
Sun and Liu Journal of Inequalities and Applications  (2017) 2017:19 
DOI 10.1186/s13660-017-1295-1

R E S E A R C H Open Access

The convergence rate of the proximal
alternating direction method of multipliers
with indefinite proximal regularization
Min Sun1,2* and Jing Liu3

*Correspondence:
ziyouxiaodou@163.com
1School of Management, Qufu
Normal University, Shandong,
276826, P.R. China
2School of Mathematics and
Statistics, Zaozhuang University,
Shandong, 277160, P.R. China
Full list of author information is
available at the end of the article

Abstract
The proximal alternating direction method of multipliers (P-ADMM) is an efficient
first-order method for solving the separable convex minimization problems. Recently,
He et al. have further studied the P-ADMM and relaxed the proximal regularization
matrix of its second subproblem to be indefinite. This is especially significant in
practical applications since the indefinite proximal matrix can result in a larger step
size for the corresponding subproblem and thus can often accelerate the overall
convergence speed of the P-ADMM. In this paper, without the assumptions that the
feasible set of the studied problem is bounded or the objective function’s component
θi(·) of the studied problem is strongly convex, we prove the worst-caseO(1/t)
convergence rate in an ergodic sense of the P-ADMM with a general Glowinski
relaxation factor γ ∈ (0, 1+

√
5

2 ), which is a supplement of the previously known results
in this area. Furthermore, some numerical results on compressive sensing are reported
to illustrate the effectiveness of the P-ADMM with indefinite proximal regularization.
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1 Introduction
Let θi : Rni → (–∞, +∞] (i = , ) be two lower semicontinuous proper (not necessar-
ily smooth) functions. This work aims to solve the following two-block separable convex
minimization problem:

min
{
θ(x) + θ(x)|Ax + Ax = b

}
, ()

where Ai ∈Rl×ni (i = , ), b ∈Rl . If there are convex set constraints xi ∈Xi (i = , ), where
Xi ⊆ Rni (i = , ) are some simple convex set, such as the nonnegative cones or positive
semi-definite cones, etc. Then, we can define the indicator function as IXi (·) (IXi (xi) =  if
xi ∈Xi; otherwise, IXi (xi) = +∞), by which we can incorporate the constraints xi ∈Xi (i =
, ) into the objective function of (), and get the following equivalent form:

min
{
θ(x) + IX (x) + θ(x) + IX (x)|Ax + Ax = b

}
.
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Algorithm  The P-ADMM for ()

Input β > ,γ ∈ (, +
√


 ), two symmetric matrices G ∈ Rn×n and G ∈ Rn×n . Ini-

tialize (x, x,λ) := (x
 , x

,λ), k := .
while ‘not converged’, do

() Compute (xk+
 , xk+

 ,λk+) in the alternating order by the following P-ADMM pro-
cedure.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+
 ∈ argminx∈Rn {θ(x) + β

 ‖Ax + Axk
 – b – λk

β
‖

+ 
‖x – xk

‖
G

},
xk+

 ∈ argminx∈Rn {θ(x) + β

 ‖Axk+
 + Ax – b – λk

β
‖

+ 
‖x – xk

‖
G

},
λk+ = λk – γβ(Axk+

 + Axk+
 – b).

()

() Set k := k + .
end while
Output xk+

 , xk+
 .

Then, we can further introduce some auxiliary variables and functions to rewrite the above
problem as problem () (Please refer to [] for more details). Therefore, problem () is quite
general, and in fact problems like () come from diverse applications, such as the latent
variable graphical model selection [], the sparse inverse covariance selection [], stable
principal component pursuit with nonnegative constraint [], and robust alignment for
linearly correlated images [], etc.

As one of the first-order methods, the following Algorithm , that is proximal alternating
direction method of multipliers (P-ADMM) [–] is quite efficient for solving () or related
problems, especially for large scale case.

The parameter γ in the P-ADMM is called the Glowinski relaxation factor in the lit-
erature, and γ >  can often accelerate the P-ADMM []. Due to its high efficiency, the
P-ADMM has been intensively studied during the past few decades, and many scholars
presented a lot of customized variants of the P-ADMM for some concrete separable min-
imization problems [–].

