RESEARCH

CrossMark

Tie-Hong Zhao¹, Yu-Ming Chu^{1*} and Wen Zhang²

*Correspondence: chuyuming2005@126.com ¹School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

Abstract

In this paper, we present the best possible parameters $\alpha(r)$ and $\beta(r)$ such that the double inequality

$$\left[\alpha(r)A^{r}(a,b) + (1-\alpha(r))Q^{r}(a,b) \right]^{1/r} < TD \left[A(a,b), Q(a,b) \right]$$
$$< \left[\beta(r)A^{r}(a,b) + (1-\beta(r))Q^{r}(a,b) \right]^{1/r}$$

holds for all $r \leq 1$ and a, b > 0 with $a \neq b$, and we provide new bounds for the complete elliptic integral $\mathcal{E}(r) = \int_0^{\pi/2} (1 - r^2 \sin^2 \theta)^{1/2} d\theta$ ($r \in (0, \sqrt{2}/2)$) of the second kind, where $TD(a, b) = \frac{2}{\pi} \int_0^{\pi/2} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta$, A(a, b) = (a + b)/2 and $Q(a, b) = \sqrt{(a^2 + b^2)/2}$ are the Toader, arithmetic, and quadratic means of a and b, respectively.

MSC: 26E60

Keywords: arithmetic mean; Toader mean; quadratic mean; complete elliptic integral

1 Introduction

For $p \in [0,1]$, $q \in \mathbb{R}$ and a, b > 0 with $a \neq b$, the *p*th generalized Seiffert mean $S_p(a, b)$, *q*th Gini mean $G_q(a, b)$, *q*th power mean $M_q(a, b)$, *q*th Lehmer mean $L_q(a, b)$, harmonic mean H(a, b), geometric mean G(a, b), arithmetic mean A(a, b), quadratic mean Q(a, b), Toader mean TD(a, b) [1], centroidal mean $\overline{C}(a, b)$, contraharmonic mean C(a, b) are, respectively, defined by

$$\begin{split} S_p(a,b) &= \begin{cases} \frac{p(a-b)}{\arctan[2p(a-b)/(a+b)]}, & 0$$

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

$$L_{q}(a,b) = \frac{a^{q+1} + b^{q+1}}{a^{q} + b^{q}}, \qquad H(a,b) = \frac{2ab}{a+b}, \qquad G(a,b) = \sqrt{ab}, \tag{1.1}$$

$$A(a,b) = \frac{a+b}{2}, \qquad Q(a,b) = \sqrt{\frac{a^{2} + b^{2}}{2}}, \qquad TD(a,b) = \frac{2}{\pi} \int_{0}^{\pi/2} \sqrt{a^{2} \cos^{2}\theta + b^{2} \sin^{2}\theta} \, d\theta, \qquad \overline{C}(a,b) = \frac{2(a^{2} + ab + b^{2})}{3(a+b)}, \qquad C(a,b) = \frac{a^{2} + b^{2}}{a+b}.$$

It is well known that $S_p(a, b)$, $G_q(a, b)$, $M_q(a, b)$, and $L_q(a, b)$ are continuous and strictly increasing with respect to $p \in [0, 1]$ and $q \in \mathbb{R}$ for fixed a, b > 0 with $a \neq b$, and the inequalities

$$\begin{aligned} H(a,b) &= M_{-1}(a,b) = L_{-1}(a,b) < G(a,b) = M_0(a,b) = L_{-1/2}(a,b) \\ &< A(a,b) = M_1(a,b) = L_0(a,b) < TD(a,b) < \overline{C}(a,b) \\ &< Q(a,b) = M_2(a,b) < C(a,b) = L_1(a,b) \end{aligned}$$

hold for all a, b > 0 with $a \neq b$.

The Toader mean TD(a, b) has been well known in the mathematical literature for many years, it satisfies

$$TD(a,b)=R_E(a^2,b^2),$$

where

$$R_E(a,b) = \frac{1}{\pi} \int_0^\infty \frac{[a(t+b)+b(t+a)]t}{(t+a)^{3/2}(t+b)^{3/2}} dt$$

stands for the symmetric complete elliptic integral of the second kind (see [2-4]), therefore it cannot be expressed in terms of the elementary transcendental functions.

