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Abstract

We consider a coupled chemotaxis fluid model and prove some blow-up criteria of
the local strong solution.
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1 Introduction

We consider the following coupled chemotaxis fluid model [1]:

e+ (- Vu+ Ve — Au+nVe =0, 1L1)
divu =0, (1.2)
ne+(u-Vn—An=-V- (nx(p)Vp), (1.3)
pi+u-Vip=-nf(p), (14)
(4, 1,p)(%, 0) = (10, 19, po) (%) inR3. (1.5)

Here u denotes the velocity vector field of the fluid and = is the pressure scalar, p and #
denote the concentration of oxygen and bacteria, respectively. V¢ is the gravitation force.
f(p) = f(0)=0and x(p) > 0 are two given smooth functions of p.

When ¢ =0, (1.1) and (1.2) are the well-known Navier-Stokes system. Kozono et al. [2]

and Kozono and Shimada [3] proved the following blow-up criteria:

uel?(0,T;B2 ), (1.6)
wel™ (0,758 ) with0o<6<1, (17)
w:=curluel! (0, T; Bgo,oo)' (1.8)

Here B;,q denotes the homogeneous Besov space. Zhang et al. [4] showed the following

blow-up criterion in terms of pressure:

7 el (0, T;B, ) with-1<r<1. (1.9)
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When u = V¢ =0, (1.3) and (1.4) are the Keller-Segel model which was studied in [5, 6].
Very recently, Chae et al.[7] showed the local well-posedness of smooth solutions to

problem (1.1)-(1.5) and the following blow-up criterion:

29
-3

uelds(0,T;L7) and nel?*(0,T;L°) with3<gq < oo. (1.10)

The aim of this paper is to refine (1.10) further; we will prove the following.
Theorem 1.1 Let the initial data (ug, ng, po) be given in H! x H"1 x H’for l> % and no,
po = 0inR? and [43 no dx < 0o. Suppose that ¢ is a smooth function. Let (u, n, p) be a local

smooth solution on [0, T)for some T < oo. If u satisfies (1.6) or (1.7) or (1.8) or m satisfies
(1.9) (r = -1) and n satisfies

neL*(0,T;L%) (1.11)
with T < T < 00, then the solution (¢4, m, p) can be extended beyond T > 0.
Corollary 1.1 Ifu satisfies (1.6) or (1.7) or (1.8) or 7 satisfies (1.9) and Vp satisfies

29
-3

VpelLid (O, T;Lq) with 3 < g < 00, (1.12)
with T < T < 00, then the solution (¢4, m, p) can be extended beyond T > 0.

Remark 1.1 By the very same calculations as those in Zhou [8], we can prove the following

blow-up criteria:

2
7 € L%3(0,T;L7) with3/2<q < oo, (113)
or
2
Vrr € L%3 (0, T;L9) with 1< g < oo, (1.14)

and 7 satisfies (1.11). We omit the details here.

2 Preliminary
Here we recall the definitions and some properties of spaces.

Let B = {€ € RY,|¢| < %} and € = {£ € Rd,% < |&] < %}. Choose two nonnegative
smooth radial functions x, ¢ supported, respectively, in 95 and € such that

X(E)+)Y ¢(278) =1, £eR
=0

D e(278) =1, £eR?\{0}.

JEL
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We denote ¢; = p(27&), h = ' and i = ' x, where §! stands for the inverse Fourier
transform. Then the dyadic blocks A; and S; can be defined as follows:

Af = p(27D)f =2 /Rd h(2y)f (x - y) dy,

Sf =) Af=x(27D)f =2" f h(2y)f G~ y)dy.

k<j-1 R
Formally, A; = S; — §;_; is a frequency projection to annulus {£ : G2 < |g| < G2}, and

§; is a frequency projection to the ball {£ : |£] < C2}. One can easily verify that, with our
choice of ¢,

AN =0 if[j—kl>2 and A[(SifAxf) =0 if|j—k| >5.
With the introduction of A; and §;, let us recall the definition of the Besov space.

Definition 2.1 ([9, 10]) Lets € R, (p,q) € [1,00]?, the homogeneous space B;,q is defined
by

B;'q = {f €@ |[f||31sj,q < oo},
where

. 1
ez 27IAf 1), forl<g<oo,

Ifllgs, = ,
P supicz 27| Aff |l 1v, for q = oo,

and &’ denotes the dual space of & = {f € S(R?); B“f"(O) = 0; Yo € N? multi-index} and
can be identified by the quotient space of &'/P with the polynomials space P.
Lemma 2.1 ([4]) Let a measurable function  satisfy
e Bgo,oo (]R3 )
for some r with =1 <r <1, then there exists a decomposition 7 := 7, + 7, such that
Vig, e L® (Rg) and m, e Wb (Rg),
and

2|13 2 %
[V27e | + Ity e < Clet 1127 ),

I7ell2 < Clizwllg2, IVrpll2 < ClIVE || 2.
3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. Since local existence results have been
proved in [7], we only need to prove a priori estimates.
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To begin with, it is easy to see that

n=>0, 0<p<C, /ndx:/ Mo dx < 00. (3.1)
R3 R3

Case 1. Let (1.6) and (1.11) hold true.
Testing (1.1) by u and using (1.2), we infer that

1d 9
—— d Vul*dx = Voud
2dt/Rs|M| x+‘/]1;3| ul“dx /Rsn dudx

< lInllze IVl 2 llall 25
which leads to
2l oo 0,502y + N2l 20,701y < C. (3.2)
In the following calculations, we will use the following elegant inequality [11, 12]:
IVul7s < Cllullzo, Il Aullp.