In this paper, we only focus our attention on the P-ADMM. In fact, the theory devel-
oped in this work can easily be extended to its various variants. Now, let us briefly analyze
the structure advantages of the P-ADMM. Obviously, the P-ADMM fully utilizes the sep-
arable structure inherent to the original problem (), which decouples the primal variable
(x, x) and get two subproblems with lower-dimension. Then, at each iteration, the com-
putation of P-ADMM is dominated by solving its two subproblems. Fortunately, the two
subproblems in () often admit closed-form solutions provided that θi(·) (i = , ) are some
the functions (such as θi(·) = ‖ · ‖, ‖ · ‖ or ‖ · ‖∗) and the matrices Ai (i = , ) are unitary
(i.e. A	

i Ai (i = , ) are the identity matrices). Even if Ai (i = , ) are not unitary, we can
judiciously set Gi = rIni – βA	

i Ai with r > β‖A	
i Ai‖ (i = , ), and then the two subprob-

lems in the P-ADMM also have closed-form solutions in many practical applications. The
global convergence of the P-ADMM with γ =  has been proved in [, ] for some con-
crete models of (), and in [], Xu and Wu presented an elegant analysis of the global
convergence of the P-ADMM with γ ∈ (, +

√


 ) for the general model (). Quite recently,
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He et al. [] have further studied the P-ADMM and get some substantial advances by
relaxing the matrix G in the proximal regularization term of its second subproblem to
be indefinite. This is quite preferred in practical applications since the indefinite proximal
matrix can result in a larger step size for the subproblem and thus maybe accelerate the
overall convergence speed of the P-ADMM.

Compared with the study of the global convergence of the P-ADMM, the research of its
convergence rate is quite insubstantial in the literature. In [, ], under the assumption
that the feasible set of () is bounded, He et al. have proved the worst-case O(/t) conver-
gence rate of the P-ADMM with γ = , where t denotes the iteration counter. In [], Lin
et al. have presented a parallel version of the P-ADMM with the adaptive penalty β , and
proved that the convergence rate of their new method is also O(/t). In addition, Gold-
stein et al. [] proved a better convergence rate thanO(/t) for the P-ADMM scheme with
γ =  and G = , G =  under the assumption that θi(·) (i = , ) are both strongly convex,
which is usually violated in practice, and thus excludes many practical applications of the
P-ADMM. Then, by introducing some free parameters αk and γk , Xu [] developed a new
variant of the P-ADMM for (), which refined the results in []. In fact, only under the
assumption that the function θ(·) is strongly convex, Xu [] proved that the new method
has O(/t) convergence rate with constant parameters and enjoys O(/t) convergence
rate with adaptive parameters.

In this paper, we aim to further improve the above results by removing the assumptions
of the strong convexity of θ(·) and the boundedness of the feasible set of (), and prove
that the P-ADMM for the convex minimization problem () has a worst-case O(/t) con-
vergence rate in an ergodic sense, which partially improves the results in [, –, ].

The remaining of the paper is organized as follows. Section  gives some useful prelimi-
naries. In Section , we prove the convergence rate of the P-ADMM in detail. In Section ,
a simple experiment on compressive sensing is conducted to demonstrate the effectiveness
of the P-ADMM.

2 Preliminaries
In this section, we summarize some basic concepts and preliminaries that will be used in
the later discussion.

First, we list some notation to be used in this paper. 〈·, ·〉 denotes the inner product ofRn;
G �  (or G  ) denotes that the symmetric matrix G is positive definite (or positive semi-
definite); If G is symmetric, we set ‖x‖

G = x	Gx though G maybe not positive definite. The
effective domain of a function f : X → (–∞, +∞] is defined as dom(f ) := {x ∈ X |f (x) <
+∞}. The set of all relative interior points of a given nonempty convex set C is denoted
by ri(C).

A function f : Rn →R is convex iff

f
(
αx + ( – α)y

) ≤ αf (x) + ( – α)f (y), ∀x, y ∈Rn,α ∈ [, ].

