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Abstract
We establish an inequality by quadratic estimations; the double inequality

72 < arctanx < 2
arctanx < —————
44+ /(2 - 4)2 + 2 x)? 44 4/32 4 (27 X)?

holds for x > 0, where the constants (72 — 4)? and 32 are the best possible.
MSC: Primary 26D15; 42A10

Keywords: Shafer’s inequality; an upper bound for arctangent; a lower bound for
arctangent

1 Introduction
Shafer [1-3] showed that the inequality

8x
arctanx > —————— (1.1)

3+1/25+%x2

holds for x > 0. Various Shafer-type inequalities are known, and they have been applied,
extended and refined, see [4—8] and [9-12]. Especially, Zhu [12] showed an upper bound
for inequality (1.1) and proved that the following double inequality

8x 8x
<arctany < ————— (1.2)

3+,/25+ 802 3+ /25 + 2842
3 b4

holds for x > 0, where the constants 80/3 and 256/72 are the best possible. Recently, in
[8], Sun and Chen proved that the following inequality

8x + 27
arctanx < ———+/25° (1.3)

3+,/25+ L2

holds for x > 0; moreover, they showed that the inequality

32 .7
8x + 795X 8x

3+.,/25+80%x2 34+ /254 25842
3 T
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holds for 0 < x < xy = 1.4243. In this paper, we shall establish the refinements of inequali-
ties (1.2) and (1.3).

2 Results and discussion
Motivated by (1.2), (1.3) and (1.4), in this paper, we give inequalities involving arctangent.

The following are our main results.

Theorem 2.1 For x > 0, we have

72x 2%

<arctanx <

4+\/(712—4)2 + (27 x)? 4+\/32+(2nx)2,

2.1)

where the constants (m* — 4)? and 32 are the best possible.

Theorem 2.2 For x > «, we have

2% 8x

> b
4+\/(T[2—4)2+(27Tx)2 3+ /25+%x2
where the constant o = ,/ % = 2.26883 is the best possible.

Theorem 2.3 For x > B, we have

(2.2)

8x 2%

> , (2.3)
34 \/25 n 2:—26x2 4 +./32 + 27x)?

2_ 4 6,78 ~ . .
where the constant 8 = \/ 40961};1?;5_;&?@;2‘:{2 T = 1.30697 is the best possible.

Theorem 2.4 For x >y, we have

32 .7 2
8x + X ToX

3+,/25+ ¥y 4+./32+ 2rx)?

(2.4)

where the constant y = 1.38918 is the best possible and satisfies the equation

151200 — 1417572 + 128y° — 1575+/157%/15 + 16y2

+75600+/8 + m2y2 + 64y°,/8 + 12y2 = 0.

From Theorems 2.1, 2.2, 2.3 and 2.4, we can get the following proposition, immediately.

Proposition 2.5 The double inequality (2.1) is sharper than (1.2) for x > a. Moreover, the
right-hand side of (2.1) is sharper than (1.3) for x > y.
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2.1 Proof of Theorem 2.1

Becker-Stark’s inequality is known as the inequality

8 tanx w2

2.5
4 x 2 da? 25)
which holds for 0 < x < /2. Also, Becker-Stark’s inequality (2.5) has various applications,
extensions and refinements, see [13-16] and [17-19]. Especially, Zhu [19] gave the follow-
ing refinement of (2.5): The inequality

8 2 9 tanx 8 2

+—2—k(n —4x2)<—<

2 2
_ — - -4 2.6
w2 —4x2 7 x T2 — 42 i w2 (n * ) 26)

holds for 0 < x < /2, where the constants A = (n2 —9)/(6m*) and = (10 — w2)/7* are the
best possible. In this paper, the result of Zhu (2.6) plays an important role in the proof of
Theorem 2.1.

Proof of Theorem 2.1 The equation

m2x
4+ ./c+ (2mx)?

is equivalent to

arctanx =

w4x% — 82xarctanx + 16 arctan? x — 47242 arctan? x

C =
arctan? x
We set t = arctanx, then
rttan’t  8m’tant s
c= m - +16 — 4w~ tan“ t
=16 + Fy(2).

