) + d(v) ≤ n – . It follows
from Lemma . that μ(G) < n – . �

Next, we consider the Halin graphs with three interior vertices. Let G = H(t, t, t, t)
and t ≥ t ≥ . Let u, v and w be three interior vertices. For simplicity, we may take t =
t + t ≥ . It is clear that d(u) = t + , d(v) = t + , d(w) = t +  and n = t + t + t + .
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Lemma . Let G = H(t, t, t, t) be a Halin graph with t ≥ t ≥ . Then μ(G) < n – .

Proof For t ≥ , it can easily be seen that n ≥  and

⎧
⎪⎪⎨

⎪⎪⎩

t = n – (t + t + ) ≤ n – ,

t = n – (t + t + ) ≤ n – ,

t = n – (t + t + ) ≤ n – .

Consider all types of edges in G. Let u′ ∈ N(u) ∩V (C), v′ ∈ N(v) ∩V (C) and w′ ∈ N(w) ∩
V (C). It is obvious that d(u′) = d(v′) = d(w′) = . Then it follows that

d(u) + d(v) = t + t +  = n – t ≤ n – ;

d(v) + d(w) = t + t +  = n – t ≤ n – ;

d(u) + d
(
u′) = t +  +  = t +  ≤ n –  +  = n – ;

d(w) + d
(
w′) = t +  +  = t +  ≤ n –  +  = n – ;

d(v) + d
(
v′) = t +  +  ≤ n –  +  = n – .

If xy is an edge in C, then d(x) + d(y) =  ≤ n – . Consequently, we have d(x) + d(y) ≤ n – 
for each edge xy ∈ E(G). Then it follows from Lemma . that μ(G) < n –  in this case.

If t = , then t ≥ t =  and n = t + t + t +  ≥ t + . In this case, we use the bound in
Lemma . to prove the result. Let u′ ∈ N(u) ∩ V (C), v′ ∈ N(v) ∩ V (C) and w′ ∈ N(w) ∩
V (C). Note that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u) = t + ,

d(v) = t +  = n – t – ,

d(w) = ,

d(u′) = d(v′) = d(w′) = .

The -degree of each vertex is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(u)m(u) = n + t – ,

d(v)m(v) = n – t – ,

d(w)m(w) = n – t + ,

d(u′)m(u′) = t + ,

d(v′)m(v′) = n – t + ,

d(w′)m(w′) = .

For all types of edges in G, consider the index in Lemma .. Let e = xy be an edge of G.
Put

f (e) = f (xy) =
d(x)(d(x) + m(x)) + d(y)(d(y) + m(y))

d(x) + d(y)
.
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For simplicity, we use type u′u′ to denote the edges uiuj ∈ E(G) where ui, uj ∈ N(u)∩V (C).
Similarly, we define the symbol v′v′ and w′w′. Then we will prove that the inequality f (e) ≤
n –  holds. Note that each edge of G belongs to the one below (the types u′w′ and v′v′

may not exist).
• uv:

f (uv) =
d(u)(d(u) + m(u)) + d(v)(d(v) + m(v))

d(u) + d(v)

=
(t + ) + n + t –  + (n – t – ) + n – t – 

n – 
.

Then f (uv) ≤ n –  if and only if (t – )n ≥ t
 + t – . Since n ≥ t + , it is

easy to verify that (t – )n ≥ (t – )(t + ) ≥ t
 + t –  when t ≥ . So we

have f (uv) ≤ n –  when t ≥ .
If t =  and n ≥ , then (t – )n ≥  >  = t

 + t – . Hence
f (uv) ≤ n – .

If t =  and n ≥ , then (t – )n ≥ t
 + t – . Hence f (uv) ≤ n – .

An argument similar to the above shows that f (uv) ≤ n –  when
{ t = ,

n ≥ ,

{ t = ,
n ≥ ,{ t = ,

n ≥ , and
{ t = ,

n ≥ .

