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Abstract
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Assume
that g is a real-valued convex function and the gradient ∇g is 1

L -ism with L > 0. Let
0 < λ < 2

L+2 , 0 < βn < 1. We prove that the sequence {xn} generated by the iterative
algorithm xn+1 = PC(I – λ(∇g + βnI))xn, ∀n ≥ 0 converges strongly to q ∈ U, where
q = PU(0) is the minimum-norm solution of the constrained convex minimization
problem, which also solves the variational inequality 〈–q,p – q〉 ≤ 0, ∀p ∈ U. Under
suitable conditions, we obtain some strong convergence theorems. As an application,
we apply our algorithm to solving the split feasibility problem in Hilbert spaces.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty
closed convex subset of H . Let N and R denote the sets of positive integers and real num-
bers. Suppose that f is a contraction on H with coefficient  < α < . A nonlinear operator
T : H → H is nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ H . We use Fix(T) to denote
the fixed point of T .

Firstly, consider the constrained convex minimization problem:

min
x∈C

g(x), (.)

where g : C → R is a real-valued convex function. Assume that the constrained con-
vex minimization problem (.) is solvable, let U denote its solution set. The gradient-
projection algorithm (GPA) is an effective method for solving the constrained convex min-
imization problem (.). A sequence {xn} generated by the following recursive formula:

xn+ = PC(I – λ∇g)xn, ∀n ≥ , (.)

where the parameter λ is real positive number. In general, if the gradient ∇g is L-Lipschitz
continuous and η-strongly monotone,  < λ < η

L , the sequence {xn} generated by (.)
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converges strongly to a minimizer of (.). However, if the gradient ∇g is only to be 
L -ism

with L > ,  < λ < 
L , the sequence {xn} generated by (.) converges weakly to a minimizer

of (.).
Recently, many authors combined the constrained convex minimization problem with a

fixed point problem [–] and proposed composited iterative algorithms to find a solution
of the constrained convex minimization problem [–].

In , Moudafi [] introduced the viscosity approximation method for nonexpansive
mappings.

xn+ = αnf (xn) + ( – αn)Txn, ∀n ≥ . (.)

In , Yamada [] introduced the so-called hybrid steepest-descent algorithm:

xn+ = Txn – μλnFTxn, ∀n ≥ , (.)

where F is Lipschitzian and strongly monotone operator. In , Marino and Xu []
considered a generative algorithm:

xn+ = αnγ f (xn) + (I – αnA)Txn, ∀n ≥ , (.)

where A is a strongly positive operator. In , Tian [] combined the iterative algorithm
of (.), (.), and proposed a new iterative algorithm:

xn+ = αnγ f (xn) + (I – μαnF)Txn, ∀n ≥ . (.)

In , Tian [] generalized (.), obtained the following iterative algorithm:

xn+ = αnγ Vxn + (I – μαnF)Txn, ∀n ≥ , (.)

where V is Lipschitzian operator. Based on these iterative algorithms, some authors com-
bined GPA with averaged operator to solve the constrained convex minimization problem
[, ].

In , Ceng et al. [] proposed a sequence {xn} generated by the following iterative
algorithm:

xn+ = PC
[
θnrh(xn) + (I – θnμF)Tn(xn)

]
, ∀n ≥ , (.)

where h : C → H is an l-Lipschitzian mapping with a constant l > , and F : C → H is
a k-Lipschitzian and η-strongly monotone operator with constants k,η > . θn = –λnL

 ,
PC(I – λn∇g) = θnI + ( – θn)Tn, ∀n ≥ . Then a sequence {xn} generated by (.) converges
strongly to a minimizer of (.).

On the other hand, Xu [] proposed that regularization can be used to find the
minimum-norm solution of the minimization problem.

