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Abstract
In this paper, we present the best possible parameters α(r) and β(r) such that the
double inequality

[
α(r)Ar(a,b) + (1 – α(r))Qr(a,b)

]1/r
< TD

[
A(a,b),Q(a,b)

]

<
[
β(r)Ar(a,b) + (1 – β(r))Qr(a,b)

]1/r

holds for all r ≤ 1 and a,b > 0 with a �= b, and we provide new bounds for the
complete elliptic integral E (r) =

∫ π /2
0 (1 – r2 sin2 θ )1/2 dθ (r ∈ (0,

√
2/2)) of the second

kind, where TD(a,b) = 2
π

∫ π /2
0

√
a2 cos2 θ + b2 sin2 θ dθ , A(a,b) = (a + b)/2 and

Q(a,b) =
√
(a2 + b2)/2 are the Toader, arithmetic, and quadratic means of a and b,

respectively.

MSC: 26E60

Keywords: arithmetic mean; Toader mean; quadratic mean; complete elliptic
integral

1 Introduction
For p ∈ [, ], q ∈ R and a, b >  with a �= b, the pth generalized Seiffert mean Sp(a, b), qth
Gini mean Gq(a, b), qth power mean Mq(a, b), qth Lehmer mean Lq(a, b), harmonic mean
H(a, b), geometric mean G(a, b), arithmetic mean A(a, b), quadratic mean Q(a, b), Toader
mean TD(a, b) [], centroidal mean C(a, b), contraharmonic mean C(a, b) are, respectively,
defined by

Sp(a, b) =

⎧
⎪⎨

⎪⎩

p(a – b)
arctan[p(a – b)/(a + b)]

,  < p ≤ ,

(a + b)/, p = ,

Gq(a, b) =

⎧
⎨

⎩
[(aq– + bq–)/(a + b)]/(q–), q �= ,

(aabb)/(a+b), q = ,

Mq(a, b) =

⎧
⎨

⎩
[(aq + bq)/]/q, q �= ,√

ab, q = ,
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Lq(a, b) =
aq+ + bq+

aq + bq , H(a, b) =
ab

a + b
, G(a, b) =

√
ab, (.)

A(a, b) =
a + b


, Q(a, b) =

√
a + b


,

TD(a, b) =

π

∫ π/



√
a cos θ + b sin θ dθ ,

C(a, b) =
(a + ab + b)

(a + b)
, C(a, b) =

a + b

a + b
.

It is well known that Sp(a, b), Gq(a, b), Mq(a, b), and Lq(a, b) are continuous and strictly
increasing with respect to p ∈ [, ] and q ∈ R for fixed a, b >  with a �= b, and the inequal-
ities

H(a, b) = M–(a, b) = L–(a, b) < G(a, b) = M(a, b) = L–/(a, b)

< A(a, b) = M(a, b) = L(a, b) < TD(a, b) < C(a, b)

< Q(a, b) = M(a, b) < C(a, b) = L(a, b)

hold for all a, b >  with a �= b.
The Toader mean TD(a, b) has been well known in the mathematical literature for many

years, it satisfies

TD(a, b) = RE
(
a, b),

where

RE(a, b) =

π

∫ ∞



[a(t + b) + b(t + a)]t
(t + a)/(t + b)/ dt

stands for the symmetric complete elliptic integral of the second kind (see [–]), therefore
it cannot be expressed in terms of the elementary transcendental functions.

Let r ∈ (, ),K(r) =
∫ π/

 (–r sin θ )–/ dθ and E(r) =
∫ π/

 (–r sin θ )/ dθ be, respec-
tively, the complete elliptic integrals of the first and second kind. Then K(+) = E(+) =
π/, K(r), and E(r) satisfy the derivatives formulas (see [], Appendix E, p.-)

dK(r)
dr

=
E(r) – ( – r)K(r)

r( – r)
,

dE(r)
dr

=
E(r) – K(r)

r
,

d[K(r) – E(r)]
dr

=
rE(r)
 – r ,

the values K(
√

/) and E(
√

/) can be expressed as (see [], Theorem .)