Then, if f : Rn →R is convex, we have the following first-order necessary condition:

f (x) ≥ f (y) + 〈ξ , x – y〉, ∀x, y ∈Rn, ξ ∈ ∂f (y), ()

where ∂f (y) = {ξ ∈Rn : f (ȳ) ≥ f (y) + 〈ξ , ȳ – y〉, forall ȳ ∈Rn} denotes the subdifferential of
f (·) at the point y.
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The following equality is used frequently in the paper:

〈x – y, x – z〉 =


(‖x – y‖ + ‖x – z‖ – ‖y – z‖), ∀x, y, z ∈Rn. ()

From now on, we denote

x = (x, x), θ (x) = θ(x) + θ(x), A = (A, A).

Throughout this paper, we make the following assumptions.

Assumption . The functions θi(·) (i = , ) are both convex.

Assumption . There is a point (x̂, x̂) ∈ ri(dom(θ)×dom(θ)) such that Ax̂ +Ax̂ = b.

Then, under Assumption ., it follows from Corollaries .. and .. in [] that
(x∗

 , x∗
) ∈ ri(dom (θ) × dom (θ)) is an optimal solution to problem () iff there exists a

Lagrangian multiplier λ∗ ∈Rl such that (x∗
 , x∗

,λ∗) is a solution of the following KKT sys-
tems:

⎧
⎪⎪⎨

⎪⎪⎩

 ∈ ∂θ(x∗
 ) – A	

 λ∗,

 ∈ ∂θ(x∗
) – A	

 λ∗,

Ax∗
 + Ax∗

 = b.

()

The set of the solutions of () is denoted by W∗. By Assumption ., (), and (), for any
(x∗,λ∗) = (x∗

 , x∗
,λ∗) ∈W∗, we have the following useful inequality:

θ (x) – θ
(
x∗) –

〈
λ∗, Ax – b

〉 ≥ , ∀x = (x, x) ∈Rn+n . ()

Assumption . The solution set W∗ of the KKT systems () is nonempty, and at least
one (x∗

 , x∗
,λ∗) ∈W∗ with λ∗ �= .

3 Convergence rate of the P-ADMM
In this section, we aim to prove the convergence rate of the P-ADMM, and to accomplish
this, we need to make some restrictions of the matrices Ai, Gi (i = , ) included in the
P-ADMM as follows.

Assumption . () The matrix G  , and A is full-column rank if G = .
() The matrix G is set as G = ατ In – βA	

 A with τ > β‖A	
 A‖, α ∈ (, ], and α ≥

( – min{γ ,  + γ – γ })/.

Remark . In [], the parameter α can take any value of the interval [., ). Obviously,
the parameter α in this paper can also obtain the lower bound . if γ = .

Let us introduce some matrices to simplify our notation in the subsequent analysis. More
specifically, we set

G =

(
G 
 G

)
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and

Ḡ = τ In – βA	
 A, M = G + βA	

 A,

N = G + βA	
 A, H = G + β min

{
γ ,  + γ – γ }A	

 A.
()

Remark . From Assumption . and γ ∈ (, +
√


 ), we see that the matrices Ḡ, M, N , H

defined by () are all positive definite. However, the matrix G defined in Assumption .
may be indefinite. For example, when γ = ,α = ., and τ = .β‖A	

 A‖, then G =
–.βA	

 A, which is obviously indefinite if the matrix A is full-column rank.

Remark . From the definitions of G and Ḡ, we have

G = αḠ – ( – α)βA	
 A. ()

Now, we start proving the convergence rate of the P-ADMM under Assumptions .-.
and Assumption .. Firstly, we prove three lemmas step by step.

Lemma . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the P-ADMM. Under
Assumptions .-., for any (x, x,λ) ∈Rn+n+l such that Ax + Ax = b, we have

θ (x) – θ
(
xk+)

≥ 

(∥∥xk+ – x

∥∥
G –

∥∥xk – x
∥∥

G +
∥∥xk+ – xk∥∥

G

)
+

〈
Axk+ – b, –λ

〉
+

 – γ

βγ 

∥∥λk+ – λk∥∥

+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥) + β

〈
Axk+ – b, Axk

 – Axk+


〉

+
β


(∥∥Axk+

 – Ax
∥∥ –

∥∥Axk
 – Ax

∥∥ +
∥∥Axk+

 – Axk

∥∥). ()

Proof Note that the optimality condition for the first subproblem (i.e., the subproblem
with respect to x) in () is

 = ∇θ
(
xk+


)