Consider the following regularized minimization problem:

min
x∈C

gβ (x) := g(x) +
β


‖x‖,
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where the regularization parameter β > . g is a convex function and the gradient ∇g is

L -ism with L > . Then the sequence {xn} generated by the following formula:

xn+ = PC(I – λ∇gβn )xn = PC
(
I – λ(∇g + βnI)

)
xn, ∀n ≥ , (.)

where the regularization parameters  < βn < ,  < λ < 
L converges weakly. But, if a se-

quence {xn} defined by

xn+ = PC(I – λn∇gβn )xn = PC
(
I – λn(∇g + βnI)

)
xn, ∀n ≥ , (.)

where the initial guess x ∈ C, {λn}, {βn} satisfy the following conditions:
(i)  < λn ≤ βn

(L+βn) , ∀n ≥ ,
(ii) βn →  (and λn → ) as n → ∞,

(iii)
∑∞

n= λnβn = ∞,
(iv) (|λn–λn–|+|λnβn–λn–βn–|)

(λnβn) →  as n → ∞.
Then the sequence {xn} generated by (.) converges strongly to x∗, which is the
minimum-norm solution of (.) [].

Secondly, Yu et al. [] proposed a strong convergence theorem with a regularized-like
method to find an element of the set of solutions for a monotone inclusion problem in a
Hilbert space.

Theorem . ([]) Let H be a real Hilbert space and C be a nonempty closed and convex
subset of H . Let L > , F is a 

L -ism mapping of C into H . Let B be a maximal monotone
mapping on H and let G be a maximal monotone mapping on H such that the domains of
B and G are included in C. Let Jρ = (I + ρB)– and Tr = (I + rG)– for each ρ >  and r > .
Suppose that (F + B)–() ∩ G–() �= ∅. Let {xn} ⊂ H defined by

xn+ = Jρ
(
I – ρ(F + βnI)

)
Trxn, ∀n > , (.)

where ρ ∈ (,∞), βn ∈ (, ), r ∈ (,∞). Assume that
(i)  < a ≤ ρ < 

+L ,
(ii) limn→∞ βn = ,

∑∞
n= βn = ∞.

Then the sequence {xn} generated by (.) converges strongly to x, where x =
P(F+B)–()∩G–()().

From the article of Yu et al. [], we obtain a new condition of parameter ρ ,  < ρ < 
L+ ,

which is used widely in our article. Motivated and inspired by Lin, when  < λ < 
L+ , {βn}

satisfy certain conditions, a sequence {xn} generated by the iterative algorithm (.):

xn+ = PC
(
I – λ(∇g + βnI)

)
xn, ∀n ≥ ,

converges strongly to a point q ∈ U , where q = PU () is the minimum-norm solution of
the constrained convex minimization problem.

Finally, we give concrete example and the numerical results to illustrate our algorithm
is with fast convergence.
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2 Preliminaries
In this part, we introduce some lemmas that will be used in the rest part. Let H be a real
Hilbert space and C be a nonempty closed convex subset of H . We use ‘→’ to denote
strong convergence of the sequence {xn} and use ‘⇀’ to denote weak convergence.

Recall PC is the metric projection from H into C, then to each point x ∈ H , the unique
point PC ∈ C satisfy the property:

‖x – PCx‖ = inf
y∈C

‖x – y‖ =: d(x, C).

PC has the following characteristics.

Lemma . ([]) For a given x ∈ H :
() z = PCx ⇐⇒ 〈x – z, z – y〉 ≥ , ∀y ∈ C;
() z = PCx ⇐⇒ ‖x – z‖ ≤ ‖x – y‖ – ‖y – z‖, ∀y ∈ C;
() 〈PCx – PCy, x – y〉 ≥ ‖PCx – PCy‖, ∀x, y ∈ H .

From (), we can derive that PC is nonexpansive and monotone.

Lemma . (Demiclosed principle []) Let T : C → C be a nonexpansive mapping with
F(T) �= ∅. If {xn} is a sequence in C weakly converging to x and if {(I – T)xn} converges
strongly to y, then (I – T)x = y. In particular, if y = , then x ∈ F(T).

