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Abstract

Agrawal et al. (Boll. Unione Mat. Ital. 8:169-180, 2015) introduced a Stancu-type
Kantorovich modification of the operators proposed by Ren and Zeng (Bull. Korean
Math. Soc. 50(4):1145-1156, 2013) and studied a basic convergence theorem by using
the Bohman-Korovokin criterion, the rate of convergence involving the modulus of
continuity, and the Lipschitz function. The concern of this paper is to obtain
Voronoskaja-type asymptotic result by calculating an estimate of fourth order central
moment for these operators and discuss the rate of convergence for the bivariate
case by using the complete and partial moduli of continuity and the degree of
approximation by means of a Lipschitz-type function and the Peetre K-functional.
Also, we consider the associated GBS (generalized Boolean sum) operators and
estimate the rate of convergence for these operators with the help of a mixed
modulus of smoothness. Furthermore, we show the rate of convergence of these
operators (univariate case) to certain functions with the help of the illustrations using
Maple algorithms and in the bivariate case, the rate of convergence of these
operators is compared with the associated GBS operators by illustrative graphics.

MSC: 41A25; 26A15;41A28

Keywords: g-Bernstein-Schurer-Kantorovich; rate of convergence; modulus of
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1 Introduction
Following [3], for any fixed real number g > 0, satisfying the condition 0 < g < 1, the g-
integer [k],, for k € N and g-factorial [k],! are defined as

a5 .
), = | o> a7L
k, ifg=1,

and

1 - (Kl lk=1],---1, ifk>1,
71, ifk=0,
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respectively. For any integers #, k satisfying 0 < k < n, the g-binomial coefficient is given

by
(n) _ [n]y!
k), In—klgklg"

The g-analogue of (1 — x)" is given by

n-1 1
A (1=gx), =12,...,
(1"6)2:{}_11_0( ™ Z—o

The g-integration in the interval [0, 4] is defined by

/0 f®dit=al-q)) f(ag")q", 0<q<l,
n=0

provided the series converges.

Let I =[0,1+ p] and p € NU {0}. For f € C(I), the space of all continuous functions on
I endowed with the norm |[f|| = sup,jo1,, | (*)| and 0 < g <1, Ren and Zeng [2] defined
the following new version of the g-Bernstein-Schurer operator which preserves the linear

functions:

n+p
B, (f(1):q%) ank 9% ( }) (11)

where

. _ ng” <n+p> k([mp]q_ )W'k
pn,k(q’x) - [n+p]2+p k qx [n]q x .

q

Later, Acu [4] proposed a g-Durrmeyer modification of the operators (1.1) as

n+p ['Hp]

1] Tl ~
Duoiann =S Futa | * O g andy 12

and discussed the rate of convergence in terms of the modulus of continuity, a Lipschitz
class function, and a Voronovskaja-type result. Subsequently, for «, 8 € R such that 0 <
a < B and f € C(I), Agrawal et al. [1] introduced a Stancu-type Kantorovich modification
of the operators (1.1), defined as

s Klo + 4"t +
Otﬁ) § 9 I
(f g% pnk g% / ( [I’l - l]q n ﬁ )dqty (13)

and discussed the basic convergence theorem, the rate of convergence involving mod-
ulus of continuity and Lipschitz function. Significant contributions have been made by
researchers in this area of approximation theory (cf. [5] and the references their in).

The purpose of this paper is to discuss the Voronoskaja asymptotic result by calculat-
ing an estimate of the fourth order central moment for the operators (1.3) and construct
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the bivariate case of these operators. We obtain the rate of approximation of the bivariate
operators by using the complete and partial moduli of continuity and the degree of ap-
proximation with the aid of a Lipschitz-type space and the Peetre K-functional. Lastly, we
consider the associated GBS (generalized Boolean sum) operators and study the approx-
imation of Bogel continuous and Bogel differentiable functions by means of the mixed

modulus of smoothness.

Lemma 1 ([1]) For the opemtors given by (1.3), the following equalities hold:
(i) /C P (1;4,%) =

2q[n]qx+1
(i) K ,p Pt q,%) = ) P [Z]q([n+1]q+ﬁ)’
(iii) K2 (2% q,%) = 1 (Llalerty o) 2L s a2 4 (e + 3)g[3], + 21+
9 2Bl (g pR2 U [niplq a9 *°24 gl tq

[2] )}[ nlgx + [4]40% + 2a[3], + (1 + ga?)[2]4}.

Lemma 2 ([1 ]) For m € NU {0}, the mth order central moment oflC (f q,x) defined as

Wohmg ®) = G, B((t - %)™; q,%), we have
_ (2-[2]g)gln]gx—(B+1)[2]gx+1 o .
(1) 'un’l’q(x) - [2]4([n+1]4+B8) + [n+1]g+B°
i) g nlginep-1lg(Blgq+34") __dqlnly 2, (@es3)Blgqra* (1421 g
( ) Man( ) {[”+P [Vl+1]q+/3)2[2]q[3]q - R2lq[n+1]4+B + l}x { ([”+1]q+ﬂ)2[2]q[3]q -
20 2 [4]ge®+2a[3]g+(1+q02)[2]4

brllg B~ gty B (el 18P0, Bl

In the following we obtain an estimate of the fourth order central moment of the operators
defined by (1.3).
By the definition of the Jackson integral and the inequality (a + b)* < 8(a* + b*), where

a>0,b>0,and Lemma 2.4 in [2], we have

n+p 4
« (K], + g%t +a
Ichpﬁ)((t - x)4; qn:X) = Vl + 1 an k(anx) / ( 1 - dqnt

[n+1],, + B
L +dkdy+a v
ank(qu) 1- qn)z<—n Ty, + B x) X q,
n+p 4
=% [k]Qn o
<t w9 (G5 )

n+p o *
+8(1—qn)Z‘5fl,k(q"’ Z([n+lq +5> Sj

k=0 j=0

n+p . [kl +c 4 q, 4
<64 an,k(q”’x)([n]qn + ﬂ) <[Vl + l]tﬁt + ﬂ)

k=0

n+p [k]qn 4
+64 ank(me)<[ ] +,B _x)
qn

n+p 4
ank(qu)< ] >

1+qn+qn+qn+qn o

n+p [k]q iy 4 qn )4
=64 pt (g " n
;p”’k(q x)( 1]y, + /3) <[n 1, + B
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4
+64BP<([ an+; "‘) ””x)

n+p k 4
ank(qm < ] >

g B

<ga L 1  64M 1/4 8  64+16M,+8
RRTIP 2z, ", [n2,

(1.4)

In the following, let (g,)., 0 < g, <1 be a sequence satisfying lim,_, . g, = 1 and
lim, g =a(0<a<l).