Testing (1.1) by A, using (1.2) and the above inequality, we find that

1d
——/ |Vu|2dx+/ | Au|* dx
2dt R3 R3

=f (u~V)u-Audx+/ nVoAudx
R3 R3

=Z/ uiaiuajzudx+/ nVoAudx
i R3 R3

=—Zf dju; Biuajudx+/ nVoAudx

L. R3 R3

if

< CIVulZall Vil 2 + lnll oo VI 2 | Aull 2
< Cliuligo, M Aull 21 Vull 2 + Clinl| o | Au]l 2

2 2 2 2
= S llAulp, + Cllullzy VUl + Clinllze,

N =

which gives
2l oo 0, 75001y + N8l 200, 712) < C. (3.3)

By (1.10), this completes the proof of Case 1.
Case 2. Let (1.7) and (1.11) hold true.
Testing (1.1) by —Auw, using (1.2) and the following inequalities [3, 11]:

lle- Vull 2 = Cllulle Nullgyo,0 <0 <1, (3.4)

lullzg < Cllull 2”1 Vul72,0 <6 <1, (3.5)
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we derive

1d
——f |Vu|2dx+/ |Au|? dx
Zdt R3 R3

:/ (u~V)u~Audx+/ nVoAudx
R3

R3
< - Vullp2 [ Aull2 + (17l [Vl 2| Awll 2

1-6 1+60
< Cllull g NVull "1 Aull 2" + Cllnllze || Al 2

2 2 2
= SIAulip + Cllull, 2 IVullys + Clinllz,

RI-0
Boooo

N =

which yields (3.3); this completes the proof of Case 2 again by (1.10).
Case 3. Let (1.8) and (1.11) hold true.
Testing (1.1) by —Au, using (1.2), we deduce that

1d
——/ |Vu|2dx+/ | Au|? dx
2dt R3 R3

= —Z/ Oju; 0;udjudx +/ nVoAudx
— ]R3 R3
i
=L+ / nVAudx. (3.6)
R3
By the very same calculations as those in [13], we get
1
I < gIIAMIIiz + ClIVull}s + Cl\ Vull g, IIVull> log(e + [ Vul},). 3.7)
Inserting (3.7) into (3.6) and solving the resulting inequality, we arrive at (3.3). This com-
pletes the proof of Case 3.

Case 4. Let (1.9) (r = —1) and (1.11) hold true.
Testing (1.1) by |u|?u and using (1.2), we observe that

1d 1
——/ |u|4dx+/ |u|2|Vu|2dx+—/ |V|u|2‘2dx
4 dt R3 R3 2 R3

=—/ (u-V)n|u|2dx—/ nV|ul®udx
R3 R3

=L +1s. (3.8)
I3 can be bounded as follows:
L < Inlli IVl lull3a- (3.9)
We bounded I, as follows:

12:/ wu-Viu|®dx
R3

<l llpallullpa | V0el?|
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1
<Dl NV el [ V1] 2

1
<Wrlgy (le- Vil + 10V l2) " lull s | V1uP |

1
<Wrlzy (leVul] s+ linle) ™

lleel o | V1l | 2
1
= IV ||L2+ ||u|W|||Lz+C||n|| Nllza + Climl e, (3.10)

where we have used the elegant inequality [11, 12]

1% < Cllwllza IVle, (3.11)
and the pressure estimate
Va2 < C(llu- Vul2 + 11V 2). (3.12)
Inserting (3.9) and (3.10) into (3.8) and using the Gronwall inequality, we conclude that
leell poc 0,724y < C. (3.13)

By (1.10), this completes the proof of Case 4.

4 Proof of Corollary 1.1
Testing (1.3) by #! (m > 2), using (1.2) and (3.1) and denoting w := n?, we have

1 d 4(m -1
/ w?dx + M |Vw|? dx
m dt m> R3

< C’/X(p)Vp-wdex

= ClIVplialiwl i IVwl 2

<C||Vp||Lq||W|I qIIVWII

2q
||W||L27

which implies
I7llzo,m < C - form>2. (4.1)

Here we used the Gagliardo-Nirenberg inequality

3

wll 2 < ||W|| K IVwllf, with 3 <q <oo. (4.2)

L92

Now, since the proofs of other cases are very similar to those in Case 1, Case 2, Case 3
and Case 4, we only prove the following case: Let (1.9) (-1 < r < 1) and (1.12) hold true.
We still have (3.8) and (3.9).
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Using Lemma 2.1, (3.11), (3.12) and the pressure estimate

Iz < C(lulls + | (~A) 2 (1Y) | )
= C(lulls + 11Vl ¢)

< C(llull?, +1), (4.3)
. we bound I, as follows:
I = —/ uV,|ul? dx—/ uVy,|u|* dx
R3 R3
< IVl pallel}s + / uryV|ul® dx
R

1 1
< llmell 2 | V25| Zoo a7 + aall Izl 2 || 9 leef |

2 1v2, |2 (1l 3 3 2
< el 2 | Ve Zoo el s + Netll o 12 s VRN o | W 10t 2
1

1 1
< |V || 2o (Nuall s + 1) + Cllzwall 1

1
(e - Vatll 2 +1) 2 el o ]| V1]
1 1 27
= S IVIP s + Sl Vully + Cle+ Il )7 (s +1) + C. (44

Inserting (3.9) and (4.4) into (3.8), we obtain (3.13).
By the classical regularity theory of parabolic equations [14], it follows from (1.2), (1.3),
(3.13) and (4.4) that

IVl 20,707 < COU+ lunll 20,7 + |1 (p)vp||L2(O,T;L7))
<C

Ut i ranlnl s+ lnl g IVPl07a0)
L>(0,T;L4-7) L>®(0,T;L97T)

forsome3<r<4andr<gq.
Therefore,

1721l 120, 75000 < C. (4.6)

This completes the proof.
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