Let $r \in (0,1)$, $\mathcal{K}(r) = \int_0^{\pi/2} (1-r^2 \sin^2 \theta)^{-1/2} d\theta$ and $\mathcal{E}(r) = \int_0^{\pi/2} (1-r^2 \sin^2 \theta)^{1/2} d\theta$ be, respectively, the complete elliptic integrals of the first and second kind. Then $\mathcal{K}(0^+) = \mathcal{E}(0^+) = \pi/2$, $\mathcal{K}(r)$, and $\mathcal{E}(r)$ satisfy the derivatives formulas (see [5], Appendix E, p.474-475)

$$\frac{d\mathcal{K}(r)}{dr} = \frac{\mathcal{E}(r) - (1 - r^2)\mathcal{K}(r)}{r(1 - r^2)}, \qquad \frac{d\mathcal{E}(r)}{dr} = \frac{\mathcal{E}(r) - \mathcal{K}(r)}{r},$$
$$\frac{d[\mathcal{K}(r) - \mathcal{E}(r)]}{dr} = \frac{r\mathcal{E}(r)}{1 - r^2},$$

the values $\mathcal{K}(\sqrt{2}/2)$ and $\mathcal{E}(\sqrt{2}/2)$ can be expressed as (see [6], Theorem 1.7)

$$\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) = \frac{\Gamma^2(1/4)}{4\sqrt{\pi}} = 1.854\dots, \qquad \mathcal{E}\left(\frac{\sqrt{2}}{2}\right) = \frac{4\Gamma^2(3/4) + \Gamma^2(1/4)}{8\sqrt{\pi}} = 1.350\dots,$$

where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt (\operatorname{Re} x > 0)$ is the Euler gamma function, and the Toader mean TD(a, b) can be rewritten as

$$TD(a,b) = \begin{cases} 2a\mathcal{E}(\sqrt{1-(b/a)^2})/\pi, & a \ge b, \\ 2b\mathcal{E}(\sqrt{1-(a/b)^2})/\pi, & a < b. \end{cases}$$
(1.2)

Recently, the Toader mean TD(a, b) has been the subject of intensive research. Vuorinen [7] conjectured that the inequality

$$TD(a, b) > M_{3/2}(a, b)$$

holds for all a, b > 0 with $a \neq b$. This conjecture was proved by Qiu and Shen [8], and Barnard, Pearce and Richards [9], respectively.

Alzer and Qiu [10] presented a best possible upper power mean bound for the Toader mean as follows:

$$TD(a,b) < M_{\log 2/(\log \pi - \log 2)}(a,b)$$

for all a, b > 0 with $a \neq b$.

Neuman [2], and Kazi and Neuman [3] proved that the inequalities

$$\begin{aligned} &\frac{(a+b)\sqrt{ab}-ab}{AGM(a,b)} < TD(a,b) < \frac{4(a+b)\sqrt{ab}+(a-b)^2}{8AGM(a,b)},\\ &TD(a,b) < \frac{1}{4} \left(\sqrt{(2+\sqrt{2})a^2+(2-\sqrt{2})b^2}+\sqrt{(2+\sqrt{2})b^2+(2-\sqrt{2})a^2}\right)\end{aligned}$$

hold for all a, b > 0 with $a \neq b$, where AGM(a, b) is the arithmetic-geometric mean of a and b.

In [11–13], the authors presented the best possible parameters $\lambda_1, \mu_1 \in [0,1]$ and $\lambda_2, \mu_2, \lambda_3, \mu_3 \in \mathbb{R}$ such that the double inequalities $S_{\lambda_1}(a,b) < TD(a,b) < S_{\mu_1}(a,b)$, $G_{\lambda_2}(a,b) < TD(a,b) < G_{\mu_2}(a,b)$ and $L_{\lambda_3}(a,b) < TD(a,b) < L_{\mu_3}(a,b)$ hold for all a, b > 0 with $a \neq b$.