First, we assume that 0 < ¢ < 1/2. Here, the derivative of F;(¢) is

, 8n’sec’t 8m?tant s 2ntsec’ttant  2m*tan’ ¢
Fi(t)=- + — 8w sec”ttant + -
t t2 t2 t3
sint 872 8m’cost 8n? 2% 27%sint
= - + — + —
cos?2t\ tsint 2 cost t2cost 3
sin ¢
= F(1).
cos?t 20

Since we have

3 B
t——<sint<t— — +—
6 6 120
and
2ottt 2t
—— 4+ ——-—<cost<l——+—

2 24 720 2 24
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for 0 < ¢ < /2, the following inequality holds:

2 2 2 ¢
F(t)<_ 81 +87T (1—74—2—4)
’ -2+ L) £
6 " 120
872 27t (- L)
- +
2 2 4 6 3
(1_7+ﬂ) t2(1_7+24_720) t
7T2F3(lf)

T 3(120 — 2022 + £4)(24 — 1222 + t4)(=720 + 3602 — 30t + £6)

where F3(t) = 82944000 — 829440072 — 72990720¢% + 70848007 2¢> + 24883200t —

224640072t* - 4832640t° +3715207%£° + 59673612 —3590472£8 — 48192¢1° + 207677210 +
24722 — 6872112 — 7441 + w2 + 1, We set s = 2, then

315\ 314\ 2
F5(t) > 82944000 — 8294400 oo ) — 729907205 +7084800( - - ) s

) 315\°, s 314\° ,

+248832005” ~2246400( - ) 5” - 48326405” +371520( 1 ) s
. 315\° , . 314\’ ,

+596736s" ~35904( 1 | s* - 481925° +2076( T

s
100
315\” 314\ *
+247255 - 68(ﬁ> $& - 7487 + (ﬁ) s +s8

78435648s , 146200176s> 6011964s*
= 642816 — ———— +2593296s> — +

125 25

17327169s>  179727s° 160351s’
p— + p—
625 100 2500

+S8

3500 (1607040000 — 78435648005 + 64832400005 — 2924003520s>

+601196400s* — 693086765 + 4493175s° — 160351s” +2500s°)

7
1607040000 — 78435648005 + | — )6483240000s>
2500 8

1
+ 5 <<§>6483240000 —2924003520s + 601196400s> — 69308676s3>

+5°(4493175 — 160351s + 2500s2))

= 5500 (Fa(s) + s*Fs(s) + s°Fg(s)).
We shall show that the functions F4(s) > 0, F5(s) > 0 and Fs(s) > 0. Here,

F4(s) = 5400(297600 — 14525125 + 1050525s°)
= 5400F;(t).
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The derivative of F;(¢) is

FJ(s) = 2(-726256 + 10505255)

1
< 2<—726256 + 1050525<Z)>

1854499
5

Since F;(s) is strictly decreasing for 0 < s < 1/4 and F;(1/4) = 2077/16, we have Fu(s) > 0.

Fs(s) = 36(22511250 — 812223205 + 16699900s> — 19252415%)

>36(22511250 — 812223205 — 19252415s”)

1 1\*
> 36<22511250 - 81222320<E> - 1925241(1) )

_ 1854335151
N 16

and

1
Fe(s) > 4493175 — 160351(1)

17812349
= 2 .

Therefore, we can get Fs(t) > 0. By 120 — 20£2 + ¢t* > 0, 24 — 12¢2 + t* > 0 and -720 +
360t% — 30t* + £° < 0, thus F»(¢) < 0 and Fy(¢) is strictly decreasing for 0 < ¢ < 1/2. From
Fi(0+) = (72 - 4)? — 16, we can get

P1<%> <F()<(7*-4)"-16

for 0 < t <1/2. Next, we assume that 1/2 < ¢ < /2. From inequality (2.6), we have

g2 8 (10 - 72)(w?* — 41%)
w2 w242 w4

2 8 (-9 + ) (x? -4 |
2
+n(n—2t)(n+2t){;+n2_4t2— =

<Fi(?)

5[ 2 8 (=9 + 72)(n? - 4£2)
<=8y — + -
w2 w2442 64
8 (10 — 72) (2 — 4£2) )
T2 42 4

+ 2 (= 28)(mr + Zt){ % +
b4

and

Gi(2) Ga(2)
36m0 <10 <55
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where

Gy(2) = 47617°% — 4267 + 1% —182527%¢2 + 19447 %% — 127842

+ 73447 %" — 124874 ¢* + 487 %% — 51844° + 11527%¢° — 647 *£°
and

Go(t) = —2767° + 478 + 3710 — 6247442 + 4167 %82 — 367812

+1248072t* — 26887t ¢t + 1447 %% —19200¢° + 384072£% — 1927 4¢°.