Thus we conclude that inequality f (uv) ≤ n –  holds with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ .

• vw:

f (vw) =
(n – t – ) + n – t –  +  + n – t + 

n – t
.

Then f (vw) ≤ n –  if and only if tn ≥ t
 + t + . The inequality f (vw) ≤ n –  holds

with

⎧
⎨

⎩
t ≥ ,

t =  and n ≥ .

• uu′:

f
(
uu′) =

(t + ) + n + t –  +  + t + 
t + 

.
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Then f (uu′) ≤ n –  if and only if (t + )n ≥ t
 + t + . The inequality

f (uu′) ≤ n –  holds with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≥ ,
t =  and n ≥ ,
t =  and n ≥ ,
t =  and n ≥ ,
t =  and n ≥ ,
t =  and n ≥ .

• vv′:

f
(
vv′) =

(n – t – ) + n – t –  +  + n – t + 
n – t – 

.

Then f (vv′) ≤ n –  if and only if (t – )n ≥ t
 + t + . The inequality f (vv′) ≤ n – 

holds with
{

t ≥ ,
t =  and n ≥ .

• ww′:

f
(
ww′) =

n – t + 


.

Then f (ww′) ≤ n –  if and only if n + t ≥ . The inequality f (ww′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .

• u′v′:

f
(
u′v′) =

n + 


.

Then f (u′v′) ≤ n –  if and only if n ≥ . The inequality f (u′v′) ≤ n –  holds with
{

t ≥ ,
t =  and n ≥ .

• v′w′:

f
(
v′w′) =

n – t + 


.

Then f (v′w′) ≤ n –  if and only if n + t ≥ . The inequality f (v′w′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .
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• u′w′:

f
(
u′w′) =

t + 


.

Then f (u′w′) ≤ n –  if and only if n – t ≥ . The inequality f (u′w′) ≤ n –  holds
with

⎧
⎨

⎩
t ≥ ,

t =  and n ≥ .

• u′u′:

f
(
u′u′) =

 + t + 


.

Then f (u′u′) ≤ n –  if and only if n – t ≥ . The inequality f (u′u′) ≤ n –  holds
with

⎧
⎨

⎩
t ≥ ,

t =  and n ≥ .

• v′v′:

f
(
v′v′) =

 + n – t + 


.

Then f (v′v′) ≤ n –  if and only if n + t ≥ . The inequality f (v′v′) ≤ n –  holds with

t ≥ .

• w′w′:

f
(
w′w′) =




.

Then f (w′w′) ≤ n –  if and only if n ≥ . The inequality f (v′v′) ≤ n –  holds with

⎧
⎨

⎩
t ≥ ,

t =  and n ≥ .

We summarize what has been discussed above as follows.
• If t ≥ , then max{f (e)|e ∈ E(G)} ≤ n – . Moreover, since G is not a bipartite graph,

it follows from Lemma . that μ(G) < n – .
• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . Hence

μ(G) < n – . When n = , that is, G = H(, , , ). Note that
μ(H(, , , )) ≈ . < n – . Thus μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we infer that max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ). Since μ(H(, , , )) ≈ . < n – , it follows that
μ(G) < n –  when t = .
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• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ). By the fact that μ(H(, , , )) ≈ . < n – , it follows that
μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we infer that max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ). Since μ(H(, , , )) ≈ . < n – , it follows that
μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we infer that max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ). Now that μ(H(, , , )) ≈ . < n – , it follows that
μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we infer that max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ) or H(, , , ). If n = , then G = H(, , , ). Note that
μ(H(, , , )) ≈ . < n – , μ(H(, , , )) ≈ . < n –  and
μ(H(, , , )) ≈ . < n – . Therefore μ(G) < n –  in this case.