Let $\lambda, \mu, \alpha, \beta \in (1/2, 1)$. Then Chu, Wang and Ma [14], and Hua and Qi [15] proved that the double inequalities

$$C[\lambda a + (1 - \lambda)b, \lambda b + (1 - \lambda)a] < TD(a, b) < C[\mu a + (1 - \mu)b, \mu b + (1 - \mu)a],$$

$$\overline{C}[\alpha a + (1 - \alpha)b, \alpha b + (1 - \alpha)a] < TD(a, b) < \overline{C}[\beta a + (1 - \beta)b, \beta b + (1 - \beta)a]$$

hold for all *a*, *b* > 0 with $a \neq b$ if and only if $\lambda \leq 3/4$, $\mu \geq 1/2 + \sqrt{\pi(4-\pi)}/(2\pi)$, $\alpha \leq 1/2 + \sqrt{3}/4$ and $\beta \geq 1/2 + \sqrt{12/\pi - 3}/2$.

In [16–20], the authors proved that the double inequalities

$$\begin{split} &\alpha_1 Q(a,b) + (1-\alpha_1) A(a,b) < TD(a,b) < \beta_1 Q(a,b) + (1-\beta_1) A(a,b), \\ &Q^{\alpha_2}(a,b) A^{(1-\alpha_2)}(a,b) < TD(a,b) < Q^{\beta_2}(a,b) A^{(1-\beta_2)}(a,b), \\ &\alpha_3 C(a,b) + (1-\alpha_3) A(a,b) < TD(a,b) < \beta_3 C(a,b) + (1-\beta_3) A(a,b), \end{split}$$

$$\begin{aligned} \frac{\alpha_4}{A(a,b)} + \frac{1-\alpha_4}{C(a,b)} < \frac{1}{TD(a,b)} < \frac{\beta_4}{A(a,b)} + \frac{1-\beta_4}{C(a,b)}, \\ \alpha_5 C(a,b) + (1-\alpha_5)H(a,b) < TD(a,b) < \beta_5 C(a,b) + (1-\beta_5)H(a,b), \\ \alpha_6 \Big[C(a,b) - H(a,b)\Big] + A(a,b) < TD(a,b) < \beta_6 \Big[C(a,b) - H(a,b)\Big] + A(a,b), \\ \alpha_7 \overline{C}(a,b) + (1-\alpha_7)A(a,b) < TD(a,b) < \beta_7 \overline{C}(a,b) + (1-\beta_7)A(a,b), \\ \frac{\alpha_8}{A(a,b)} + \frac{1-\alpha_8}{\overline{C}(a,b)} < \frac{1}{TD(a,b)} < \frac{\beta_8}{A(a,b)} + \frac{1-\beta_8}{\overline{C}(a,b)}, \\ \alpha_9 Q(a,b) + (1-\alpha_9)H(a,b) < TD(a,b) < \beta_9 Q(a,b) + (1-\beta_9)H(a,b), \\ \frac{\alpha_{10}}{H(a,b)} + \frac{1-\alpha_{10}}{Q(a,b)} < \frac{1}{TD(a,b)} < \frac{\beta_{10}}{H(a,b)} + \frac{1-\beta_{10}}{Q(a,b)} \end{aligned}$$

hold for all a, b > 0 with $a \neq b$ if and only if $\alpha_1 \leq 1/2$, $\beta_1 \geq (4 - \pi)/[(\sqrt{2} - 1)\pi]$, $\alpha_2 \leq 1/2$, $\beta_2 \geq 4 - 2\log \pi / \log 2$, $\alpha_3 \leq 1/4$, $\beta_3 \geq 4/\pi - 1$, $\alpha_4 \leq \pi/2 - 1$, $\beta_4 \geq 3/4$, $\alpha_5 \leq 5/8$, $\beta_5 \geq 2/\pi$, $\alpha_6 \leq 1/8$, $\beta_6 \geq 2/\pi - 1/2$, $\alpha_7 \leq 3/4$, $\beta_7 \geq 12/\pi - 3$, $\alpha_8 \leq \pi - 3$, $\beta_8 \geq 1/4$, $\alpha_9 \leq 5/6$, $\beta_9 \geq 2\sqrt{2}/\pi$, $\alpha_{10} \leq 0$, and $\beta_{10} \geq 1/6$.