+ βA	


(
Axk+

 + Axk
 – b –


β

λk
)

+ G
(
xk+

 – xk

)

= ∇θ
(
xk+


)

– A	
 λ̃k + βA	

 A
(
xk

 – xk+


)
+ G

(
xk+

 – xk

)
, ()

where ∇θ(xk+
 ) is a subgradient of θ(·) at xk+

 , λ̃k = λk – β(Axk+
 + Axk+

 – b), and the
second equality uses the updating formula for λ in (). Then () can be rewritten as

 =
〈
xk+

 – x,∇θ
(
xk+


)〉

+
〈
xk+

 – x, G
(
xk+

 – xk

)

+ βA	
 A

(
xk

 – xk+


)〉

+
〈
A

(
xk+

 – x
)
, –λ̃k 〉

≥ θ
(
xk+


)

– θ(x) +
〈
xk+

 – x, G
(
xk+

 – xk

)

+ βA	
 A

(
xk

 – xk+


)〉

+
〈
A

(
xk+

 – x
)
, –λ̃k 〉, ()
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where the inequality comes from the convexity of θ(·) and (). Similarly, the optimality
condition for the second subproblem (i.e., the subproblem with respect to x) in () gives

 = ∇θ
(
xk+


)

+ βA	


(
Axk+

 + Axk+
 – b –


β

λk
)

+ G
(
xk+

 – xk

)

= ∇θ
(
xk+


)

– A	
 λ̃k + G

(
xk+

 – xk

)
,

i.e.,

 =
〈
xk+

 – x,∇θ
(
xk+


)〉

+
〈
A

(
xk+

 – x
)
, –λ̃k 〉 +

〈
xk+

 – x, G
(
xk+

 – xk

)〉

≥ θ
(
xk+


)

– θ(x) +
〈
xk+

 – x, G
(
xk+

 – xk

)〉

+
〈
A

(
xk+

 – x
)
, –λ̃k 〉, ()

where the inequality follows from the convexity of θ(·) and (). Then, adding () and (),
we obtain

θ (x) – θ
(
xk+)

≥
∑

i=

〈
xk+

i – xi, Gi
(
xk+

i – xk
i
)〉

+
∑

i=

〈
Ai

(
xk+

i – xi
)
, –λ̃k 〉

+ β
〈
Axk+

 – Ax, Axk
 – Axk+


〉

=
∑

i=

〈
xk+

i – xi, Gi
(
xk+

i – xk
i
)〉

+
〈
Axk+ – b, –λ̃k 〉 + β

〈
Axk+

 – Ax, Axk
 – Axk+


〉

=
∑

i=

〈
xk+

i – xi, Gi
(
xk+

i – xk
i
)〉

+
〈
Axk+ – b, –λ̃k 〉

+ β
〈
Axk+

 + Axk+
 – Ax – Ax, Axk

 – Axk+


〉

+ β
〈
Ax – Axk+

 , Axk
 – Axk+


〉

=
∑

i=

〈
xk+

i – xi, Gi
(
xk+

i – xk
i
)〉

+
〈
Axk+ – b, –λ̃k 〉

+ β
〈
Axk+ – b, Axk

 – Axk+


〉
+ β

〈
Ax – Axk+

 , Axk
 – Axk+


〉

=



∑

i=

(∥∥xk+
i – xi

∥∥
Gi

–
∥∥xk

i – xi
∥∥

Gi
+

∥∥xk+
i – xk

i
∥∥

Gi

)
+

〈
Axk+ – b, –λ̃k 〉

+ β
〈
Axk+ – b, Axk

 – Axk+


〉

+
β


(∥∥Axk+

 – Ax
∥∥ –

∥∥Axk
 – Ax

∥∥ +
∥∥Axk+

 – Axk

∥∥), ()

where the last equality comes from the identity (). Now, let us deal with the term 〈Axk+ –
b, –λ̃k〉 on the right side of (). Specifically, from the updating formula for λ in () again,
we can get

〈
Axk+ – b, –λ̃k 〉

=
〈
Axk+ – b, –λ

〉
+


β

〈
λk – λ̃k ,λ – λ̃k 〉
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=
〈
Axk+ – b, –λ