We set s = t2, then

Gi(t) = 47617 — 4267° + ' —127*(1521 - 1627% + 7*)s
+48(=3 + )73 + 1) (-17 + 7%)s* - 64(-3 + 1)*(3 + )%’
=G;3(s)

and

Ga(t) = —2767° + 47r® + 370 — 47*(156 — 1047> + 97*)s
+ 487 (12 —10) (=26 + 37%)s* ~192(7* - 10)°s®

= Gy(s).
The derivatives of G3(s) are

Gi(s) =12(-1521n* +1627° — 78 + 1224725 — 2087 s
3

+87%s —12965s” + 2887 %s* — 167*s?)
and
G5(8) = 96(=3 + 7)(3 + ) (-177% + * + 365 — 47°s).
From the inequality

~177% + w* + (36 —4n?)s < 177 + w* + (36 — 47?) <i)

=9-187% + n*
= -71.2438,
G5(s) < 0 and Gj(s) is strictly decreasing for 1/4 < s < 7w%/4. Since Gj(1/4) = 12(-81 +

32472 - 15747* + 1647° — 78) = —24310.3, Gj(s) < 0 and Gj3(s) is strictly decreasing for
1/4 < s < w2%/4. Therefore, we have Gy(t) > Gs(w2/4) = 5767 for 1/2 < t < /2. Next, the
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derivatives of G4(s) are

G,(s) = 4(-1567"* + 1047°® — 97® + 62407 %s — 13447 *s + 727°s

~14400s> + 28807 %s* — 1447 *s?)

and
G, (s) =96(10 — %) (267> - 37* - 120s + 1277%s).
From the inequality

1
267 - 3% —120s + 12725 < 267> - 37* + (=120 + 127?) (E)

=-30+2972 - 37*

= -36.0087,

G,(s) < 0 and G| (s) is strictly decreasing for 1/4 < s < 72/4. Since G}(1/4) = 4(-900 +
174072 - 5017 + 1227 — 978) = —2544.56, G, (s) < 0 and Gy(s) is strictly decreasing
for 1/4 < s < w2/4. Therefore, we have G,(t) > G4(2/4) = 487°® for 1/2 < t < /2. By the

squeeze theorem, Fi(£) > 16 for 1/2 < ¢t < 7 /2. Also, we have

Ga(3)
FiD)< = 2

for1/2 <t <m/2 and

Ga(3) 2 Ga(3)
Fi(0+) — 3712 =(n*-4)" -16- 3ﬂ§
(- 4)—16 -300 + 84072 - 3277* - 1637 — 578 + 3710
=T - — —
376
3008407 + 327" +1637° —197°
- 376 '

By 300 — 84072 + 3277* +1637° — 197% = 286.654, we have

Ga(3)
F1(0+)> 376 .

Thus, we can get 16 < Fy(¢) < F1(0+) for 0 < t < /2. The proof of Theorem 2.1 is com-
plete. O
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2.2 Proof of Theorem 2.2
Proof of Theorem 2.2 We have

2% 8x

4+ /(2 - 4)2 + 27x)? 34+ /254 %xZ

~x(=96 + 977 + V1572315 + 1642 — 24+/16 — 872 + 4 + 472x2)
- (9 + V15415 + 16x2)(4 + /16 — 872 + % + 47 242)

B xF>(x)

- (9 + v/15+/15 + 16x2)(4 + /16 — 872 + 7% + 47 242)

Fi(x) =

The derivative of F,(x) is

1677%x(—6+/15 + 1642 + /15+/16 — 872 + % + 472x2)
V15 +16x24/16 — 8702 + 4 + 4m 242

~ 167 2xF5(x)

V15 + 16a24/16 — 872 + % + 4722

Fy(x) =

Here, we have 15(16 — 872 + w* + 4m%x%) — 36(15 + 16x2) = 3(~100 — 4072 + 574 —192x% +
2072x?%). Since =192 + 2072 > 0 and -100 — 4072 + 574 — 192x% + 2072x% = 0 for x =
\/ % = 1.198, we have F53(x) < 0 for 0 < x < % and F3(x) > 0 for x >

100+4072 574 ; ; : 100+4072-574 :
V202795 - Therefore, F>(x) is strictly decreasing for 0 < x </ ==~ 75"% and strictly
. . 2_gg 4
increasing for x > ,/ %. From F»(0+) = 0 and

Fy(a) = -96 + 972 + V1572415 + 1602 — 24+/16 — 872 + 7% + 47 2a?