The main purpose of this paper is to present the best possible parameters $\alpha(r)$ and $\beta(r)$ such that the double inequality

$$\begin{split} \left[\alpha(r)A^r(a,b) + \left(1 - \alpha(r)\right)Q^r(a,b) \right]^{1/r} < TD \Big[A(a,b), Q(a,b) \Big] \\ < \Big[\beta(r)A^r(a,b) + \left(1 - \beta(r)\right)Q^r(a,b) \Big]^{1/r} \end{split}$$

holds for all $r \le 1$ and a, b > 0 with $a \ne b$.

2 Lemmas

In order to prove our main result we need two lemmas, which we present in this section.

Lemma 2.1 Let $p \in (0,1)$, $t \in (0,\sqrt{2}/2)$, $\lambda = (2 + \sqrt{2})[1 - 2\mathcal{E}(\sqrt{2}/2)/\pi] = 0.478 \dots$ and

$$f(t) = \frac{\pi p}{2}\sqrt{1-t^2} + \frac{\pi}{2}(1-p) - \mathcal{E}(t).$$
(2.1)

Then f(t) < 0 for all $t \in (0, \sqrt{2}/2)$ if and only if $p \ge 1/2$ and f(t) > 0 for all $t \in (0, \sqrt{2}/2)$ if and only if $p \le \lambda$.

Proof It follows from (2.1) that

$$f(0^+) = 0,$$
 (2.2)

$$f\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{2} \left(1 - \frac{\sqrt{2}}{2}\right) (\lambda - p), \tag{2.3}$$

$$f'(t) = \frac{f_1(t)}{t\sqrt{1-t^2}},$$
(2.4)

where

$$f_1(t) = \sqrt{1 - t^2} \left[\mathcal{K}(t) - \mathcal{E}(t) \right] - \frac{\pi p}{2} t^2, \qquad f_1(0^+) = 0, \tag{2.5}$$

$$f_1\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2} \left[\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{E}\left(\frac{\sqrt{2}}{2}\right) \right] - \frac{\pi p}{4},\tag{2.6}$$

$$f_1'(t) = \frac{t[2\mathcal{E}(t) - \mathcal{K}(t)]}{\sqrt{1 - t^2}} - \pi pt,$$
(2.7)

$$f_1'(0^+) = 0,$$
 (2.8)

$$f_1'\left(\frac{\sqrt{2}}{2}\right) = 2\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2\pi}p}{2},\tag{2.9}$$

$$f_1''(t) = \frac{(3-2t^2)\mathcal{E}(t) - (2-t^2)\mathcal{K}(t)}{(1-t^2)^{3/2}} - \pi p, \tag{2.10}$$

$$f_1''(0^+) = \pi \left(\frac{1}{2} - p\right), \tag{2.11}$$

$$f_1''\left(\frac{\sqrt{2}}{2}\right) = \sqrt{2} \left[4\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - 3\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) \right] - \pi p, \qquad (2.12)$$

$$f_1^{\prime\prime\prime}(t) = -\frac{(1+t^2)[\mathcal{K}(t) - \mathcal{E}(t)] + t^2\mathcal{K}(t)}{t(1-t^2)^{5/2}} < 0$$
(2.13)

for all $t \in (0, \sqrt{2}/2)$.

It follows from (2.13) that $f_1''(t)$ is strictly decreasing on $(0, \sqrt{2}/2)$.

We divide the proof into three cases.

Case 1 $p \ge 1/2$. Then (2.11) leads to

$$f_1''(0^+) \le 0. \tag{2.14}$$

From (2.14) and the monotonicity of $f_1''(t)$ we clearly see that $f_1'(t)$ is strictly decreasing on $(0, \sqrt{2}/2)$. Therefore, f(t) < 0 for all $t \in (0, \sqrt{2}/2)$ follows easily from (2.2), (2.4), (2.5), (2.8), and the monotonicity of $f_1'(t)$.

Case 2 $0 . Then from (2.11) and (2.12) together with <math>4\mathcal{E}(\sqrt{2}/2) - 3\mathcal{K}(\sqrt{2}/2) = -0.159...$ we clearly see that

$$f_1''(0^+) > 0, \qquad f_1''\left(\frac{\sqrt{2}}{2}\right) < 0.$$
 (2.15)

It follows from (2.15) and the monotonicity of $f_1''(t)$ that there exists $t_0 \in (0, \sqrt{2}/2)$ such that $f_1'(t)$ is strictly increasing on $(0, t_0]$ and strictly decreasing on $[t_0, \sqrt{2}/2)$.