〉
+


β

〈
λk –


γ

λk+ +
 – γ

γ
λk ,λ –


γ

λk+ +
 – γ

γ
λk

〉

=
〈
Axk+ – b, –λ

〉
+


β

〈

γ

λk –

γ

λk+,λ – λk +

γ

λk –

γ

λk+
〉

=
〈
Axk+ – b, –λ

〉
+


βγ

〈
λk – λk+,λ – λk 〉 +


βγ 

∥∥λk+ – λk∥∥

=
〈
Axk+ – b, –λ

〉
+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥) +

 – γ

βγ 

∥∥λk+ – λk∥∥, ()

where the second equality comes from λk+ = λk –γ (λk – λ̃k), and the last equality uses the
identity (). Then, substituting () into () yields (). This completes the proof. �

The following lemma aims to further refine the crossing term β〈Axk+ –b, Axk
 –Axk+

 〉
on the right side of ().

Lemma . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the P-ADMM. Under
Assumptions .-., for any (x, x,λ) ∈Rn+n+l such that Ax + Ax = b, we have

θ (x) – θ
(
xk+)

≥ 

(∥∥xk+ – x

∥∥
G –

∥∥xk – x
∥∥

G +
∥∥xk+ – xk∥∥

G

)
+

〈
Axk+ – b, –λ

〉

+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥) +

 – γ

βγ 

∥∥λk+ – λk∥∥

+ ( – γ )β
〈
A

(
xk

 – xk+


)
, Axk

 + Axk
 – b

〉
+

∥∥xk+
 – xk


∥∥

G

+
〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉

+
β


(∥∥Axk+

 – Ax
∥∥ –

∥∥Axk
 – Ax

∥∥ +
∥∥Axk+

 – Axk

∥∥). ()

Proof Setting x = xk
 in (), we get

 ≥ θ
(
xk+


)

– θ
(
xk


)

+
〈
xk+

 – xk
, G

(
xk+

 – xk

)〉

+
〈
A

(
xk+

 – xk

)
, –λ̃k 〉.

That is,

θ
(
xk


)

– θ
(
xk+


)

–
〈
A

(
xk+

 – xk

)
, –λ̃k 〉 ≥ ∥∥xk+

 – xk

∥∥

G
. ()

Similarly, taking x = xk+
 in () for k := k – , and thus we have

 ≥ θ
(
xk


)

– θ
(
xk+


)

+
〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉
+

〈
A

(
xk

 – xk+


)
, –λ̃k–〉.

That is,

θ
(
xk+


)

– θ
(
xk


)

–
〈
A

(
xk

 – xk+


)
, –λ̃k–〉 ≥ 〈

xk
 – xk+

 , G
(
xk

 – xk+


)〉
. ()

Adding () and (), we obtain

〈
A

(
xk

 – xk+


)
, λ̃k– – λ̃k 〉 ≥ ∥∥xk+

 – xk

∥∥

G
+

〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉
. ()
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We have

λ̃k– – λ̃k

= λ̃k– –
[
λk – β

(
Axk+

 + Axk+
 – b

)]

= λ̃k– –
[
λk– – γβ

(
Axk

 + Axk
 – b

)
– β

(
Axk+

 + Axk+
 – b

)]

= –( – γ )β
(
Axk

 + Axk
 – b

)
+ β

(
Axk+

 + Axk+
 – b

)
.

Substituting the above equality into (), we obtain

β
〈
A

(
xk

 – xk+


)
, Axk+

 + Axk+
 – b

〉

≥ ( – γ )β
〈
A

(
xk

 – xk+


)
, Axk

 + Axk
 – b

〉
+

∥∥xk+
 – xk


∥∥

G

+
〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉
. ()

Then, substituting () into () yields (). The proof is completed.
Now, let us deal with the term –γ

βγ  ‖λk+ – λk‖ + ( – γ )β〈A(xk
 – xk+

 ), Axk
 + Axk

 –
b〉 + β

 ‖Axk+
 – Axk

‖ on the right side of (). �

Lemma . Let {(xk ,λk)} = {(xk
 , xk

,λk)} be the sequence generated by the P-ADMM. Then,
we have

 – γ

βγ 

∥∥λk+ – λk∥∥ + ( – γ )β
〈
A

(
xk

 – xk+


)
, Axk

 + Axk
 – b

〉
+

β


∥∥Axk+

 – Axk

∥∥

≥ 
βγ  max

{
 – γ ,  – γ –}(∥∥λk+ – λk∥∥ –

∥∥λk – λk–∥∥)

+
β




(


γ β

∥∥λk+ – λk∥∥ +
∥∥A

(
xk

 – xk+


)∥∥
)

, ()

where 
 = min{γ ,  + γ – γ }.