Thus we have derived that μ(G) < n –  when t = . This completes the proof. �

Lemma . Let G = H(t, t, t, t) be a Halin graph with t ≥ t = .
() If t =  or n – , then μ(G) > n – .
() If  ≤ t ≤ n –  and G �= H(, , , ), then μ(G) < n – .

Proof For t = . If t =  or n – , then �(G) = n – . According to Lemma ., it follows
that μ(G) > � +  = n – . Therefore () holds.

Suppose  ≤ t ≤ n – . Obviously, n ≥ t + . We also use the bound in Lemma . to
prove the result. Let u′ ∈ N(u) ∩ V (C), v′ ∈ N(v) ∩ V (C) and w′ ∈ N(w) ∩ V (C). Note that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u) = t + ,

d(v) = n – t – ,

d(w) = ,

d(u′) = d(v′) = d(w′) = .

Then the -degree of each vertex is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(u)m(u) = n + t – ,

d(v)m(v) = n – t – ,

d(w)m(w) = n – t + ,

d(u′)m(u′) = t + ,

d(v′)m(v′) = n – t + ,

d(w′)m(w′) = .

For all types of edges in G, consider the index in Lemma .. Let e = xy be any one edge
of G. Put

f (e) = f (xy) =
d(x)(d(x) + m(x)) + d(y)(d(y) + m(y))

d(x) + d(y)
.

For simplicity, we use u′u′ to denote the edges u′u′′ ∈ E(G) where u′, u′′ ∈ N(u) ∩ V (C).
Similarly, we define the symbol v′v′ and w′w′. Then we will prove that the inequality f (e) ≤
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n –  holds. Note that every edge of G belongs to the one below, and the types u′w′ and
v′v′ exist in some circumstances.

• uv:

f (uv) =
(t + ) + n + t –  + (n – t – ) + n – t – 

n – 
.

Then f (uv) ≤ n –  if and only if (t – )n ≥ t
 + t – . The inequality f (uv) ≤ n – 

holds with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ .

• vw:

f (vw) =
(n – t – ) + n – t –  +  + n – t + 

n – t
.

Then f (vw) ≤ n –  if and only if (t – )n ≥ t
 – t + . The inequality f (vw) ≤ n – 

holds with
⎧
⎨

⎩
t ≥ ,

t =  and n ≥ .

• uu′:

f
(
uu′) =

(t + ) + n + t –  +  + t + 
t + 

.

Then f (uu′) ≤ n –  if and only if (t + )n ≥ t
 + t + . The inequality

f (uu′) ≤ n –  holds with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ ,

t =  and n ≥ .

• vv′:

f
(
vv′) =

(n – t – ) + n – t –  +  + n – t + 
n – t

.
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Then f (vv′) ≤ n –  if and only if (t – )n ≥ t
 – t + . The inequality f (vv′) ≤ n – 

holds with
{

t ≥ ,
t =  and n ≥ .

• ww′:

f
(
ww′) =

n – t + 


.

Then f (ww′) ≤ n –  if and only if n + t ≥ . The inequality f (ww′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .

• u′v′:

f
(
u′v′) =

n + 


.

Then f (u′v′) ≤ n –  if and only if n ≥ . The inequality f (u′v′) ≤ n –  holds with

{
t ≥ ,
t =  and n ≥ .

• v′w′:

f
(
v′w′) =

n – t + 


.

Then f (v′w′) ≤ n –  if and only if n + t ≥ . The inequality f (v′w′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .

• u′w′:

f
(
u′w′) =

t + 


.

Then f (u′w′) ≤ n –  if and only if n – t ≥ . The inequality f (u′w′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .

• u′u′:

f
(
u′u′) =

 + t + 


.
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Then f (u′u′) ≤ n –  if and only if n – t ≥ . The inequality f (u′u′) ≤ n –  holds
with

{
t ≥ ,
t =  and n ≥ .

• v′v′:

f
(
v′v′) =

 + n – t + 


.