Let $\lambda^* = \frac{\sqrt{2}}{\pi} [2\mathcal{E}(\frac{\sqrt{2}}{2}) - \mathcal{K}(\frac{\sqrt{2}}{2})] = 0.381...$ and $\lambda^{**} = \frac{2\sqrt{2}}{\pi} [\mathcal{K}(\frac{\sqrt{2}}{2}) - \mathcal{E}(\frac{\sqrt{2}}{2})] = 0.453...$ We divide the proof into three subcases.

Subcase 2.1 0 < $p \le \lambda^*$. Then (2.9) leads to

$$f_1'\left(\frac{\sqrt{2}}{2}\right) \ge 0. \tag{2.16}$$

It follows from (2.8) and (2.16) together with the piecewise monotonicity of $f'_1(t)$ that

 $f_1'(t) > 0$ (2.17)

for all $t \in (0, \sqrt{2}/2)$.

Therefore, f(t) > 0 for all $t \in (0, \sqrt{2}/2)$ follows easily from (2.2), (2.4), (2.5), and (2.17). Subcase 2.2 $\lambda^* . Then (2.6) and (2.9) lead to$

$$f_1\left(\frac{\sqrt{2}}{2}\right) \ge 0,\tag{2.18}$$

$$f_1'\left(\frac{\sqrt{2}}{2}\right) < 0.$$
 (2.19)

It follows from (2.8) and (2.19) together with the piecewise monotonicity of $f'_1(t)$ that there exists $t_1 \in (0, \sqrt{2}/2)$ such that $f_1(t)$ is strictly increasing on $(0, t_1]$ and strictly decreasing on $[t_1, \sqrt{2}/2)$.

Equation (2.5) and inequality (2.18) together with the piecewise monotonicity of $f_1(t)$ lead to the conclusion that

$$f_1(t) > 0$$
 (2.20)

for all $t \in (0, \sqrt{2}/2)$.

Therefore, f(t) > 0 for all $t \in (0, \sqrt{2}/2)$ follows easily from (2.2) and (2.4) together with (2.20).

Subcase 2.3 $\lambda^{**} . Then (2.3), (2.6), and (2.9) lead to$

$$f\left(\frac{\sqrt{2}}{2}\right) \ge 0,\tag{2.21}$$

$$f_1\left(\frac{\sqrt{2}}{2}\right) < 0, \tag{2.22}$$

$$f_{1}'\left(\frac{\sqrt{2}}{2}\right) < 2\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2\pi}}{2}\lambda^{**}$$
$$< 2\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2\pi}}{2}\lambda^{*} = 0.$$
(2.23)

It follows from (2.8) and (2.23) together with the piecewise monotonicity of $f'_1(t)$ that there exists $t_2 \in (0, \sqrt{2}/2)$ such that $f_1(t)$ is strictly increasing on $(0, t_2]$ and strictly decreasing on $[t_2, \sqrt{2}/2)$.

From (2.4), (2.5), and (2.22) together with the piecewise monotonicity of $f_1(t)$ we clearly see that there exists $t_3 \in (0, \sqrt{2}/2)$ such that f(t) is strictly increasing on $(0, t_3]$ and strictly decreasing on $[t_3, \sqrt{2}/2)$.

Therefore, f(t) > 0 for all $t \in (0, \sqrt{2}/2)$ follows easily from (2.2) and (2.21) together with the piecewise monotonicity of f(t).

Case 3 $\lambda . Then (2.3), (2.6), (2.9), (2.11), and (2.12) lead to$

$$f\left(\frac{\sqrt{2}}{2}\right) < 0, \tag{2.24}$$

$$f_1\left(\frac{\sqrt{2}}{2}\right) < \frac{\sqrt{2}}{2} \left[\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{E}\left(\frac{\sqrt{2}}{2}\right) \right] - \frac{\pi\lambda^{**}}{4} = 0,$$
(2.25)

$$f_1'\left(\frac{\sqrt{2}}{2}\right) < 2\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \frac{\sqrt{2\pi\lambda^*}}{2} = 0, \tag{2.26}$$

$$f_1''(0^+) > 0,$$
 (2.27)

$$f_{1}^{\prime\prime}\left(\frac{\sqrt{2}}{2}\right) < \sqrt{2} \left[4\mathcal{E}\left(\frac{\sqrt{2}}{2}\right) - 3\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) \right] - \pi \lambda^{*}$$
$$= -2\sqrt{2} \left[\mathcal{K}\left(\frac{\sqrt{2}}{2}\right) - \mathcal{E}\left(\frac{\sqrt{2}}{2}\right) \right] < 0.$$
(2.28)