Lemma . ([]) Let {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – αn)an + αnδn, n ≥ ,

where {αn}∞n= and {δn}∞n= are sequences of real numbers in (, ) and such that
(i)

∑∞
n= αn = ∞;

(ii) lim supn→∞ δn ≤  or
∑∞

n= αn|δn| < ∞.
Then limn→∞ an = .

3 Main results
Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Assume
that g : C → R is real-valued convex function and the gradient ∇g is 

L -ism with L > .
Suppose that the minimization problem (.) is consistent and let U denote its solution
set. Let  < λ < 

L+ ,  < βn < . Consider the following mapping Gn on C defined by

Gnx = PC
(
I – λ(∇g + βnI)

)
x, ∀x ∈ C, n ∈N.

We have

‖Gnx – Gny‖ =
∥∥PC

(
I – λ(∇g + βnI)

)
x – PC

(
I – λ(∇g + βnI)

)
y
∥∥

≤ ∥∥(
I – λ(∇g + βnI)

)
x –

(
I – λ(∇g + βnI)

)
y
∥∥

= ( – λβn)‖x – y‖ + λ∥∥∇g(x) – ∇g(y)
∥∥

– λ( – λβn)
〈
x – y,∇g(x) – ∇g(y)

〉

≤ ( – λβn)‖x – y‖ + λ∥∥∇g(x) – ∇g(y)
∥∥
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–

L

λ( – λβn)
∥∥∇g(x) – ∇g(y)

∥∥

≤ ( – λβn)‖x – y‖ – λ

(

L

( – λ) – λ

)∥
∥∇g(x) – ∇g(y)

∥
∥

≤ ( – λβn)‖x – y‖.

That is,

‖Gnx – Gny‖ ≤ ( – λβn)‖x – y‖.

Since  <  – λβn < , it follows that Gn is a contraction. Therefore, by the Banach contrac-
tion principle, Gn has a unique fixed point xn, such that

xn = PC
(
I – λ(∇g + βnI)

)
xn.

Next, we prove that the sequence {xn} converges strongly to q ∈ U , which also solves the
variational inequality

〈–q, p – q〉 ≤ , ∀p ∈ U . (.)

Equivalently, q = PU (), that is, q is the minimum-norm solution of the constrained convex
minimization problem.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
g : C → R is real-valued convex function and assume that the gradient ∇g is 

L -ism with
L > . Assume that U �= ∅. Let {xn} be a sequence generated by

xn = PC
(
I – λ(∇g + βnI)

)
xn, ∀n ∈N. (.)

Let λ, {βn} satisfy the following conditions:
(i)  < λ < 

+L ,
(ii) {βn} ⊂ (, ), limn→∞ βn = ,

∑∞
n= βn = ∞.

Then {xn} converges strongly to a point q ∈ U , where q = PU (), which is the minimum-
norm solution of the minimization problem (.) and also solves the variational inequality
(.).

Proof First, we claim that {xn} is bounded. Indeed, pick any p ∈ U , then we have

‖xn – p‖ =
∥∥PC

(
I – λ(∇g + βnI)

)
xn – PC(I – λ∇g)p

∥∥

≤ ∥
∥(

I – λ(∇g + βnI)
)
xn –

(
I – λ(∇g + βnI)

)
p
∥
∥

+
∥∥(

I – λ(∇g + βnI)
)
p – (I – λ∇g)p

∥∥

≤ ( – λβn)‖xn – p‖ + λβn‖p‖.

Then we derive that

‖xn – p‖ ≤ ‖p‖,

and hence {xn} is bounded.
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Next, we claim that ‖xn – PC(I – λ∇g)xn‖ → . Indeed

∥∥xn – PC(I – λ∇g)xn
∥∥ =

∥∥PC
(
I – λ(∇g + βnI)

)
xn – PC(I – λ∇g)xn

∥∥

≤ ∥∥(
I – λ(∇g + βnI)

)
xn – (I – λ∇g)xn

∥∥

≤ λβn‖xn‖.