Proof Obviously, by the updating formula for λ in (), we have

〈
A

(
xk

 – xk+


)
, Axk

 + Axk
 – b

〉
=


βγ

〈
A

(
xk

 – xk+


)
,λk– – λk 〉. ()

Then, applying the Cauchy-Schwartz inequality, we can get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( – γ )β〈A(xk
 – xk+

 ), (λk– – λk)/(βγ )〉
≥ – (–γ )β

 (‖A(xk
 – xk+

 )‖ + 
γ β ‖λk– – λk‖)

if γ ∈ (, ],

( – γ )β〈A(xk
 – xk+

 ), (λk– – λk)/(βγ )〉
≥ – (γ –)β

 (γ ‖A(xk
 – xk+

 )‖ + 
γ β ‖λk– – λk‖)

if γ ∈ (, +∞).
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Then, substituting the above two inequalities into (), and by some simple manipulations,
we obtain

 – γ

βγ 

∥∥λk+ – λk∥∥ + ( – γ )β
〈
A

(
xk

 – xk+


)
, Axk

 + Axk
 – b

〉
+

β


∥∥Axk+

 – Axk

∥∥

≥ 
βγ  max

{
 – γ ,  – γ –}(∥∥λk+ – λk∥∥ –

∥∥λk – λk–∥∥)

+
β


min

{
γ ,  + γ – γ }

(


γ β

∥∥λk+ – λk∥∥ +
∥∥A

(
xk

 – xk+


)∥∥
)

,

which is the same as the assertion (), and the lemma is thus proved.
Substituting () into (), we get the following important inequality:

θ (x) – θ
(
xk+)

≥ 

(∥∥xk+ – x

∥∥
G –

∥∥xk – x
∥∥

G +
∥∥xk+ – xk∥∥

G

)
+

〈
Axk+ – b, –λ

〉

+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥)

+


βγ  max
{

 – γ ,  – γ –}(∥∥λk+ – λk∥∥ –
∥∥λk – λk–∥∥)

+
∥∥xk+

 – xk

∥∥

G
+

〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉

+
β


(∥∥Axk+

 – Ax
∥∥ –

∥∥Axk
 – Ax

∥∥)

+
β


min

{
γ ,  + γ – γ }

(


γ β

∥∥λk+ – λk∥∥ +
∥∥A

(
xk

 – xk+


)∥∥
)

. ()

Now, let us deal with all the terms related with the variable x on the right side of ().
From the definition of the matrices G, N and (), we have



(∥∥xk+

 – x
∥∥

G+βA	
 A

–
∥∥xk

 – x
∥∥

G+βA	
 A

)

+


∥∥xk+

 – xk

∥∥

G+β
A	
 A

+
∥∥xk+

 – xk

∥∥

G
+

〈
xk

 – xk+
 , G

(
xk

 – xk–


)〉

=


(∥∥xk+

 – x
∥∥

N –
∥∥xk

 – x
∥∥

N

)
+



∥∥xk+

 – xk

∥∥

αḠ–(–α–
)βA	
 A

+ α
(
xk

 – xk+


)	Ḡ
(
xk

 – xk–


)
– ( – α)β

(
xk

 – xk+


)	(
A	

 A
)(

xk
 – xk–


)

≥ 

(∥∥xk+

 – x
∥∥

N –
∥∥xk

 – x
∥∥

N

)
+



∥∥xk+

 – xk

∥∥

αḠ–(–α–
)βA	
 A

–
α


(∥∥xk

 – xk+


∥∥
Ḡ

+
∥∥xk

 – xk–


∥∥
Ḡ

)

–
( – α)β


(∥∥A

(
xk

 – xk+


)∥∥ +
∥∥A

(
xk

 – xk–


)∥∥)

=


(∥∥xk+

 – x
∥∥

N –
∥∥xk

 – x
∥∥

N

)
+

α


∥∥xk+

 – xk

∥∥

Ḡ

+
α


(∥∥xk+

 – xk

∥∥

Ḡ
–

∥∥xk
 – xk–


∥∥

Ḡ

)
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+
( – α)β


(∥∥A

(
xk

 – xk+


)∥∥ –
∥∥A

(
xk

 – xk–


)∥∥)

+
β(
 –  + α)


∥∥A

(
xk

 – xk+


)∥∥.