It follows from (2.27) and (2.28) together with the monotonicity of $f_1''(t)$ that there exists $t_4 \in (0, \sqrt{2}/2)$ such that $f_1'(t)$ is strictly increasing on $(0, t_4]$ and strictly decreasing on $[t_4, \sqrt{2}/2)$.

Equation (2.8) and inequality (2.26) together with the piecewise monotonicity of $f'_1(t)$ lead to the conclusion that there exists $t_5 \in (0, \sqrt{2}/2)$ such that $f_1(t)$ is strictly increasing on $(0, t_5]$ and strictly decreasing on $[t_5, \sqrt{2}/2)$.

From (2.4), (2.5), (2.25), and the piecewise monotonicity of $f_1(t)$ we clearly see that there exists $t_6 \in (0, \sqrt{2}/2)$ such that f(t) is strictly increasing on $(0, t_6]$ and strictly decreasing on $[t_6, \sqrt{2}/2)$.

Therefore, there exists $t_7 \in (0, \sqrt{2}/2)$ such that f(t) > 0 for $t \in (0, t_7)$ and f(t) < 0 for $t \in (t_7, \sqrt{2}/2)$ follows from (2.2) and (2.24) together with the piecewise monotonicity of f(t).

Lemma 2.2 Let $r \in \mathbb{R}$, a, b > 0 with $1 < b/a < \sqrt{2}$, $c_0 = 2\mathcal{E}(\sqrt{2}/2)/\pi = 0.859..., c_1 = \sqrt{2}/2$, $\lambda(r)$ and U(r; a, b) be defined by

$$\lambda(r) = \frac{1 - c_0^r}{1 - c_1^r} \quad (r \neq 0), \qquad \lambda_0 = \frac{\log c_0}{\log c_1}, \tag{2.29}$$

and

$$U(r; a, b) = \left[\lambda(r)a^{r} + (1 - \lambda(r))b^{r}\right]^{1/r} \quad (r \neq 0), \qquad U(0; a, b) = a^{\lambda_{0}}b^{1 - \lambda_{0}}, \tag{2.30}$$

respectively. Then the function $r \mapsto U(r; a, b)$ is strictly decreasing on $(-\infty, \infty)$.

Proof Let $x = b/a \in (1, \sqrt{2})$, $r \neq 0$, and

$$V(r,x) = (1 - \lambda(r)) \log x - (\log \lambda(r))'.$$
(2.31)

Then from (2.29)-(2.31) one has

$$\log \mathcal{U}(r; a, b) = \log a + \frac{1}{r} \log(\lambda(r) + (1 - \lambda(r))x^{r}),$$

$$\frac{\partial \log \mathcal{U}(r; a, b)}{\partial r} = \frac{\lambda'(r)(1 - x^{r}) + (1 - \lambda(r))x^{r} \log x}{r(\lambda(r) + (1 - \lambda(r))x^{r})} - \frac{\log(\lambda(r) + (1 - \lambda(r))x^{r})}{r^{2}},$$

$$\frac{\partial \log \mathcal{U}(r; a, b)}{\partial r} \bigg|_{x=1} = 0,$$

$$\lambda'(r) = \frac{(c_{1}^{r} - 1)c_{0}^{r} \log c_{0} - (c_{0}^{r} - 1)c_{1}^{r} \log c_{1}}{(c_{1}^{r} - 1)^{2}},$$

$$(\lambda(r) + (1 - \lambda(r))x^{r})|_{x=\sqrt{2}} = \frac{1 - c_{0}^{r}}{1 - c_{1}^{r}} + \left(1 - \frac{1 - c_{0}^{r}}{1 - c_{1}^{r}}\right)\frac{1}{c_{1}^{r}} = \frac{c_{0}^{r}}{c_{1}^{r}},$$