Since {xn} is bounded, βn →  (n → ∞), we obtain

∥∥xn – PC(I – λ∇g)xn
∥∥ → .

∇g is 
L -ism. Consequently, PC(I – λ∇g) is a nonexpansive self-mapping on C. As a matter

of fact, we have for each x, y ∈ C

∥∥PC(I – λ∇g)x – PC(I – λ∇g)y
∥∥

≤ ∥∥(I – λ∇g)x – (I – λ∇g)y
∥∥

=
∥∥x – y – λ

(∇g(x) – ∇g(y)
)∥∥

= ‖x – y‖ – λ
〈
x – y,∇g(x) – ∇g(y)

〉
+ λ∥∥∇g(x) – ∇g(y)

∥∥

≤ ‖x – y‖ – λ

(

L

– λ

)∥
∥∇g(x) – ∇g(y)

∥
∥

≤ ‖x – y‖.

{xn} is bounded, consider a subsequence {xni} of {xn}. Since {xni} is bounded, there exists
a subsequence {xnij

} of {xni} which converges weakly to z. Without loss of generality, we
can assume that xni ⇀ z. Then by Lemma ., we obtain z ∈ U .

On the other hand

‖xn – z‖ =
∥∥PC

(
I – λ(∇g + βnI)

)
xn – PC(I – λ∇g)z

∥∥

≤ 〈(
I – λ(∇g + βnI)

)
xn – (I – λ∇g)z, xn – z

〉

=
〈(

I – λ(∇g + βnI)
)
xn –

(
I – λ(∇g + βnI)

)
z, xn – z

〉

+ 〈–λβnz, xn – z〉
≤ ( – λβn)‖xn – z‖ + λβn〈–z, xn – z〉.

Thus

‖xn – z‖ ≤ 〈–z, xn – z〉.

In particular

‖xni – z‖ ≤ 〈–z, xni – z〉.

Since xni ⇀ z. Then we derive that xni → z as i → ∞.
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Let q be the minimum-norm solution of U , that is, q = PU (). Since {xn} is bounded,
there exists a subsequence {xni} of {xn} such that xni ⇀ z. As the above proof, we know
that xni → z, z ∈ U .

Then we derive that

‖xn – q‖ =
∥
∥PC

(
I – λ(∇g + βnI)

)
xn – q

∥
∥

≤ 〈(
I – λ(∇g + βnI)

)
xn – (I – λ∇g)q, xn – q

〉

=
〈(

I – λ(∇g + βnI)
)
xn –

(
I – λ(∇g + βnI)

)
q, xn – q

〉

+ 〈–λβnq, xn – q〉
≤ ( – λβn)‖xn – q‖ + λβn〈–q, xn – q〉.

Thus

‖xn – q‖ ≤ 〈–q, xn – q〉.

In particular

‖xni – q‖ ≤ 〈–q, xni – q〉.

Since xni → z, z ∈ U ,

‖z – q‖ ≤ 〈–q, z – q〉 ≤ .

So, we have z = q. From the arbitrariness of z ∈ U , it follows that q ∈ U is a solution of
the variational inequality (.). By the uniqueness of solution of the variational inequality
(.), we conclude that xn → q as n → ∞, where q = PU (). �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H and
g : C → R is real-valued convex function and assume that the gradient ∇g is 

L -ism with
L > . Assume that U �= ∅. Let {xn} be a sequence generated by x ∈ C and

xn+ = PC
(
I – λ(∇g + βnI)

)
xn, ∀n ∈N, (.)

where λ and {βn} satisfy the following conditions:
(i)  < λ < 

L+ ;
(ii) {βn} ⊂ (, ), limn→∞ βn = ,

∑∞
n= βn = ∞,

∑∞
n= |βn+ – βn| < ∞.

Then {xn} converges strongly to a point q ∈ U , where q = PU (), which is the minimum-
norm solution of the minimization problem (.) and also solves the variational inequality
(.).