K
(√




)
=

�(/)

√

π
= . . . . , E

(√




)
=

�(/) + �(/)

√

π
= . . . . ,
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where �(x) =
∫ ∞

 tx–e–t dt(Re x > ) is the Euler gamma function, and the Toader mean
TD(a, b) can be rewritten as

TD(a, b) =

⎧
⎨

⎩
aE(

√
 – (b/a))/π , a ≥ b,

bE(
√

 – (a/b))/π , a < b.
(.)

Recently, the Toader mean TD(a, b) has been the subject of intensive research. Vuorinen
[] conjectured that the inequality

TD(a, b) > M/(a, b)

holds for all a, b >  with a �= b. This conjecture was proved by Qiu and Shen [], and
Barnard, Pearce and Richards [], respectively.

Alzer and Qiu [] presented a best possible upper power mean bound for the Toader
mean as follows:

TD(a, b) < Mlog /(logπ–log )(a, b)

for all a, b >  with a �= b.
Neuman [], and Kazi and Neuman [] proved that the inequalities

(a + b)
√

ab – ab
AGM(a, b)

< TD(a, b) <
(a + b)

√
ab + (a – b)

AGM(a, b)
,

TD(a, b) <



(√
( +

√
)a + ( –

√
)b +

√
( +

√
)b + ( –

√
)a

)

hold for all a, b >  with a �= b, where AGM(a, b) is the arithmetic-geometric mean of a
and b.

In [–], the authors presented the best possible parameters λ,μ ∈ [, ] and
λ,μ,λ,μ ∈ R such that the double inequalities Sλ (a, b) < TD(a, b) < Sμ (a, b),
Gλ (a, b) < TD(a, b) < Gμ (a, b) and Lλ (a, b) < TD(a, b) < Lμ (a, b) hold for all a, b >  with
a �= b.

Let λ,μ,α,β ∈ (/, ). Then Chu, Wang and Ma [], and Hua and Qi [] proved that
the double inequalities

C
[
λa + ( – λ)b,λb + ( – λ)a

]
< TD(a, b) < C

[
μa + ( – μ)b,μb + ( – μ)a

]
,

C
[
αa + ( – α)b,αb + ( – α)a

]
< TD(a, b) < C

[
βa + ( – β)b,βb + ( – β)a

]

hold for all a, b >  with a �= b if and only if λ ≤ /, μ ≥ / +
√

π ( – π )/(π ), α ≤ / +√
/ and β ≥ / +

√
/π – /.

In [–], the authors proved that the double inequalities

αQ(a, b) + ( – α)A(a, b) < TD(a, b) < βQ(a, b) + ( – β)A(a, b),

Qα (a, b)A(–α)(a, b) < TD(a, b) < Qβ (a, b)A(–β)(a, b),

αC(a, b) + ( – α)A(a, b) < TD(a, b) < βC(a, b) + ( – β)A(a, b),
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α

A(a, b)
+

 – α

C(a, b)
<


TD(a, b)

<
β

A(a, b)
+

 – β

C(a, b)
,

αC(a, b) + ( – α)H(a, b) < TD(a, b) < βC(a, b) + ( – β)H(a, b),

α
[
C(a, b) – H(a, b)

]
+ A(a, b) < TD(a, b) < β

[
C(a, b) – H(a, b)

]
+ A(a, b),

αC(a, b) + ( – α)A(a, b) < TD(a, b) < βC(a, b) + ( – β)A(a, b),

α

A(a, b)
+

 – α

C(a, b)
<


TD(a, b)

<
β

A(a, b)
+

 – β

C(a, b)
,

αQ(a, b) + ( – α)H(a, b) < TD(a, b) < βQ(a, b) + ( – β)H(a, b),

α

H(a, b)
+

 – α

Q(a, b)
<


TD(a, b)

<
β

H(a, b)
+

 – β

Q(a, b)

hold for all a, b >  with a �= b if and only if α ≤ /, β ≥ ( – π )/[(
√

 – )π ], α ≤ /,
β ≥  –  logπ/ log , α ≤ /, β ≥ /π – , α ≤ π/ – , β ≥ /, α ≤ /, β ≥ /π ,
α ≤ /, β ≥ /π – /, α ≤ /, β ≥ /π – , α ≤ π – , β ≥ /, α ≤ /, β ≥

√

/π , α ≤ , and β ≥ /.
The main purpose of this paper is to present the best possible parameters α(r) and β(r)

such that the double inequality

[
α(r)Ar(a, b) +

(
 – α(r)

)
Qr(a, b)

]/r < TD
[
A(a, b), Q(a, b)

]

<
[
β(r)Ar(a, b) +

(
 – β(r)

)
Qr(a, b)

]/r

holds for all r ≤  and a, b >  with a �= b.