2 Voronovskaja-type theorem
Let C%[0,1+p] denote the space of twice continuously differentiable functions on [0, 1+ p].

Theorem 1 Foranyf € C*[0,1+ p],

Tim (1], (K (f3,0) - £(0) = (M rat %)f’(x) ()

uniformly in [0,1].
Proof Using Taylor’s expansion for f, we obtain

@ -x)?

2 + %-(t’ x)(t - x)2> (21)

f@O) =f@&) +f ®)(E-x)+

where the function &£(¢,x) is the Peano form of the remainder, &(¢,x) € C[0,1 + p], and
lim;_ é(t’ .?C) =
By linearity of the operators IC,(f;;ﬁ G qn»>x) and using Lemma 2, we get

Tim [l (K (f; ) ~£ () = (M+a+%)f’(x)—x2f”(x)

+ lim [n]g, K2 (66, 2)(¢ — %)% 4,%) (2.2)

uniformly in [0, 1].
For the last term of the right side, using the Cauchy-Schwarz inequality, we are led to

(14, KD (5 (8, 2)(t — %)% 4o %) < [ \/IC (&2(,%); g x \/IC ((t - %)% 4, ).
We observe that £2(¢,x) € C[0,1 + p] and £%(x,x) = 0, hence, by Theorem 1

lim Kfqaz;ﬂ) (“;‘z(t, x); q,,,x) = £%(x,x) =0, uniformly with respect to x € [0,1].
n—00 k

Further using (1.4), lim,,_, o [#],, \/ICEfI;ﬂ)((t —x)%; q,, %) is finite.
Hence,

Tim [l KL (6 (6, )(¢ = %)% ) = 0 (2.3)

uniformly in x € [0,1]. Finally, consideration of (2.2) and (2.3) completes the proof. O
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Figure 1 The convergence of K,(,‘j‘,;ﬂ)(f; g, x) to f(x).

Figure 2 The convergence of K,(,f‘p'ﬂ)(f; g, x) to f(x).

Function

n=10,¢-.65,

=10,¢-.65, .5, beta—0.7
=10,4=.65,  beta—=3

In the following examples, we illustrate the rate of convergence of the operators given

by (1.3) to certain functions.

Example 1 Let g, = (n —1)/n. For « = 0.5, 8 = 0.7, p =1 with n = 10 and 20, the conver-
gence of lCifI;ﬂ )(f ;q,x) given by (1.3) to f(x) = x* + sin(37x/2) is shown in Figure 1. It is

observed that the approximation becomes better on increasing the value of n.

Example 2 Let f(x) = arctan(3x2), p = 0.80, n = 10, g = 0.65 and n = 30, g = 0.80. For
a=8=0,0=0.5,8=07and« =2, 8 = 3 the convergence oflC(,f;’,ﬁ)(f; q,x) to f(x) is shown
in Figures 2 and 3 respectively. It is observed that the approximation becomes better when
the values of o, B € [0,1) and the convergence is better in a small interval for larger values
of w, .
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Figure 3 The convergence of K( np (f g, x) to f(x).

3 Construction of the bivariate operators
Let C(; x I), where I; = [0,1 + p1] and I, = [0,1 + p,], denote the space of all real valued
continuous functions on I; x I, endowed with the norm

fllcaxm = sup  |[f(x9)|-

(xy)el; xI

For f € C(l; x L), 0 < q1, g2 <1 and ] = [0,1], the bivariate generalization of the operators
given by (1.3) is defined as

(a1,02,81,82) .
Kn(i}nz%p‘ilp‘zz (f(t,S), 41,42,9‘:)’)

n+p1 na+p2

= Z Z ﬁzl,nz,kl,kz(qlr 6]2;96,)/)

k1=0 k2=0
perh b (s)) dy td, (3.1)
f n1,k1 5 ql n2 ka.qo \S)) Gt g S) :
where

pfll,ng,kl,kz (ql’ q2, xr}’)

n+p —ki

_ (mlg ™ |:n1+p1] xkl([n1+171]q1_x)"”p‘ !
q

m+plg ™ L ki (mly o

. m I |:I’12 +p2} ,(2([n2 + P2l _y)”w"_k2 xye] and
m+ple ™ L kg, [n2]g, I
k k
a1,p1 (t) = [kl]m + qlqt +o 0124‘32 (s) = [kZ]QZ + q22S o
mokigy m+1]+p VoS [12 +1] + Bo

Lemma 3 let e;(t,s) = t's, (t,s) € (I x ), (i,j) € N° x N° with i + j < 2 be the two dimen-
sional test functions. Then the following equalities hold for the operators (3.1):
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(i) icn?;;zp'f;’? (€005 G1> G2, %)) = 1;

(a1,02,81,82) 2q1 [}’ll]qlx+1 .
(i) Koy n2,P1,02 (10591, g2, %, y) = [n1+1]q1+ﬂ1 + 2T, (1l 2P

(a1,02,81,82) . 2q2[n2]g, y+1
(i) Koy (€031, 42%) = g, + [21q2<[n2+112q2+ﬂ2>

. (a1,02,81,82) . 1 [m12, [y +p1- gy
(IV) Knl}nz?pblpzz (6207 ql’ qu’y) = [2]ql [S]ql ([”1*1]511 +,31 2 { q[iq-f—pl ([S]ql% + 3% )x +

{(day +3)q[3ly, + @21+ 2]} [m] g% + [4] g 0f + 2a1 [3]q1 + 1+ qad) 2], )