Then, substituting the above inequality into (), we can obtain

θ (x) – θ
(
xk+)

≥ 〈
Axk+ – b, –λ

〉
+



(∥∥xk+

 – x
∥∥

G
–

∥∥xk
 – x

∥∥
G

+
∥∥xk+

 – xk

∥∥

G

)

+


(∥∥xk+

 – x
∥∥

N –
∥∥xk

 – x
∥∥

N

)

+


(∥∥xk

 – xk+


∥∥
αḠ+β(–α)A	

 A
–

∥∥xk–
 – xk


∥∥

αḠ+β(–α)A	
 A

)

+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥)

+


βγ  max
{

 – γ ,  – γ –}(∥∥λk+ – λk∥∥ –
∥∥λk – λk–∥∥)

+
α


∥∥xk+

 – xk

∥∥

Ḡ
+

β(
 –  + α)


∥∥A
(
xk

 – xk+


)∥∥ +



γ β

∥∥λk+ – λk∥∥

≥ 〈
Axk+ – b, –λ

〉
+



(∥∥xk+

 – x
∥∥

G
–

∥∥xk
 – x

∥∥
G

)
+



(∥∥xk+

 – x
∥∥

N –
∥∥xk

 – x
∥∥

N

)

+


(∥∥xk

 – xk+


∥∥
αḠ+β(–α)A	

 A
–

∥∥xk–
 – xk


∥∥

αḠ+β(–α)A	
 A

)

+


βγ

(∥∥λk+ – λ
∥∥ –

∥∥λk – λ
∥∥)

+


βγ  max
{

 – γ ,  – γ –}(∥∥λk+ – λk∥∥ –
∥∥λk – λk–∥∥), ()

where the inequality comes from α ∈ (, ] and α ≥ –


 . Based on (), we can prove the
worst-case O(/t) convergence rate in an ergodic sense of the P-ADMM. �

Theorem . Suppose that Assumptions .-. and Assumption . hold. Let {(xk ,λk)} =
{(xk

 , xk
,λk)} be the sequence generated by the P-ADMM and let x̄t = 

t
∑t

k= xk+, where t is
a positive integer. Then,

⎧
⎨

⎩
|θ (x̄t) – θ (x∗)| ≤ D

t ,

‖Ax̄t – b‖ ≤ D
t‖λ∗‖ ,

()

where (x∗,λ∗) = (x∗
 , x∗

,λ∗) with λ∗ �=  is a point satisfying the KKT conditions in (), and
D is a constant defined by

D =


∥∥x – x∗∥∥

G
+



∥∥x

 – x∗

∥∥

N +


∥∥x

 – x

∥∥

αḠ+β(–α)A	
 A

+


βγ

(∥∥λ∥∥ + ‖λ‖) +


βγ  max
{

 – γ ,  – γ –}∥∥λ – λ∥∥. ()
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Proof Setting x = x∗ in the inequality () and summing it over k = , , . . . , t, we obtain

t∑

k=

[
θ
(
xk+) – θ

(
x∗) –

〈
Axk+ – b,λ

〉 ]

≤ 

∥∥x – x∗∥∥

G
+



∥∥x

 – x∗

∥∥

N +


∥∥x

 – x

∥∥

αḠ+β(–α)A	
 A

+


βγ

∥∥λ – λ
∥∥

+


βγ  max
{

 – γ ,  – γ –}∥∥λ – λ∥∥

≤ 

∥∥x – x∗∥∥

G
+



∥∥x

 – x∗

∥∥

N +


∥∥x

 – x

∥∥

αḠ+β(–α)A	
 A

+


βγ

(∥∥λ∥∥ + ‖λ‖)

+


βγ  max
{

 – γ ,  – γ –}∥∥λ – λ∥∥,

which together with the convexity of the function θ (·) implies

θ
(
x̄t) – θ

(
x∗) –

〈
Ax̄t – b,λ

〉

≤ 
t

∥∥x – x∗∥∥
G

+

t

∥∥x
 – x∗


∥∥

N +

t

∥∥x
 – x


∥∥

αḠ+β(–α)A	
 A

+


βγ t
(∥∥λ∥∥ + ‖λ‖)

+


βγ t
max

{
 – γ ,  – γ –}∥∥λ – λ∥∥.