2 Lemmas
In order to prove our main result we need two lemmas, which we present in this section.

Lemma . Let p ∈ (, ), t ∈ (,
√

/), λ = ( +
√

)[ – E(
√

/)/π ] = . . . . and

f (t) =
πp


√
 – t +

π


( – p) – E(t). (.)

Then f (t) <  for all t ∈ (,
√

/) if and only if p ≥ / and f (t) >  for all t ∈ (,
√

/) if
and only if p ≤ λ.

Proof It follows from (.) that

f
(
+)

= , (.)

f
(√




)
=

π



(
 –

√




)
(λ – p), (.)

f ′(t) =
f(t)

t
√

 – t
, (.)

where

f(t) =
√

 – t
[
K(t) – E(t)

]
–

πp


t, f
(
+)

= , (.)
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f

(√




)
=

√




[
K

(√




)
– E

(√




)]
–

πp


, (.)

f ′
 (t) =

t[E(t) – K(t)]√
 – t

– πpt, (.)

f ′

(
+)

= , (.)

f ′


(√




)
= E

(√




)
– K

(√




)
–

√
πp


, (.)

f ′′
 (t) =

( – t)E(t) – ( – t)K(t)
( – t)/ – πp, (.)

f ′′

(
+)

= π

(



– p
)

, (.)

f ′′


(√




)
=

√

[

E
(√




)
– K

(√




)]
– πp, (.)

f ′′′
 (t) = –

( + t)[K(t) – E(t)] + tK(t)
t( – t)/ <  (.)

for all t ∈ (,
√

/).
It follows from (.) that f ′′

 (t) is strictly decreasing on (,
√

/).
We divide the proof into three cases.
Case  p ≥ /. Then (.) leads to

f ′′

(
+) ≤ . (.)

From (.) and the monotonicity of f ′′
 (t) we clearly see that f ′

 (t) is strictly decreasing
on (,

√
/). Therefore, f (t) <  for all t ∈ (,

√
/) follows easily from (.), (.), (.),

(.), and the monotonicity of f ′
 (t).

Case   < p ≤ λ. Then from (.) and (.) together with E(
√

/) – K(
√

/) =
–. . . . we clearly see that

f ′′

(
+)

> , f ′′


(√




)
< . (.)

It follows from (.) and the monotonicity of f ′′
 (t) that there exists t ∈ (,

√
/) such

that f ′
 (t) is strictly increasing on (, t] and strictly decreasing on [t,

√
/).

Let λ∗ =
√


π

[E(
√


 ) – K(

√


 )] = . . . . and λ∗∗ = 
√


π

[K(
√


 ) – E(

√


 )] = . . . . . We
divide the proof into three subcases.

Subcase .  < p ≤ λ∗. Then (.) leads to

f ′


(√




)
≥ . (.)

It follows from (.) and (.) together with the piecewise monotonicity of f ′
 (t) that

f ′
 (t) >  (.)

for all t ∈ (,
√

/).
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Therefore, f (t) >  for all t ∈ (,
√

/) follows easily from (.), (.), (.), and (.).
Subcase . λ∗ < p ≤ λ∗∗. Then (.) and (.) lead to

f

(√




)
≥ , (.)

f ′


(√




)
< . (.)

It follows from (.) and (.) together with the piecewise monotonicity of f ′
 (t) that

there exists t ∈ (,
√

/) such that f(t) is strictly increasing on (, t] and strictly de-
creasing on [t,

√
/).