(o1,02,B1,82) ) 1 (1212, lna+pa-1lg,
V) Koo (€02 q1,q2,%,y) = PPREPR (TSRS, i qiﬂpz (131545 +3q3)y* +

{(4az +3)q2 (3], + @51 + [2]4,)} 2] g,y + [4] gy 05 + 2012 [3]q2 + 1+ qo03)[2]g, )

Proof Wehave Knoflnizp’flp’zz)(ﬂs/ 01, G2 %) = KSSP (8 g1, ) K22 (5 g, ), for 0 < iy j < 2.
By using Lemma 1, the proof of the lemma is straightforward. Hence the details are
omitted. O

For f € C(I; x L) and § > 0, the first order complete modulus of continuity for the bi-
variate case is defined as follows:

o(f381,82) = sup{|f(t,5) = f (%, )| : |t — x| <81, |s =yl < 82},

where 81,8, > 0. Further w(f; 81, ;) satisfies the following properties:

(a) o(f;81,82) > 0if 8 — 0 and 8, — O,

(b) 1 (6,8) = f (@3] < @(f3 81, 8:) (1 + (A + 52).
Now, we give an estimate of the rate of convergence of the bivariate operators. In the
following, let 0 < g,,, <1 be sequences in (0,1) such that g,, — 1 and qu —a; (0<a;<1),
as n; — oo for i = 1,2. Further, let §,, (x) = KBy (¢ — %)% Gy, %) and 8, (y) = = JclezB2) (5 —

ni,p1 n2,p2
)% Gy y)-

Theorem 2 For f € C(I; x L,) and all (x,y) € J?, we have

| B (f gy Gy 6, 9) = (6,9)| < 400(F5 )y (%), 1/, (7).

Proof Since Knofln?pﬁgz (f3 qny» Gny» %, y) is a linear positive operator, by the property (b) of
bivariate modulus of continuity, Lemma 1, and the Cauchy-Schwarz inequality

K i (£ 8); @y Gy 6,9) = £ (3,9)

< (Kbl [£(,5) = £(6,9)|; Gy Gy %:7)
1
< O(f3/8m %),/ 84, (%)) (Kff}’ﬂ“(l; Gy %) + K1) (¢ - x; qnl,x))
1.P1 1 \/m 1.P1

o 1 O(
X (’anngz (L Gy ) + 2,62) (|s ¥l; qnz,y)>

\/‘W ”2172
<olfsyf3 @5, 0) (14

\/’ngngz (( —)’)2;61;12,)’)),

1 jclenpr
m\/( Vllplf (t - x)? qm’x)>

x(uﬁjw

we get the desired result. O
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Theorem 3 Iff(x,y) has continuous partial derivatives L and then the inequality

Er
a2 F G s Gy %, 9) = f (5,9)|
< Mihy (x) + w(fx/, 8y (x)) (1 +4/0n (x))
+ Mok, (y) + a)(fy/, 8, ) (L + /8, (9)),

where My, M, are the positive constants such that

%‘5 —|<M; (0<x<a0<y<b)
and
A () = ‘(2 (214, )qm [mg,, — (B + D2l (1 +1[2]g, )
" 2]qn1 ([ + l]qnl +B1) [m + l]qn1 + B ’
) (y) ‘ (2- qnz )6];12 [n2]qy,2 (,32 +1) [2]qn2 1+ [2]qn2 as)
" (2] Gny ([m2 + ]-]q,,,2 + /32) [Z]qnz ([m2 + 1]qn2 + ,32) )

Proof From the mean value theorem we have

S&,5)—fxy) = f(t,y) - f (%, 9) + f(t,5) - f (£, )

_ (lf— )3f(§1;y) ( 8f;c,§-‘2)
y
_ (t— ) f(x’y) (t_x)<3ff1,y) _ 3f(x’y)> + (S—j/) af(x:y)

(3.2)

s _y)<3f(;cfz) )

where x < £ <t and y < &, < s. Since

laff:w af(w)‘ ({1t -) < (+'t8"")w(;g;,am) and

3(,.’;") 8(!) ! |_ |
I =1

Jolt5.)

for some 8,,,,8,,, > 0, on applying the operator K220 (0 g, x,7) on both sides of

(3.2), we have

BB (F g0y Gy %, 9) — £ (%,9)]
= M |]Cnﬂltlp/f1 (610 =X x) ’

ny+py n2+p2

+ Z Z i?:lvnz,kl,kz(q”l’qﬂz;x’y)

k1=0 k2=0

a1,81

1 pl g () — x|
a1,p n1,K1,qn
x /0 /0 |\ym{kl{qnl(t)—x|w(;;’,am)<—5n + )dqnltdqnz
1
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+ M |’CO{2’I32 (eo1 — y,y)|

12,02.,qm

n+p1 n2tp2

+ Z Z ﬁzl,nz,kl,kz (in,qnz;x,y)

k=0 ky=0
11 e, (8) =]
2,2 / 12,k2,4ny
x/(; /0 ’\Ilmyk%qnz(s)—y‘w(fy,éy,z)(—an +1)dqnltdqn23.
2

Now applying the Cauchy-Schwarz inequality

s B (f: gy Gy 6, 9) = f (5,9) |
=M |Kn0f11fl (elo;qm,x)|

nm+p1 na+p2

+ w(f;’anl)i Z Z ﬁzl,nz,kl,kz(qnl’an;x’y)

k1=0 ko=0

2
et 2
/ / ny,k1, qny t) - x) dq;q ¢ dqng

ny+p1 n2+p2
a)(fx/, 8711)

Z Z i];kzl,nz,kl,kz (qnp an;x,y)

)
m k1=0 ko=0

WAl 2
/ / ny,k1, qny t) - x) dqnl tdqnz

+ M| K28 (eg1; gy )|

n2,p2

nit+p1 na+p2

+ w(fy”ayﬂ){ Z Z 15:1,}’12,/(1,/(2 (qnpqﬂz;x’y)

k1=0 ky=0

1
Nt B2
/ / n,kqny N7 )/) qm tdqﬂz

a)(f’, 8712) ny+p1 n2+p2

Z Z pnl ny,ki,ko qnl’qnz’x’y)

2 k1=0 ko=0

/ / Vlazzlfzzqnz _y) dqnltdqnz
:Ml)»nl(x)+w(};’,8nl)(l+\/a) + Mok, () +w(fy’,5,,2)(1+‘/6n2),

on choosing 8,, = §,,(x) and 8,, = 8,,(y), we obtain the required result. O

3.1 Degree of approximation
In our next result, we study the degree of approximation for the bivariate operators by
means of the Lipschitz class.