Then f (v′v′) ≤ n –  if and only if n + t ≥ . The inequality f (v′v′) ≤ n –  holds with
{

t ≥ ,
t =  and n ≥ .

• w′w′:

f
(
w′w′) = .

Since n ≥ t +  ≥ , we have f (w′w′) ≤ n – .
So we have the following conclusions.

• If t ≥ , then max{f (e)|e ∈ E(G)} ≤ n – . According to Lemma ., it follows that
μ(G) < n – .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = , then
G = H(, , , ) or H(, , , ). Note that μ(H(, , , )) ≈ . < n –  and
μ(H(, , , )) ≈ . < n – . Thus μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = , then
G = H(, , , ) or H(, , , ). Note that μ(H(, , , )) ≈ . < n –  and
μ(H(, , , )) ≈ . < n – . Hence μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = ,
then G = H(, , , ) or H(, , , ). Note that μ(H(, , , )) ≈ . < n –  and
μ(H(, , , )) ≈ . < n – . Hence μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = , then
G = H(, , , ) or H(, , , ). Note that μ(H(, , , )) ≈ . < n –  and
μ(H(, , , )) ≈ . < n – . Hence μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If n = , then
G = H(, , , ) or H(, , , ). If n = , then G = H(, , , ) or H(, , , ). Note
that μ(H(, , , )) ≈ . < n – , μ(H(, , , )) ≈ . < n – ,
μ(H(, , , )) ≈ . < n –  and μ(H(, , , )) ≈ . < n – . Therefore
μ(G) < n –  when t = .

• If t = , then n ≥ . When n ≥ , we have max{f (e)|e ∈ E(G)} ≤ n – . If
n = , , , , , then G ∈H = {H(, , , ), H(, , , ), H(, , , ), H(, , , ),
H(, , , ), H(, , , ), H(, , , ), H(, , , ), H(, , , ), H(, , , ), H(, , , ),
H(, , , ), H(, , , ), H(, , , )}.

Note that μ(H(, , , )) ≈ . > n –  and if G ∈H\{H(, , , )} then
μ(G) < n –  (see Table ). This implies that if t =  and G �= H(, , , ), then
μ(G) < n – .

Consequently, we infer that () holds. This completes the proof. �
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Table 1 The Laplacian spectral radii of some Halin graphs with three interior vertices

G μ(G)

n = 8 H(2, 2, 1, 0) 5.4142

n = 9 H(2, 2, 2, 0) 5.6996
H(2, 2, 1, 1) 6.0000
H(3, 2, 1, 0) 5.7480

n = 10 H(3, 3, 1, 0) 5.8577
H(2, 2, 3, 0) 6.4423
H(2, 2, 2, 1) 6.5846
H(4, 2, 1, 0) 6.3500
H(3, 2, 2, 0) 5.9709
H(3, 2, 1, 1) 6.2470

n = 11 H(3, 3, 2, 0) 6.1116
H(3, 3, 1, 1) 6.4142
H(4, 3, 1, 0) 6.3694
H(3, 2, 3, 0) 6.5894
H(3, 2, 2, 1) 6.7387
H(4, 2, 2, 0) 6.5037
H(4, 2, 1, 1) 6.6518

n = 12 H(5, 3, 1, 0) 7.2022
H(3, 2, 4, 0) 7.3612
H(3, 2, 3, 1) 7.4771
H(3, 2, 2, 2) 7.4446
H(4, 2, 3, 0) 6.8985
H(4, 2, 2, 1) 7.0131
H(5, 2, 2, 0) 7.2861
H(5, 2, 1, 1) 7.3502