Proof First, we claim that {xn} is bounded. Indeed, pick any p ∈ U , then we know that, for
any n ∈N,

‖xn+ – p‖ ≤ ∥
∥PC

(
I – λ(∇g + βnI)

)
xn – PC

(
I – λ(∇g + βnI)

)
p
∥
∥

+
∥∥PC

(
I – λ(∇g + βnI)

)
p – PC(I – λ∇g)p

∥∥
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≤ ( – λβn)‖xn – p‖ + λβn‖p‖
≤ max

{‖xn – p‖,‖p‖}.

By the introduction

‖xn – p‖ ≤ max
{‖x – p‖,‖p‖},

and hence {xn} is bounded.
Next, we show that ‖xn+ – xn‖ → .

‖xn+ – xn‖ =
∥∥PC

(
I – λ(∇g + βnI)

)
xn – PC

(
I – λ(∇g + βn–I)

)
xn–

∥∥

≤ ∥∥(
I – λ(∇g + βnI)

)
xn –

(
I – λ(∇g + βn–I)

)
xn–

∥∥

=
∥∥(

I – λ(∇g + βnI)
)
xn –

(
I – λ(∇g + βnI)

)
xn–

– λβnxn– + λβn–xn–
∥
∥

≤ ( – λβn)‖xn – xn–‖ + λ|βn – βn–| · ‖xn–‖
≤ ( – λβn)‖xn – xn–‖ + λ|βn – βn–| · M,

where M = sup{‖xn‖ : n ∈N}. Hence, by Lemma ., we have

‖xn+ – xn‖ → .

Then we claim that ‖xn – PC(I – λ∇g)xn‖ → .

∥∥xn – PC(I – λ∇g)xn
∥∥ =

∥∥xn – xn+ + xn+ – PC(I – λ∇g)xn
∥∥

≤ ‖xn – xn+‖ +
∥∥PC

(
I – λ(∇g + βnI)

)
xn – PC(I – λ∇g)xn

∥∥

≤ ‖xn – xn+‖ + λβn · ‖xn‖
≤ ‖xn – xn+‖ + λβn · M,

since βn →  and ‖xn+ – xn‖ → , we have

∥∥xn – PC(I – λ∇g)xn
∥∥ → .

Next, we show that

lim sup
n→∞

〈–q, xn – q〉 ≤ . (.)

Let q be the minimum-norm solution of U , that is, q = PU (). Since {xn} is bounded,
without loss of generality, we assume that xnj ⇀ z. By the same argument as in the proof
of Theorem ., we have z ∈ U .

lim sup
n→∞

〈–q, xn – q〉 = lim
j→∞〈–q, xnj – q〉 = 〈–q, z – q〉 ≤ .
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Then

‖xn+ – q‖ =
∥
∥PC

(
I – λ(∇g + βnI)

)
xn – PC(I – λ∇g)q

∥
∥

=
〈
PC

(
I – λ(∇g + βnI)

)
xn – PC

(
I – λ(∇g + βnI)

)
q, xn+ – q

〉

+
〈
PC

(
I – λ(∇g + βnI)

)
q – PC(I – λ∇g)q, xn+ – q

〉

≤ ( – λβn)‖xn – q‖ · ‖xn+ – q‖ + λβn〈–q, xn+ – q〉
≤  – λβn


‖xn – q‖ +



‖xn+ – q‖ + λβn〈–q, xn+ – q〉.

It follows that

‖xn+ – q‖ ≤ ( – λβn)‖xn – q‖ + λβn〈–q, xn+ – q〉
= ( – λβn)‖xn – q‖ + λβnδn,

where δn = 〈–q, xn+ – q〉.
It is easy to see that limn→∞ λβn = ,

∑∞
n= λβn = ∞ and lim supn→∞ δn ≤ . Hence, by

Lemma ., the sequence {xn} converges strongly to q, where q = PU (). This completes
the proof. �

4 Application
In this part, we will illustrate the practical value of our algorithm in the split feasibility
problem. In , Censor and Elfving [] came up with the split feasibility problem. The
SFP is formulated as finding a point x with the property:

x ∈ C and Ax ∈ Q, (.)

where C and Q are nonempty closed and convex subset of real Hilbert spaces H and H,
A : H → H is bounded linear operator.