For 0 <& <1and 0 < & <1, we define the Lipschitz class Lip,,(&, &) for the bivariate
case as follows:

If(£,8) = f(x,9)| < Mt —x]*|s - y|2,

where (¢,5), (x,y) € (I; x I,) are arbitrary.
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Theorem 4 Let f € Lip,,(&1,&2). Then, for all (x,y) € J?, we have

158 &
|Kn(i1;1(;21;€;;€2 (f qnpqnz,x;y) f(x,y)| < M(8n1 (x)) 2 ( ny (y)) 2

Proof By our hypothesis, we can write

LB (F g0y Gy %, 9) — £ (2,9)]
< Kbl (|£(,5) = £(6,9)|; Gy Gy %:9)
< MIC a1,22,1,62) (|t _ x|§1 Is —ylsz;qnl,qnz,x,y)

n1,n2,p1,p2

_M( n"l‘lp/fl |t — x|¥1,qn1’) n‘zzp/zz)os J’|éz:q@;)’)

Now, applying the Holder’s inequality with u; = %, v = ﬁ and u, = % and v, = ﬁ,
respectively, we have
S B (F; s Gy %) —f ()]
a ﬁ) él a1,B1) %
< M(KSS (& — )5 gy, ) 2 KLV (1 Gy, )
25
x KE282) (s = )% Gy y) Kﬁ;ﬁ; (L Gnyry) 2
=M (5 ) ( Vlz(y )
Hence, the proof is completed. 0

Let C'(I; x I,) denote the space of all continuous functions on I; x I, such that their first

partial derivatives are continuous on ; X I.

Theorem 5 Forf € C\(I; x I,) and (x,y) € J*> we have

|’Cnufln(;2pflp§2 (3 @m> Gy %,9) = f(5,9)] < ”ﬁc/”culuz)\/ S (%) + “fy/”C(leIz)\/ 8y (9)-
Proof Let (x,y) € J? be a fixed point. Then by our hypothesis
t N
ft,s)—f(x,y) = / Sou,s) dqu + / fyx,v)dgv.
x y

Now, operating by K&522L5) (0 4. x,7) on both sides of the above equation, we are

led to
| Bl (f: g, gy, x,9) — f(%,9)]

X
< i (| [ s

N
( 4
ezt (| [ s oy

;qnl,qnz,x,y>

;qnlqu»x;j/).
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Since | ftx fs: (e, 8)| dyue] < \\f;ll ey x| —%] and | f; Ify (%, V)| dyv| < |[fy’||c(11x12)|s—y|,we have
w2 B (f: Gy Gy %, 9) = f (5, ) |
Hf ||C11><12 nolqpfl (It = %15 Gy %) + H}iv/ ||C(11><12) n?pgz (Is = 91 @z ).
Applying the Cauchy-Schwarz inequality and Lemma 1, we have
IS B, Gy, Gy %,9) = (3,9)|
= 12Dy S (6= 2% ) RS 1,000
)
1 i K (5= 90250009) KA (G109

= Hﬂc/ ||C(11><12)\/ Sy () + ny/”C(thz)\/ Sy ()

This completes the proof of the theorem. d

For f € C(I; x I;) and § > 0, the partial moduli of continuity with respect to x and y are
given by

an(f;8) = sup{[f(xl,y) —f(xz,y)| :y el and |x —xy] < 8}

and

@5 (f;8) = sup{[f (x,31) —f (x,32)| : ¥ € [ and |y1 - yo| < 5}

Clearly, both moduli of continuity satisfy the properties of the usual modulus of conti-

nuity.

Theorem 6 Iff € C(I; x I,) and (x,y) € J?, then we have

ISP (f g Gy 2,9) = (0 9)] < 2{(@1(F3 1/ 8, ®))) + (@2(F3 /80, 0)) )

Proof Using the definition of partial moduli of continuity, Lemma 1, and the Cauchy-

Schwarz inequality, we have

|Kn01(lnizplfllgz (3 Gns Gy %:9) = f (3,9 )|
< Knﬂiln‘;prlng) ( lf(t’ s) _f(x’ y) |; qm>Gnz» %> y)
< KB (£(2,5) ~ £6,3) s G %,9)

Kt (F69) =f @), Gnss%,3)
1
<wl(f Y, Vl1 ( ﬂt){l]?lfl lqm’ ) 5 (x)lcnoillflg1 (|t x' dm-* ))
n
1
+w2(f Y, nz(y < rgngz (1;qn2’y) + 5 U)ngzlgz (|S—y|;q”2’y)>
)
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< (s [ ) (1 . \//c,:;lpgl qm,x)>
+a)2(f /8, () (1 + ()/ \/]Cnoéngz) qm»)’)>

from which the required result is straightforward. O

Let C2(I; x I,) be the space of all functions f € C(I; x I,) such that second partial deriva-
tives of f belong to C(I; x I,). The norm on the space C2(I; x b) is defined as

2
W llc2q xany = IUF1 + Z(‘ ‘ )
i=1

The Peetre K-functional of the function f € C(f; x L) is defined as

o

ox!

dy’

K(f’a) = inf {”.f_g”C(lelz) +5||g||C2(11><12)}’ 3>0.

geC2(I x1p)
Also by [6], it follows that
K(f38) < M{an(f;+/8) + min(L, 8) If llcg i)} (33)

holds for all § > 0.
The constant M in the above inequality is independent of § and f and @,(f; v/8) is the
second order modulus of continuity.