G μ(G)

n = 13 H(6, 3, 1, 0) 8.1298
H(3, 2, 5, 0) 8.2480
H(3, 2, 4, 1) 8.3198
H(3, 2, 3, 2) 8.3052
H(6, 2, 2, 0) 8.1820
H(6, 2, 1, 1) 8.2113

n = 14 H(7, 3, 1, 0) 9.0913
H(3, 2, 6, 0) 9.1708
H(3, 2, 5, 1) 9.2272
H(3, 2, 4, 2) 9.2180
H(3, 2, 3, 3) 9.2198
H(7, 2, 2, 0) 9.1261
H(7, 2, 1, 1) 9.1414

n = 15 H(8, 3, 1, 0) 10.0680
H(8, 2, 2, 0) 10.0928
H(8, 2, 1, 1) 10.1016

For Halin graphs with three interior vertices. From the proof of the above lemmas, we
see that only H(, , , ), H(, , t, t) and H(n – , , , ) have the Laplacian spectral radii
greater than n – . Clearly, n –  < μ(H(, , , )) < n –  (see Table ).

Lemma . Let G ∈ {H(, , t, t), H(n – , , , )}, where t + t ≥ , then μ(G) ≤ n – .
If G = H(, , , ), then n –  < μ(G) < n – .

Proof It is clear that H(, , t, t) and H(n – , , , ) have the same degree sequence:

(d, d, . . . , dn) = (n – , , , . . . , ).

Let G ∈ {H(, , t, t), H(n – , , , )}. By Lemmas . and ., we have

μ(G) < min
≤i≤n

{
d + di –  +

√
(di – d + ) + (i – )(d – di)



}

≤ n –  +  –  +
√

( – (n – ) + ) + (n –  – )


=
n +

√
(n – ) + (n – )


.

If n ≥ , it is easy to check that

n –  ≥ n +
√

(n – ) + (n – )


.
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Therefore μ(G) < n – . If  ≤ n ≤ , then G ∈ {H(, , , ), H(, , , ), H(, , , ),
H(, , , ), H(, , , ), H(, , , ), H(, , , )}. If G = H(, , , ), then n –  < μ(G) <
n – . Otherwise, μ(G) ≤ n –  (see Table ). This lemma follows. �

Now we consider the Halin graphs with two interior vertices. Let G = H(t, t) and t ≥
t ≥ . Note that t = n – t –  ≥ t, then n ≥ t + .

Lemma . Let G = H(t, t) be a Halin graph with t ≥ t ≥ . Then μ(G) < n – .

Proof Suppose u and v are the two interior vertices. Let u′ ∈ N(u) ∩ V (C) and v′ ∈ N(v) ∩
V (C). Note that

⎧
⎪⎪⎨

⎪⎪⎩

d(u) = n – t – ,

d(v) = t + ,

d(u′) = d(v′) = .

Then the -degree of each vertex is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(u)m(u) = n – t – ,

d(v)m(v) = n + t – ,

d(u′)m(u′) = n – t + ,

d(v′)m(v′) = t + .

For all types of edges in G, consider the index in Lemma .. Let e = xy be any one edge
of G. We may take

f (e) = f (xy) =
d(x)(d(x) + m(x)) + d(y)(d(y) + m(y))

d(x) + d(y)
.

For simplicity, we use u′u′ to denote the edges u′u′′ ∈ E(G) where u′, u′′ ∈ N(u) ∩ V (C).
Similarly, we define the symbol v′v′. It is clear that every edge of G belongs to the one
below.

• uv:

f (uv) =
(n – t – ) + n – t –  + (t + ) + n + t – 

n
.

Then f (uv) ≤ n –  if and only if (t – )n ≥ t
 + t – . The inequality f (uu′) ≤ n – 

holds with

⎧
⎪⎪⎨

⎪⎪⎩

t ≥ ,

t =  and n ≥ ,

t =  and n ≥ .

• uu′:

f
(
uu′) =

(n – t – ) + n – t –  +  + n – t + 
n – t + 

.
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Then f (uu′) ≤ n –  if and only if (t – )n ≥ t
 – t + . The inequality

f (uu′) ≤ n –  holds with

⎧
⎨

⎩

t ≥ ,

t =  and n ≥ .