Equation (.) and inequality (.) together with the piecewise monotonicity of f(t)
lead to the conclusion that

f(t) >  (.)

for all t ∈ (,
√

/).
Therefore, f (t) >  for all t ∈ (,

√
/) follows easily from (.) and (.) together

with (.).
Subcase . λ∗∗ < p ≤ λ. Then (.), (.), and (.) lead to

f
(√




)
≥ , (.)

f

(√




)
< , (.)

f ′


(√




)
< E

(√




)
– K

(√




)
–

√
π


λ∗∗

< E
(√




)
– K

(√




)
–

√
π


λ∗ = . (.)

It follows from (.) and (.) together with the piecewise monotonicity of f ′
 (t) that

there exists t ∈ (,
√

/) such that f(t) is strictly increasing on (, t] and strictly de-
creasing on [t,

√
/).

From (.), (.), and (.) together with the piecewise monotonicity of f(t) we clearly
see that there exists t ∈ (,

√
/) such that f (t) is strictly increasing on (, t] and strictly

decreasing on [t,
√

/).
Therefore, f (t) >  for all t ∈ (,

√
/) follows easily from (.) and (.) together with

the piecewise monotonicity of f (t).
Case  λ < p < /. Then (.), (.), (.), (.), and (.) lead to

f
(√




)
< , (.)

f

(√




)
<

√




[
K

(√




)
– E

(√




)]
–

πλ∗∗


= , (.)

f ′


(√




)
< E

(√




)
– K

(√




)
–

√
πλ∗


= , (.)
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f ′′

(
+)

> , (.)

f ′′


(√




)
<

√

[

E
(√




)
– K

(√




)]
– πλ∗

= –
√


[
K

(√




)
– E

(√




)]
< . (.)

It follows from (.) and (.) together with the monotonicity of f ′′
 (t) that there ex-

ists t ∈ (,
√

/) such that f ′
 (t) is strictly increasing on (, t] and strictly decreasing on

[t,
√

/).
Equation (.) and inequality (.) together with the piecewise monotonicity of f ′

 (t)
lead to the conclusion that there exists t ∈ (,

√
/) such that f(t) is strictly increasing

on (, t] and strictly decreasing on [t,
√

/).
From (.), (.), (.), and the piecewise monotonicity of f(t) we clearly see that there

exists t ∈ (,
√

/) such that f (t) is strictly increasing on (, t] and strictly decreasing on
[t,

√
/).

Therefore, there exists t ∈ (,
√

/) such that f (t) >  for t ∈ (, t) and f (t) <  for
t ∈ (t,

√
/) follows from (.) and (.) together with the piecewise monotonicity of

f (t). �

Lemma . Let r ∈ R, a, b >  with  < b/a <
√

, c = E(
√

/)/π = . . . . , c =
√

/,
λ(r) and U(r; a, b) be defined by

λ(r) =
 – cr


 – cr


(r �= ), λ =

log c

log c
, (.)

and

U(r; a, b) =
[
λ(r)ar +

(
 – λ(r)

)
br]/r (r �= ), U(; a, b) = aλ b–λ , (.)

respectively. Then the function r 
→ U(r; a, b) is strictly decreasing on (–∞,∞).

Proof Let x = b/a ∈ (,
√

), r �= , and

V (r, x) =
(
 – λ(r)

)
log x –

(
logλ(r)

)′. (.)

Then from (.)-(.) one has

log U(r; a, b) = log a +

r

log
(
λ(r) +

(
 – λ(r)

)
xr),

∂ log U(r; a, b)
∂r

=
λ′(r)( – xr) + ( – λ(r))xr log x

r(λ(r) + ( – λ(r))xr)
–

log(λ(r) + ( – λ(r))xr)
r ,

∂ log U(r; a, b)
∂r

∣∣
∣∣
x=

= , (.)

λ′(r) =
(cr

 – )cr
 log c – (cr

 – )cr
 log c

(cr
 – ) ,

(
λ(r) +

(
 – λ(r)

)
xr)|x=

√
 =

 – cr


 – cr


+
(

 –
 – cr


 – cr



)

cr


=

cr


cr


,
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λ′(r)( – xr) + ( – λ(r))xr log x
r(λ(r) + ( – λ(r))xr)

∣∣
∣∣
x=

√


=

r

log
c

c
,

∂ log U(r; a, b)
∂r

∣
∣∣∣
x=

√


= , (.)