Theorem 7 For the function f € C(I) x L), we have the following inequality:

|2 B (f: gy Gy 6, 9) = f (5,9) |

= M@ (i AL s rar9)) + min{LALL G, s 8DV Nt |

+w<f \/Bﬁf?ff qnl,qnz,x,y)),
where

A(Vﬁlrf;)(q”l s Gy r %))

2 [m1],, x+1 2
_ (32 82 (23] 1 qn _ )
{ m®) 000 ( i+ Tl + Br 21y, (e + Tgn, + B)

( @ 24, [12]g,, 7 +1 >2}
+ + ) -y

(n2 +1g,, + B2 [2]g,, ([m2 +1g,, + B2

and

o + 2qn1 [nl]qnlx +1 _ )2
[m +1g, + B [2g, ([m +1lg, +B1)

( (03} + 2qn2 [n2]qn2y +1 _ )2
[ny +1]y,, + B2 [21g,, (12 +1ly,, + B2) '

ngln’;z (qnl’qnzyx)y) = (

and the constant M (> 0), is independent of f and A,(ﬁl,;f?)(qnl, ry» %)
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Proof We define the auxiliary operators as follows:

Lle1,2,1,82) (f; > Gry» %> y)

n1,n2,p1,P2

= K i @rar9)

( o N 2qn1 [nl]qnlx +1
D+ g, +B1 2l (1 + gy, + B1)’

(63} 2qn2 [1’12]qn2)’ +1 )
5 Y). 3.4
12 % Ty, + B2 gy, (2 + gy, + ) /&) (34)

Considering Lemma 3, one has LS5 (1, g0 x,) = 1, LSS52PE) (¢ - %); G Gy

%,9) = 0, and Lig B2 (s = 9); Gy Gy %) = 0
Let g € C*(I; x ) and (x,y) € J2. Using Taylor’s theorem, we may write

g(t,s) —glx,y) = g(t, ) —glx,y) + g(t,5) — g(t,y)

_ 9gxy) ' 82g( ,y)
=Dy f (6 —u) 8 4,

2
8g(x, )+ /(_)3 x,)

Applying the operator £n‘§1n‘§2p’f;’jz (*3Gny»qny»%,y) on the above equation and using (3.4),

we are led to

£@1.22,81,82) (&5 Gny> Gy %> y) — g(, )

n,n2,p1,P02
o g( ,y)
- ‘Cm]nzzprl}lplzz (-/ (t du qm’qnwx’y)
C( f1e3 82 ( )
1,02, ﬂ1 B2) azg(u’y)
= Kl “‘”’W At Gy Gny> %,

o 2qm; ["l]qnl x+1
/ 1y 7B " gy (1 +1lgyy 7D ( o 2qm [mlg, x+1 )
+ -u
[m +1lg, + B [2]g,, (Im +1lg, +B1)

X

2
x 0 g(u’ )d ’Calazﬂlﬂz (/( 8 g(x, )dV7qn1;qn2,x;y)

au2 n1,12,p1,P2

2dng [12]qn, 741
/ Gy 78 * Bl (1 g 762) o 2qn, [m2]g,,y +1 )

(2 + 15, +Bs 21y, (112 + g, + B2)

y

2
y 0°g(x, V)
o2

Hence,

|Ea1 22,P1, ﬂ2 (g;qnliqn21x’y) _g(x’y)|

n1,n2,p1,p2

<]Ca1a2ﬂ152)<’/ |(t )i|3 g(u,y) dul:

qnl,qnz,x,y>

n1,12,P1,P2
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2qm [”1]qn1 x+l

/[mmm A1 " 2lgny (1 1gny +PD) ( o 2qu [mlg, x +1 )‘
+ + —-Uu
; D+ U +B1 121 (01 + Ly, + A1)
9°g(u,) 82g(x, V)
x ‘Tuz dul + KEn / (s~ Vs oy G %,y
2qnq [n21gy., y+1
/ [n2+1 ‘1"2 +f32 Z]qn2 %[nzﬂ]qzn2 +B2) o 2qn2 [I’lz]qnzy +1 ) ‘
+ p—
y (2 +1lg,, + B2 2]y, ([n2 +1]g,, + B2)
9%g(x,
gx,v) v
av?
= A2 Gy Gy % G 201y x 1) (3.5)

Also,

| L2 BB (f: g, Gy, 7))

2qm [milg, x +1
< | Kleveabrba) f, R ) +'f< “ + - e ,
= K i 29| m+1,, +A1 2y, (m+ 1, +B)
2qn, [M2]g,,y +1
o, dalrhotl )
(2 +1lg,, + B2 [2]g,, ([n2 + 14, + B2)
< 3”f||C(11><12)' (36)

Hence, considering (3.4), (3.6), and (3.5) (in that order),

L2 (F Gy Gy %, 9) —f (3,9)]
o . 2qm [mlg, x+1
U+ Tlgn, + Br* 2lany (i + gy, + B’

“|enmn (g ) ) +f(

o 2q712 [”2]qn2)’ +1

2+ g, + B2 2l (12 + g, +52)

) —f(x,y)‘

}E"l M2,P1,P2

oy (= & s Gy 9)| + | L0l

(a1,02,81,82) (g;qnl’qnzxxry) —g(%)’)}

+ g y) — f(x,9)|

}f( o 24, [nl]qnlx +1

+ + )

(m +1lg, + B [2lg, (Im +1lg, +B1)
) 2qn2 [nz]qnzy +1

2+ g, + B2 2l (13 + g, +B)

) —f(x,y)‘

< 4||_f _g||C(11 x1Iy) |IC721”3217[§1P;2 (g’ qm:qm;x,y) _g(x!y)|

N p( o N 2qm [mlg, x+1
[+ 1y, + B 2]y, (I +1]y, +B1)

oy 2q2[m2]gy +1 > B ‘
i+ 10, 4 B | gy (m + gy 4 B)) 7

=< (4'Hf _g”C(Il x1p) +Aﬁ} f,; (qnqungwx;y) ||g||C2(11><12))

(f \/B(VﬁIVZZ) qﬂl’qn2’x7y))'
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Now, taking the infimum on the right hand side all over g € C2(I; x I,) and using (3.3)

IS BB (F Gy, Gy %,9) = f (5, 9) |

< 4K (A2 (g, 4y %,9)) +w(f Bl (qnl,qnz,x»y))

< MG (£ ALREE G rar.9)) + 0in (1, AL o s 9} 1

+w( \/Bﬁﬁl;f;” qnl,qnz,x,y)).