(2.32)

$$\frac{\lambda'(r)(1-x^r) + (1-\lambda(r))x^r \log x}{r(\lambda(r) + (1-\lambda(r))x^r)} \bigg|_{x=\sqrt{2}} = \frac{1}{r} \log \frac{c_0}{c_1},$$

$$\frac{\partial \log U(r;a,b)}{\partial r} \bigg|_{x=\sqrt{2}} = 0,$$
(2.33)

$$\frac{\partial^2 \log U(r;a,b)}{\partial x \,\partial r} = \frac{\lambda(r) x^{r-1}}{(\lambda(r) + (1 - \lambda(r)) x^r)^2} V(r,x), \tag{2.34}$$

$$V(r,1) = \frac{\log \frac{1}{c_1}}{(\frac{1}{c_1})^r - 1} - \frac{\log \frac{1}{c_0}}{(\frac{1}{c_0})^r - 1} < 0,$$
(2.35)

$$V(r,\sqrt{2}) = c_0^r \left(\frac{\log c_1}{c_1^r - 1} - \frac{\log c_0}{c_0^r - 1} \right) > 0,$$
(2.36)

where inequalities (2.35) and (2.36) hold due to $c_0 > c_1$ and the function $t \mapsto \log t/(t^r - 1)$ is strictly decreasing on $(0, \infty)$.

Note that $\lambda(r) \in (0, 1)$ and the function $x \to V(r, x)$ is strictly increasing on $(1, \sqrt{2})$. Then (2.34)-(2.36) lead to the conclusion that there exists $x_0 \in (1, \sqrt{2})$ such that the function $x \mapsto \partial \log U(r; a, b)/\partial r$ is strictly decreasing on $(1, x_0)$ and strictly increasing on $(x_0, \sqrt{2})$.

It follows from (2.32) and (2.33) together with the piecewise monotonicity of the function $x \mapsto \partial \log U(r; a, b)/\partial r$ on the interval $(1, \sqrt{2})$ that

$$\frac{\partial \log U(r;a,b)}{\partial r} < 0 \tag{2.37}$$

for all a, b > 0 with $1 < b/a < \sqrt{2}$.

Therefore, Lemma 2.2 follows from (2.37).

3 Main result

Theorem 3.1 Let $c_0 = 2\mathcal{E}(\sqrt{2}/2)/\pi = 0.859..., c_1 = \sqrt{2}/2$ and $\lambda(r)$ be defined by (2.29). Then the double inequality

$$\begin{split} \left[\alpha(r)A^{r}(a,b) + \left(1 - \alpha(r)\right)Q^{r}(a,b)\right]^{1/r} < TD\left[A(a,b),Q(a,b)\right] \\ < \left[\beta(r)A^{r}(a,b) + \left(1 - \beta(r)\right)Q^{r}(a,b)\right]^{1/r} \end{split}$$

holds for all $r \leq 1$ and a, b > 0 with $a \neq b$ if and only if $\alpha(r) \geq 1/2$ and $\beta(r) \leq \lambda(r)$, where r = 0 is the limit value of $r \rightarrow 0$.

Proof We first prove that Theorem 3.1 holds for r = 1.

Since A(a,b) < TD[A(a,b), Q(a,b)] < Q(a,b) for all a, b > 0 with $a \neq b$, and A(a,b), TD(a,b) and Q(a,b) are symmetric and homogeneous of degree 1, without loss of generality, we assume that $\alpha(1)$, $\beta(1) \in (0,1)$ and a > b. Let $t = (a - b)/\sqrt{2(a^2 + b^2)} \in (0, \sqrt{2}/2)$ and $p \in (0,1)$. Then (1.1) and (1.2) lead to

$$A(a,b) = Q(a,b)\sqrt{1-t^2}, \qquad TD[A(a,b),Q(a,b)] = \frac{2}{\pi}Q(a,b)\mathcal{E}(t),$$

$$pA(a,b) + (1-p)Q(a,b) - TD[A(a,b),Q(a,b)] = \frac{2}{\pi}Q(a,b)f(t),$$
(3.1)

where f(t) is defined as in Lemma 2.1.