Using the Lemmas . and . of [] with ρ = ‖λ∗‖ (ρ is a parameter defined in Lem-
mas . and . of []), we can get (). This completes the proof. �

Remark . From () and (), we can conclude that larger values of γ is more beneficial
for accelerating the convergence of the P-ADMM, as the larger γ , the smaller D, which
controls the upper bounds of |θ (x̄t) – θ (x∗)| and ‖Ax̄t – b‖.

4 Numerical experiments
In this section, we apply the P-ADMM to solve the compressive sensing, a concrete prob-
lem of the general model (). The codes were written by Matlab Ra and conducted on
a ThinkPad notebook with Pentium(R) Dual-Core CPU T@. GHz,  GB of RAM
using Windows .

Let us briefly review the compressive sensing. Compressive sensing (CS) is to recover a
sparse signal x̄ ∈Rn from an undetermined linear system y = Ax̄, where A ∈Rm×n(m � n)
is a linear mapping and y ∈Rm is an observation. An important decoding model of CS is

min
x∈Rn



‖Ax – y‖ + ν‖x‖, ()

where the parameter ν >  is used to trade off both terms for minimization. This is a special
case of the general two-block separable convex minimization model (). In fact, setting
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x = x, x = x, () can be recast as

min


‖Ax – y‖ + ν‖x‖

s.t. x – x = ,

x ∈Rn, x ∈Rn,

which is a special case of () with

θ(x) =


‖Ax – y‖, θ(x) = ν‖x‖,

A = In, A = –In, b = , X = X = Rn,

and thus, the P-ADMM can be used to solve CS.
In our experiment, the stopping criterion of the P-ADMM is set as

‖fk – fk–‖
‖fk–‖ < –,

where fk denotes the function value of () at the iterate xk
 . The initial points of x, x,λ

are all set as A	y, and due to the limit of EMS memory of our computer, we only test a
medium scale of () with n = ,, m = , k = , where k is the number of random
nonzero elements contained in the original signal. In addition, we set

Ā = randn(m, n), [Q, R] = qr
(
Ā′, 

)
, A = Q′,

and ν = ., G = τ In – βA	A with τ = ,β = mean(abs(b)). In the literature, the relative
error (RelErr) is usually used to measure the quality of recovered signal and is defined by

RelErr =
‖x̃ – x̄‖

‖x̄‖ ,

where x̃ and x̄ denote the recovered signal and the original signal, respectively.
First, let us illustrate the sensitivity of γ for the P-ADMM. We choose different values

of γ in the interval [., .] (More specifically, we take γ = ., ., . . . , .). The nu-
merical results of the objective value of () and the CPU time in seconds requited by the
P-ADMM are depicted in Figure , and the numerical results of the numbers of iteration
and the RelErr required by P-ADMM are depicted in Figure .

According to the curves in Figures -, we can see that the relaxation factor γ works
well for a wide range of values and, based on this experiment, the values greater than .
are more preferred.

Now let us test the effectiveness of the P-ADMM with the indefinite proximal matrix
G = (ατ – β)In. Here we set α = ., τ = ., β = , and γ = . The numerical results of
one experiment are as follows: the objective value is .; the CPU time is .; the
numbers of iteration is  and the RelErr is .%. The original signal, the measurement
and the signal recovered by the P-ADMM for this test scenario are given in Figure . The
recovered results are marked by a red circle in the third subplot of Figure , which shows
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Figure 1 Objective value and CPU time with different γ .

Figure 2 Numbers of iteration and relative error with different γ .

clearly that almost the original signal is recovered with high precision. This indicates that
the P-ADMM is effective though the proximal matrix G is indefinite.
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Figure 3 The original signal, noisy measurement and recovered results.
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