Thus, we get the desired result. 0

Theorem 8 Let f € C2(I; x I,). Then for every (x,y) € J?,

lim [n]g, {KCCL02BLB) (£ (¢, 5); g0, 9) - f(,9)}

[n]g,— o0

:fx(x,y)<w+ )%(x,y)((a%ﬂﬂz)mﬁ%)
1 (1 -x) 1-y)
3 e 2

uniformly in (x,y) € J*.

Proof By Taylor’s formula for f, we have

f@,s) = fx,p) + el y)(E = x) + f5(x,9)(s = )
+ S - %)% + 2y (%, 9)(t = 2)(s — ) + fy(x,9)(s — 9)*}

+&(t 5%,V (- %) + (s — )%

where £(t,s,%,5) — 0 as (t,s) — (x,7) and £(¢,s,%,y) € C2(I; x I,). Now, applying the op-

erator KCW3s2 17 (s 4 x,5) on the above equation, we get

K bib2) (£(2, 5); g %, y)
= f(%,9) + felot, YYLEPD (£ = 2); s ) + 1 (6, ISP (5 = 9)3 45 7)
5 Uom VKL (= 0% ) + 2y 5 KR (= 2 %)
X K22 (s = ) g y) + fiyK222 (s = )% ) )

+ Koo Bufo) (g (2, 5,2, y)y/ (£ = 2)* + (s = 9)% G %, 7).

Hence, using Lemma 2,

lim [n]g, {KCCL02BLR) (£ (¢, 5); g0, y) - f(,9)}

[n]qn—>oo

(T s D) gt (T 0 )
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1-
{ﬁéx(x, ( fyy ( 2 y)}
+ lim I, fzzf,f;“( £(t5 V=2 + = )5x,)

uniformly in (x,y) € J>.
Applying the Cauchy-Schwarz inequality

K™ (6t )V (£~ 2)* + (s = 9)% g y) |

< IR (626,95 0 2) KA (6= 201 + (5905 )

Since, by Theorem 2 and in view of Lemma 2,

lim Klwelih)(g2(¢,5),x,y) = £2(x,y) = 0,

Mgy oo HPIP2

1
/Cfl‘f}l;‘f,}le,h)((t —x)4;qn,x) = O( P ), and
qn

o1,0 1
K (6= 5qmy) = O( (12 )
qn

uniformly in (x,y) € J2, it follows that
im il (1226 (60,9 7+ 6= 35g03)) =0

uniformly in (x,y) € J 2 the desired result is obtained. O

In the following example, the rate of convergence of the bivariate operators given by
(3.1) to a certain function is shown by illustrative graphics. We observe that when the val-
ues of ¢; and ¢, increase, the approximation of f by the operator /Cy,olqn?p’f}gf 2Afs 415 G2, %, Y)

becomes better.

Example 3 Let m; =ny =5, 04 =0.5, 1 =0.6, 2y =0.7, B, =08, pr =p2 = 1. For q; =
0.45, g = 0.50 (green) and ¢; = 0.85, g = 0.90 (pink), the convergence of the operators
Kﬁ,oflnoézpf}gf 2)(f s q1,42,%,y) given by (3.1) to f(x,y) = sin(x + y)/(1 + xy) (yellow) is illustrated

in Figure 4.

4 Construction of GBS operator of g-Bernstein-Schurer-Kantorovich type

In [7] and [8], Bogel proposed the concepts of B-continuous and B-differentiable func-
tions. Later, Dobrescu and Matei [9] discussed the approximation of B-continuous func-
tions on a bounded interval by a generalized Boolean sum of bivariate generalization of
Bernstein polynomials. Subsequently, Badea and Cottin [10] established Korovkin theo-
rems for GBS operators. Pop [11] studied the GBS operators associated to a certain class of
linear and positive operators defined by an infinite sum and discussed the approximation
of B-continuous and B-differentiable functions by these operators. Recently, Sidharth et
al. [12] proposed the GBS operators of g-Bernstein-Schurer-Kantorovich type and stud-
ied the rate of convergence of these operators by means of the mixed modulus of smooth-
ness. Agrawal and Ispir [13] introduced the bivariate generalization of Chlodowsky-Szasz-
Charlier-type operators and obtained the degree of approximation for the associated GBS
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Figure 4 The convergence of K,(,oﬂ,;‘;?p’ﬁ},'fz)(f;q1 ,

q2,x,y) to f(x,y).

operators. In this section, we give some basic definitions and notations, for further details,
one can see [14].

Let X and Y be compact subsets of R. A function f : X x ¥ —> R is called a B-continuous
(Bogel continuous) function at (xg,y0) € X x Y if

lim )Af[(xo,yo); (x,y)] =0,

(%)= (xo0.50

where Af[(x0,%0); (x,7)] denotes the mixed difference defined by

Af[(xo»)’o); (x;)’)] =f(x,y) = f (%, 50) = f (%0,) + f (%0, ¥0)- (4.1)

The function f : X x ¥ — R is called B-bounded on X x Y if there exists M > 0 such that
|AfI(t,s); (x,9)]| <M, for every (x,9),(t,s) € (X x Y). Since X X Y is a compact subset of
R?, each B-continuous function is a B-bounded function on X x Y — R.

Throughout this paper, B,(X x Y) denotes all B-bounded functions on X x ¥ — R,
equipped with the norm ||f||g = SUP (1,5, (£.5)eX x Y |Af (L, 5); (x,%)]]. We denote by Cp(X X Y),
the space of all B-continuous functions on X x Y. B(X x Y), C(X x Y) denote the space
of all bounded functions and the space of all continuous (in the usual sense) functions on
X x Y endowed with the sup-norm || - ||. It is well known that C(X x Y) C Cp(X x Y)
([14], p.52).