∂ log U(r; a, b)
∂x ∂r

=
λ(r)xr–

(λ(r) + ( – λ(r))xr) V (r, x), (.)

V (r, ) =
log 

c

( 
c

)r – 
–

log 
c

( 
c

)r – 
< , (.)

V (r,
√

) = cr


(
log c

cr
 – 

–
log c

cr
 – 

)
> , (.)

where inequalities (.) and (.) hold due to c > c and the function t 
→ log t/(tr – )
is strictly decreasing on (,∞).

Note that λ(r) ∈ (, ) and the function x → V (r, x) is strictly increasing on (,
√

). Then
(.)-(.) lead to the conclusion that there exists x ∈ (,

√
) such that the function

x 
→ ∂ log U(r; a, b)/∂r is strictly decreasing on (, x) and strictly increasing on (x,
√

).
It follows from (.) and (.) together with the piecewise monotonicity of the func-

tion x 
→ ∂ log U(r; a, b)/∂r on the interval (,
√

) that

∂ log U(r; a, b)
∂r

<  (.)

for all a, b >  with  < b/a <
√

.
Therefore, Lemma . follows from (.). �

3 Main result
Theorem . Let c = E(

√
/)/π = . . . . , c =

√
/ and λ(r) be defined by (.).

Then the double inequality

[
α(r)Ar(a, b) +

(
 – α(r)

)
Qr(a, b)

]/r < TD
[
A(a, b), Q(a, b)

]

<
[
β(r)Ar(a, b) +

(
 – β(r)

)
Qr(a, b)

]/r

holds for all r ≤  and a, b >  with a �= b if and only if α(r) ≥ / and β(r) ≤ λ(r), where
r =  is the limit value of r → .

Proof We first prove that Theorem . holds for r = .
Since A(a, b) < TD[A(a, b), Q(a, b)] < Q(a, b) for all a, b >  with a �= b, and A(a, b),

TD(a, b) and Q(a, b) are symmetric and homogeneous of degree , without loss of gen-
erality, we assume that α(), β() ∈ (, ) and a > b. Let t = (a – b)/

√
(a + b) ∈ (,

√
/)

and p ∈ (, ). Then (.) and (.) lead to

A(a, b) = Q(a, b)
√

 – t, TD
[
A(a, b), Q(a, b)

]
=


π

Q(a, b)E(t),
(.)

pA(a, b) + ( – p)Q(a, b) – TD
[
A(a, b), Q(a, b)

]
=


π

Q(a, b)f (t),

where f (t) is defined as in Lemma ..
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Therefore, Theorem . for r =  follows easily from Lemma . and (.).
Next, let r <  and a, b >  with a �= b, then it follows from Theorem . for r =  that

A(a, b) + Q(a, b)


< TD
[
A(a, b), Q(a, b)

]
< λ()A(a, b) +

(
 – λ()

)
Q(a, b). (.)

Note that

 <
Q(a, b)
A(a, b)

<
√

, (.)

TD[A(a, b), Q(a, b)]
[ Ar (a,b)+Qr(a,b)

 ]/r
=

+/r

π

E(t)
[ + ( – t)r/]/r , (.)

TD[A(a, b), Q(a, b)]
[λ(r)Ar(a, b) + ( – λ(r))Qr(a, b)]/r =


π

E(t)
[λ(r)( – t)r/ +  – λ(r)]/r , (.)

lim
t→+

+/r

π

E(t)
[ + ( – t)r/]/r = lim

t→√
/


π

E(t)
[λ(r)( – t)r/ +  – λ(r)]/r = . (.)

Therefore, Theorem . for r <  follows from (.)-(.) and Lemma . together with
the monotonicity of the function r 
→ [(ar + br)/]/r . �

Let r = . Then Theorems . leads to Corollary . immediately.

Corollary . Let λ = ( +
√

)[ – E(
√

/)/π ]. Then the double inequality

π


√

 – t +
π


< E(t) <

π


λ
√

 – t +
π


( – λ)

holds for all t ∈ (,
√

/).
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