Therefore, Theorem 3.1 for r = 1 follows easily from Lemma 2.1 and (3.1). Next, let r < 1 and a, b > 0 with $a \neq b$, then it follows from Theorem 3.1 for r = 1 that

$$\frac{A(a,b) + Q(a,b)}{2} < TD[A(a,b),Q(a,b)] < \lambda(1)A(a,b) + (1 - \lambda(1))Q(a,b).$$
(3.2)

Note that

$$1 < \frac{Q(a,b)}{A(a,b)} < \sqrt{2},\tag{3.3}$$

$$\frac{TD[A(a,b),Q(a,b)]}{\left[\frac{A^{r}(a,b)+Q^{r}(a,b)}{2}\right]^{1/r}} = \frac{2^{1+1/r}}{\pi} \frac{\mathcal{E}(t)}{[1+(1-t^{2})^{r/2}]^{1/r}},$$
(3.4)

$$\frac{TD[A(a,b),Q(a,b)]}{[\lambda(r)A^{r}(a,b)+(1-\lambda(r))Q^{r}(a,b)]^{1/r}} = \frac{2}{\pi} \frac{\mathcal{E}(t)}{[\lambda(r)(1-t^{2})^{r/2}+1-\lambda(r)]^{1/r}},$$
(3.5)

$$\lim_{t \to 0^+} \frac{2^{1+1/r}}{\pi} \frac{\mathcal{E}(t)}{[1+(1-t^2)^{r/2}]^{1/r}} = \lim_{t \to \sqrt{2}/2} \frac{2}{\pi} \frac{\mathcal{E}(t)}{[\lambda(r)(1-t^2)^{r/2}+1-\lambda(r)]^{1/r}} = 1.$$
(3.6)

Therefore, Theorem 3.1 for r < 1 follows from (3.2)-(3.6) and Lemma 2.2 together with the monotonicity of the function $r \mapsto [(a^r + b^r)/2]^{1/r}$.

Let r = 1. Then Theorems 3.1 leads to Corollary 3.2 immediately.

Corollary 3.2 Let $\lambda = (2 + \sqrt{2})[1 - 2\mathcal{E}(\sqrt{2}/2)/\pi]$. Then the double inequality

$$\frac{\pi}{4}\sqrt{1-t^{2}} + \frac{\pi}{4} < \mathcal{E}(t) < \frac{\pi}{2}\lambda\sqrt{1-t^{2}} + \frac{\pi}{2}(1-\lambda)$$

holds for all $t \in (0, \sqrt{2}/2)$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China. ²Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, 10033, United States.

Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 61673169, 11371125, 11401191, and 61374086.

Received: 28 November 2016 Accepted: 17 January 2017 Published online: 25 January 2017

References

- 1. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998)
- 2. Neuman, E: Bounds for symmetric elliptic integrals. J. Approx. Theory 122(2), 249-259 (2003)
- 3. Kazi, H, Neuman, E: Inequalities and bounds for elliptic integrals. J. Approx. Theory 146(2), 212-226 (2007)
- 4. Kazi, H, Neuman, E: Inequalities and bounds for elliptic integrals II. In: Special Functions and Orthogonal Polynomials. Contemp. Math., vol. 471, pp. 127-138. Amer. Math. Soc., Providence, RI (2008)
- Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)
- 6. Borwein, JM, Borwein, PB: Pi and the AGM. Wiley, New York (1987)
- 7. Vuorinen, M: Hypergeometric functions in geometric function theory. In: Special Functions and Differential Equations, Madras, 1977, pp. 119-126. Allied Publ., New Delhi (1998)
- Qiu, S-L, Shen, J-M: On two problems concerning means. J. Hangzhou Inst. Electron. Eng. 17(3), 1-7 (1997) (in Chinese)

- Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000)
- Alzer, H, Qiu, S-L: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004)
- Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011)
- Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012)
- 13. Chu, Y-M, Wang, M-K: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3-4), 223-229 (2012)
- Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161-166 (2012)
- Hua, Y, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014)
- Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combination bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012)
- Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013)
- Li, W-H, Zheng, M-M: Some inequalities for bounding Toader mean. J. Funct. Spaces Appl. 2013, Article ID 394194 (2013)
- Hua, Y, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 28(4), 775-780 (2014)
- 20. Sun, H, Chu, Y-M: Bounds for Toader mean by quadratic and harmonic means. Acta Math. Sci. **35A**(1), 36-42 (2015) (in Chinese)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com