A function f: X x Y — R is called a B-differentiable (Bogel differentiable) function at
(%0,%0) € X x Y if the limit

. Af(x0,¥0); (%, 3)]
@y)—@oy0) (X —x0)(y — ¥0)

exists and is finite.

The limit is said to be the B-differential of f at the point (x¢,%0) and is denoted by
Dg(f;x9,70) and the space of all B-differentiable functions is denoted by Dy(X x Y). The
mixed modulus of smoothness of f € C,(I; x I) is defined as

Omixed (f381,82) := sup{ | Af[(£,8); (x,9)]| : I — £ < 81, [y — 5] < 8>}
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for all (x,y),(t,s) € (I; x I3) and for any (8;,8;) € (0,00) X (0,00) with Wnixed : [0,00) X
[0,00) — R. The basic properties of wnixed Were obtained by Badea et al. in [15] and [16],
which are similar to the properties of the usual modulus of continuity.

We define the GBS operator of the operator Knofln‘zzpf%z given by (1.3), forany f € Cy(f; x
L)) and m,n € N, by

(01,02,B1,82) .
Tn(:lygzpllg}gfz (f(tl S)) qm ’ an ’ x; y)

= KE1e BB (£(4, ) + £ (x,5) = (6,5); Gy » Gy %5 9) (4.2)

for all (x,y) € J2.
Hence for any f € C,(I; x I5), the GBS operator of the g-Bernstein-Schurer-Kantorovich
type is

T@102,81,82) . Cp(ly x L) — C(I; x I)

n1,n2,p1,p2

given by

TS0 (F s Gy, )

ny+p1 n2+p2

= Z Z ﬁ:l,n2,k1,k2(qnl’an;x’y)
k1=0 k=0
() e
[ + 1]qn1 + B ’ ’ [y + l]qn2 + B2
B ([/q]qm rqmt+on (Kol + qgis + 052) } 0o
[y + l]qm + B ’ [y + l]qn2 + B2 B "y

where

n+p1 n1+p1—k
s [’71]51,41 n+pr & [m "'191]%1 1P~
prl1,n2,k1,k2 (qnl’ qn2’x’y) = x —-X
qn

[n1 + p1]g,111+m ki [nl]q;q qn

na+po -
(n21g,, [nz +p2] X <[n2 +P2lg,, )”2+p2 ke
W —2 -y .
qny

(2 +polg L Ko (1214, iy

Clearly, the operator Tni“n‘;if 1P 2) is linear and preserves linear functions.

Theorem 9 Foreveryf € Cy(I; x 1), at each point (x,y) € J?, the operator (4.2) verifies the
following inequality:

| T2 BU) (F; s Gy %,9) = (5,9)] < 4mixed (3 1/ S (6, /8, 9).-

Proof By the property

Omixed (f3 1161, A282) < (1 + A1)(1 + A2)®mixed (f561,82); A1, Ao >0,
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we can write

|Af[(tr5); (x’y)]| =< wmixed(ﬁ |t _x|’ |S _y|)

f— —
<(1+ | ad 1+ Is =21 wmixed(f;al’SZ) (4-3)
51 82

for every (¢,5) € (I; x L), (x,¥) € J? and any 8y, 8, > 0. From (4.2) and the definition of the
mixed difference Af[(Z,s); (x,)], on applying Lemma 3 and the inequality (4.3), we get

| TSP (F; Gy Gy %, 9) = £ (%,9)|

< Kl bib) (| Af[(t,5); (x,9)] |

n1,n2,p1,P2

qnzix’y)

1
</€Li“p‘i‘“(1;qm,x> + =K (1t = 15 g, %)

\/E ni,p1
1
+— K252 (s = y1; 4y, 9) + W i KB (1t — x5 Gy %)
ny ny

X ’Cygngz (|S _y|;qn2’y))wmixed(f; \/E» vV 6;12)-

Now, applying the Cauchy-Schwarz inequality

| TR (F Gy g6, 9) = f (3, 9)]

S (£ = %)% @y %)

<’C£loflpfl (€005 Gy » %)

a1,p1)

—\/ngngz (S J’) an:}’ \/7\/—\/1(:”1 P1 (t x q”l’x)
n2

\/]Cnoéngz (5 y) s qny :y)) a)mixed(f; (Snl ) 8;12)

= 4Wmixed (f; \/a’ \/E)’

on choosing 8,, = §,,(x) and 8,, = 8,,(y). This completes the proof. O

Next, let us define the Lipschitz class for B-continuous functions. For f € Cy(I; X I5), the
Lipschitz class Lip,,(§, ) with &, 5 € (0,1] is defined by

Lip,,(§,n) = {feCl,lelz ‘Af[ts) X,y ]|<M|t x| s —y|",
for (t,s), (x,y) € 1 x [2}.

In our next result, we determine the degree of approximation for the operators Tnf],,fyﬁf )

by means of the class Lip,,; (&, 1) of the class of Bogel continuous functions.

Theorem 10 For f € Lip,,(§,n), we have

ol

n
| T2 B (F; s Gy 2,9) = f(1,9)] < M (8, (%)) ? (80, 0) 2

forM>0,&,n€e(0,1].
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Proof From (4.2), (4.1), and by our hypothesis, we may write

| T2 BB (F; s Gy, 9) = f(%,9)]

< K (|Af[( ) )] .9)

< MESe2 B2 (16— xfF |s - y1;%,7)
—=a2,82)

= MIGEY (16 = 21552)K,,,0," (I = 51739)-

Applying Hélder’s inequality with p; = 2/&, ¢y =2/(2 — &) and p, = 2/, g2 = 2/(2 — ), we

are led to

| TSP ) (F; s Gy 2, y) — f(%,9)]

< M(’C(alvﬁl) ((t _ x)z;x))s/le(al’ﬁl)(eo;x)(z"g)/z

n,p1 n,p1

> (;C(azyﬂz) ((S _ y)z;y))"/ZIC(az‘ﬁZ)(eo;y)(z_”)/z.