V/15(112 - 1172 192 + 327% — 574
=_-96+972% + ,/15712(M) _ 24(#)

—48 + 572 —48 + 572

=0,

we can get F>(x) > 0 for x > ¢ and « is the best possible. The proof of Theorem 2.2 is

complete. d

2.3 Proof of Theorem 2.3
Proof of Theorem 2.3 We have

8x 2%

3+ /254 2715—26x2 C4q V32 + (27 x)?

_ mx(32 37 - /2572 + 25642 + 164/8 + 72x2)
237 + /2572 + 256x2)(2 + /8 + 72x2)

xFy(x)

- 2(3m + /2572 +256x2)(2 + /8 + nzxz)'

Fi(x) =
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The derivative of F(x) is

EL o) = 167 x(m /2572 + 2562 — 164/8 + 72x2)
V2572 + 256x2+/8 + 12x2
~ 16T xF5(x)
V2577 + 25652/ + 1242

Since m2(2572 + 256x%) — 16%(8 + w2x%) = —2048 + 257* = 387.227, we can get w2(2572 +
256x2) > 162(8 + w2x?) for x > 0. Therefore, F3(x) > 0 and F}(x) > 0 for x > 0. Since F,(x) is
strictly increasing for x > 0 and

F>(B) =32 372 —7/2572 + 25682 + 16/8 + 282

32 _ 32 (512+96n2—17n4) 6(192—12n2—n4>
= — o =TT e —

(=32 + 372) 2(-32 + 372)
=0,

we can get F,(x) > 0 for x > 8 and B is the best possible. The proof of Theorem 2.3 is
complete. O

2.4 Proof of Theorem 2.4
Lemma 2.6 For x>0, we have

756007%x  64mw2x’ 25200+/157%x
+ >
V8 +m2x2 /8 + w22 V15 + 162

Proof We have

(75600n2x 6472x7 )2 (25200\/1571296)2 2567 x2Fy (x)
+ - = ,
V81722 8+ miA2 J15 + 1642 (15 + 16x2)(8 + 72x2)

where Fi(x) = 37209375 + 357210000x% — 3720937572x% + 567000x° + 604800x% +
24.0x'2 + 256x*. Here, we have

Fi(x) > 37209375 + 357210000x% — 372093757 %% + 567000x°

=70875(525 + 50404” — 5257°x” + 8x°).

We set ¢ = x* and F,(¢) = 525 + 5040¢ — 52572 + 8£%, then the derivative of F(¢) is Fy(t) =
5040 -52572 +24¢2. Since Fj(t) = 0 for t = é\/ 1(~1680 +1757%) = 2.4285, we have F}(£) <

0for0<t< %\/%(—1680 +17572) and F)(£) > 0 for £ > %\/%(—1680 +17572). Hence,

Ey(t) = F (%\/ % (—1680 + 175712))

= 375(30 +48,/70(~48 + 572) — 57%,/70(-48 + 572))

'=295.843



Nishizawa Journal of Inequalities and Applications (2017) 2017:40 Page 10 of 11

for ¢ > 0. Therefore, F;(x) > 0 and the proof of Lemma 2.6 is complete. O

Proof of Theorem 2.4 We have

3247
Aw-—Stas T
34 \/25 + 80,2 4+ V32 + (2mx)?
sz(x)

- 3150(9 + 4/154/15 + 16x2)(2 + /8 + nzxz),

where F(x) = 151200 — 1417572 + 128x° — 1575+/157%2+/15 + 1642 + 75600+/8 + w242 +
64x°+/8 + 2x2. The derivative of Fy(x) is

25200+/157%x 7560072 6472x"
nx+ nx+ T +384x°V72x2 + 8
V15 + 162 V8 + 2% 8+ w22
25200+/157%x  7560072%x  647%x7
> — + + .
V15 + 1642 V8 +m2x2 8+ m2x2

Fj(x) = 768x° —

By Lemma 2.6, we have F;(x) > 0 and F,(x) is strictly increasing for x > 0. From F,(0+) =
37800(4 + 4+/2 — %) = —8041.96, F5(y) = 0 and F(00) = 00, we can get F(x) > 0 forx > y.
The proof of Theorem 2.4 is complete. O

3 Conclusions

In this paper, we established some inequalities involving arctangent. The double inequality
in Theorem 2.1 provides sharper quadratic estimations than (1.2) and (1.3) for a location
away from zero. By Theorems 2.2, 2.3 and 2.4, we obtained Proposition 2.5 immediately.
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