• vv′:

f
(
vv′) =

(t + ) + n + t –  +  + t + 
t + 

.

Then f (vv′) ≤ n –  if and only if (t + )n ≥ t
 + t + . The inequality f (vv′) ≤ n – 

holds with

⎧
⎨

⎩

t ≥ ,

t =  and n ≥ .

• u′v′:

f
(
u′v′) =

n + 


.

Then f (u′v′) ≤ n –  if and only if n ≥ . If t ≥ , f (u′v′) ≤ n – .
• u′u′:

f
(
u′u′) =

 + (n – t + )


.

Then f (u′u′) ≤ n –  if and only if n + t ≥ . If t ≥ , f (u′u′) ≤ n – .
• v′v′:

f
(
v′v′) =

 + (t + )


.

Then f (v′v′) ≤ n –  if and only if n – t ≥ . If t ≥ , f (v′v′) ≤ n – .
Thus we infer that max{f (e)|e ∈ E(G)} ≤ n –  if t ≥ ,

{ t = ,
n ≥ , or

{ t = ,
n ≥ . According to

Lemma ., it follows that μ(G) < n – . Otherwise,

G ∈ {
H(, ), H(, ), H(, ), H(, ), H(, ), H(, ), H(, ), H(, )

}
.

It is easy to see that μ(G) < n –  in this case (see Table ). This completes the proof. �

Lemma . Let G = H(n–, ) be a Halin graph with n ≥  vertices. Then n– < μ(G) <
n – .
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Proof Since �(G) = n – , it follows from Lemma . that μ(G) > n – . The de-
gree sequence of G is (d, d, . . . , dn) = (n – , , , . . . , ). From Lemmas . and ., we
have

μ(G) < min
≤i≤n

{
d + di –  +

√
(di – d + ) + (i – )(d – di)



}

≤ d + d –  +
√

(d – d + ) + (d – d)


=
n +  +

√
(n – ) + (n – )


.

If n ≥ , then we get

n –  ≥ n +  +
√

(n – ) + (n – )


.

Therefore μ(G) < n –  when n ≥ . If n ≤ , then G = H(t, ) where t = , , , . . . , .
It is easy to check that μ(G) < n –  (see Table ). Thus we complete the proof. �

Lemma . Let G = H(n – , ) be a Halin graph with n ≥  vertices. Then n –  < μ(G) ≤
n – . Moreover, the right equality holds if and only G = H(, ).

Proof The degree sequence of G is (d, d, . . . , dn) = (n – , , , . . . , ). It follows from
Lemma . that μ(G) > �(G) +  = n – . From Lemmas . and ., we have

μ(G) < min
≤i≤n

{
d + di –  +

√
(di – d + ) + (i – )(d – di)



}

≤ d + d –  +
√

(d – d + ) + (d – d)


=
n +  +

√
(n – ) + (n – )


.

If n ≥ , then

n –  ≥ n +  +
√

(n – ) + (n – )


.

Therefore μ(G) < n – . If n ≤ , then G = H(t, ) where t = , , , . . . , . It is clear that
μ(H(, )) = n –  and μ(H(t, )) < n –  where t = , , . . . ,  (see Table ). Thus we com-
plete the proof. �

Lemma . Let G = H(n – , ) be a Halin graph with n ≥  vertices. Then n –  < μ(G) ≤
n – . Moreover, the right equality holds if and only G = H(, ).
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Table 2 The Laplacian spectral radii of some Halin graphs with two interior vertices