n2,p2 n,p2

In view of Lemma 1, the desired result is immediate. O
Theorem 11 For f € Dy(I; x I,) with Dgf € B(I; x I,) and each (x,y) € J?, we have

| TP B (F s Gy %,9) = f(,9)]

< W(”DBfnoo + Omixed (Daf ["11];,11/2, [1’12];,22))~
qnm qny

Proof By our hypothesis, using the relations

Af[(t,9); (x,9)] = (¢ —x)(s — y)Dsf(§,m), wherex<& <t;y<n<s,

and

Dgf (§,n) = ADgf (§,n) + Dzf(§,9) + Daf (x, 1) — Dgf (%, ),

we obtain

o) (A (6,55 o) o 0 9)|
= [Ks s (& = 2)(s = 3)Daf (6, 1); Gy Gy 33) |
< ]C(“1’°‘2’/31’/32)(|t —x||s _y| ‘ ADBf(S: 77)

n1,12,P1,02 3% y)

K (1 = ls = 1(|Daf €.)
+ | Daf e, )| + | Daf 6, 9)[); oy g% 9)
< KE1e28002) (12 — |5 — ylomiea (Daf & — 2, 11 - 1) %,)

+ B[ Daf oo L2 (16— 15 = Y1 Gy iy %, ) -
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Hence taking into account and applying the Cauchy-Schwarz inequality we obtain

|t — x| Is -yl
wmixed(DBf;|§ _x|r|77_y|) =< <1+ s 1+ s J a)mixed(DB,ﬁanl,(Snz)'
n n

2

We have

| T2 BB (£ g Gy, 9) = f (5,9)]

< 31Df ooy KL (¢ = 225 = 9% s s :)

(\/ ISP (¢ = %)2(5 = 9)25 Gy Gy 0 )

+6,, \/ Icﬂolqnofp/flpgz — )= )% qny» Gy s %, Y)
+ 8”‘2 \/’Cnoltlnoézplf;fz (t—x)*(s - y) 5qn1>Gnyr %> y)
+ 8”11 8”211("”0:1”0;21’11511’12&2 ((t - x)Z(s - y)Z; qny>Gnyr % y)>wmixed (DBf; 8n1 ’ 5n2 ) (4.4)

From Lemma 2, we observe that for (¢,5) € (I; x ), (x,y) € J> and i,j = 1,2,

KB (¢ — )% (s = 9)7; Gy, Gy %0 Y)

= Kl@va2,61.62) ((t x)Zl qnl,x,y)K a1,02,1,82) ((S _ y)ZI’; qnz,x,y).

ni,n2,p1,p2 ni,n2,p1,p2
= KU (& = %)% gy, %) K222 (5 = 9)7; Gy )
My M,

- i J
[mlg,, )y,

for some constants Ml,Mz > 0.

Now, let §,, = L

n ]1/2 and 3y, = Tl
‘Ml qny

| TS BB Gy s %, 9) = f (5,9)|

=3||D 0] L O L
= 31Pull ([ 1;{31) <[nz]},{32>

L 1 . 1/2 1/2
+ O( [nl]}/Z >O([ 2]}/2 )a)mixed(DBf; [m],, [1/12]%2 ) (4.5)
}’l] ”2
Thus, we obtain the required result. 0

Now, we illustrate the rate of convergence of the GBS operators (4.2) to certain functions
by graphics. It is observed that when the values of ¢; and ¢, increase, the convergence of
the GBS operator T,,‘f‘,,‘;zpf}f 2)(£; q1, g2, %, y) to the function f(x,y) becomes better.

Example 4 Letn; =ny =5,01=5,81=6,a2=7, B2 =8, p1 =py =1. For q; =0.45, q5 =

0.50 and ¢; = 0.85, ¢5 = 0.90, the convergence of the GBS operators T,,le,%ﬁf,fz}(f; q1, 92,

x,7) (turquoise, orange) to f(x, ) = cos(x?)/(1 + y) (yellow) is shown in Figure 5.
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Figure 5 Convergence of T,‘,‘:f,’,;‘lz,;f,},’fz)(f;m G2, X,

y) to f(x,y).

Figure 6 The comparison of rate of convergence

(ee1.,02,81.82) (ee1.,02,81.82)
of Kn-|]n2,2p1,1p2 2 (f;g1,92,x,y) and Tn1jn2,2p-|,}722 (f;

q1,q2,x,y) to f(x,y).

Figure 7 The comparison of rate of convergence

(q,02,81.82) 4. (1,02,81.82) 4.
OfKnsnz?[.n,]pzz (f;q1,92,x,y) and Tn13n2,21.71,11.722 (f;

G1,92,%,y) to f(x,y).
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Figure 8 The comparison of rate of convergence

(ee1,02,81,82) (ee1,02,81,82)
of K"1]"2§>1,1P22 (f:1,92,x,y) and T,,1],,2,2p1,},22 (f;

g1,92,X,y) to f(x,y).

Lastly, we compare the convergence of the operators Kﬁ,‘flnizpf},f 2(F; q1, g2, %, ) given by

(3.1) and its GBS operators T,i‘f},;‘;?lgf;,f 2)(f 1,42, %, ) to some functions.

Example5 Form,ny; =5,01=2,6=3,02=4,8,=5,p1 =p, =1and ¢ =0.75, g = 0.80,

the comparison of convergence of the operators Kﬁ,ﬁf,}‘;?,;f},f”(f 3q1,92,%,y) (green) and

T,(,Tln‘ﬁ,‘f },’2’3 2)(}‘ 3 q1,q2,%,y) (gray) to the functions f(x,) = arctan(x® +y?), f(x,) = sin(x?)/(1+
¥%), f(x,9) = sin(3x3)/(1 + y?) is illustrated, respectively, in Figures 6, 7, and 8. We ob-

serve that the rate of convergence of T,(,‘f},’,‘;?lgﬁl,’zﬂ 2)(f q1, 42, %, y) is better than the operator

S22 (g1, 42, %, ).
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