G μ(G)

n = 6 H(2, 2) 5.0000

n = 7 H(3, 2) 5.6180

n = 8 H(3, 3) 6.0000
H(4, 2) 6.3234

n = 9 H(4, 3) 6.5315

n = 10 H(4, 4) 6.8820
H(5, 3) 7.3058

n = 11 H(5, 4) 7.4911
H(6, 3) 8.1938

n = 12 H(5, 5) 7.8605
H(6, 4) 8.2932
H(7, 3) 9.1335

n = 13 H(6, 5) 8.4827
H(7, 4) 9.1923
H(8, 3) 10.0976

G μ(G)

n = 14 H(6, 6) 8.8562
H(7, 5) 9.2930
H(8, 4) 10.1358

n = 15 H(7, 6) 9.4835
H(8, 5) 10.1954
H(9, 4) 11.1012

n = 16 H(9, 5) 11.1399
H(10, 4) 12.0785

n = 17 H(10, 5) 12.1055
H(11, 4) 13.0627

n = 18 H(12, 4) 14.0513

Proof The degree sequence of G is (d, d, . . . , dn) = (n – , , , . . . , ). It follows from
Lemma . that μ(G) > �(G) +  = n – . From Lemmas . and ., we have

μ(G) < min
≤i≤n

{
d + di –  +

√
(di – d + ) + (i – )(d – di)



}

≤ d + d –  +
√

(d – d + ) + (d – d)


=
n +  +

√
(n – ) + (n – )


.

If n ≥ , then

n –  ≥ n +  +
√

(n – ) + (n – )


.

Therefore μ(G) < n – . If n ≤ , then G = H(, ), H(, ) or H(, ). It is clear that
μ(H(, )) = n – , μ(H(, )) < n –  and μ(H(, )) < n –  (see Table ). Thus we complete
the proof. �

Now we are ready to present the proof of Theorem .. In fact, from the previous lemmas,
it is easy to obtain the main result. For the sake of completeness, we provide a brief proof.

3 Proof of Theorem 1.1
Let G be a Halin graph. We make a summary of Lemmas .-..

If G has k ≥  interior vertices, then μ(G) < n – .
If G has three interior vertices, then μ(G) < n –  when G /∈ {H(, , t, t), H(n –

, , , ), H(, , , )}, where t + t ≥ ; if G ∈ {H(, , t, t), H(n – , , , ), H(, , , )},
where t + t ≥ , then n –  < μ(G) ≤ n – ; if G = H(, , , ), then n –  < μ(G) < n – .

If G has two interior vertices, then μ(G) < n –  when

G /∈ {
H(n – , ), H(n – , ), H(n – , )

}
.
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On the other hand, we have n –  < μ(H(n – , )) < n – , n –  < μ(H(n – , )) ≤ n – ,
n –  < μ(H(n – , )) ≤ n –  and μ(H(n – , )) > μ(H(, , , )).

If G has one interior vertex, then G = Wn and μ(Wn) = n.
It is now obvious that the theorem holds.

Remark . From the proof, we see that there is no graph with n –  < μ(G) < n. If μ(G) =
n –  iff G = H(, ). If μ(G) = n –  iff G = H(, ). There is no graph with μ(G) = n – .

Remark . Let H(n – t – , t) be a Halin with n vertices and n ≥ t + . Then � = n – t – ,
so μ(H(n – t – , t)) > n – t. The degree sequence is (n – t – , t + , , . . . , ), then if n ≥ t – ,
we have

μ
(
H(n – t – , t)

) ≤ d + d –  +
√

(d – d + ) + (d – d)


≤ n – t + .

That is, for an integer k, when n is sufficiently large, then n– t < μ(H(n– t –, t)) ≤ n– t +.
From this we propose the following conjecture.

Conjecture . Let H(t, t) be a Halin graph with two interior vertices and order n, where
n = t + t +  and t ≥ t. Then

() n – t < μ(H(t, t)) ≤ n – t + ;
() μ(H(t, t)) < μ(H(t + , t – )).

4 Conclusions
We determine all the Halin graphs with μ(G) ≥ n – . Moreover, we also obtain the graphs
with the first three largest Laplacian spectral radius among all the Halin graphs on n ver-
tices. Considering the further order of the Laplacian spectral radius of Halin graphs is still
an interesting and important problem.
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