Next, we consider the constrained convex minimization problem:

min
x∈C

g(x) = min
x∈C



‖Ax – PQAx‖. (.)

If x∗ is a solution of SFP, then Ax∗ ∈ Q and Ax∗ – PQAx∗ = , x∗ is the solution of the
minimization problem (.). The gradient of g is ∇g , where ∇g = A∗(I – PQ)A. Applying
Theorem ., we obtain the following theorem.

Theorem . Assume that the SFP (.) is consistent. Let C be a nonempty closed convex
subset of a real Hilbert space H . Assume that A : H → H is bounded linear operator,
W �= ∅, where W denotes the solution set of SFP (.). Let {xn} be a sequence generated by
x ∈ C and

xn+ = PC
(
I – λ

(
A∗(I – PQ)A + βnI

))
xn, ∀n ∈N. (.)

Let λ and {βn} satisfy the following conditions:
(i)  < λ < 

+‖A‖ ;
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(ii) {βn} ⊂ (, ), limn→∞ βn = ,
∑∞

n= βn = ∞,
∑∞

n= |βn+ – βn| < ∞.
Then {xn} converges strongly to a point q ∈ W , where q = PW ().

Proof We only need to show that ∇g is 
‖A‖ -ism, then Theorem . can be obtained by

Theorem ..

∇g = A∗(I – PQ)A.

Since PQ is firmly nonexpansive, so PQ is 
 -averaged mapping, then I – PQ is -ism, for

any x, y ∈ C, we derive that

〈∇g(x) – ∇g(y), x – y
〉

=
〈
A∗(I – PQ)Ax – A∗(I – PQ)Ay, x – y

〉

=
〈
(I – PQ)Ax – (I – PQ)Ay, Ax – Ay

〉

≥ ∥∥(I – PQ)Ax – (I – PQ)Ay
∥∥

=


‖A‖ · ∥∥A∗((I – PQ)Ax – (I – PQ)Ay
)∥∥

=


‖A‖ · ∥∥∇g(x) – ∇g(y)
∥∥.

So, ∇g is 
‖A‖ -ism. �

5 Numerical result
In this part, we use the algorithm in Theorem . to solve a system of linear equations.
Then we calculate the  ×  system of linear equations.

Example  Let H = H = R
. Take

A =

⎛

⎜
⎜⎜
⎝

 –  –
 –  –
   
 –  

⎞

⎟
⎟⎟
⎠

, (.)

b =

⎛

⎜⎜⎜
⎝

–
–




⎞

⎟⎟⎟
⎠

. (.)

Then the SFP can be formulated as the problem of finding a point x∗ with the property

x∗ ∈ C and Ax∗ ∈ Q,

where C = R
, Q = {b}. That is, x∗ is the solution of the system of linear equations Ax = b,

and

x∗ =

⎛

⎜
⎜⎜
⎝






⎞

⎟
⎟⎟
⎠

. (.)
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Table 1 Numerical results as regards Example 1

n x1
n x2

n x3
n x4

n En

0 1.0000 1.0000 1.0000 1.0000 5.74E+00
100 1.2292 2.8506 1.8424 4.0887 3.28E–01

1,000 1.2208 2.9107 1.8691 4.0722 2.81E–01
5,000 1.1128 2.9543 1.9331 4.0369 1.42E–01
10,000 1.0298 2.9880 1.9824 4.0097 3.79E–02

Table 2 Numerical results as regards Example 1

n x1
n x2

n x3
n x4

n En

0 1.0000 1.0000 1.0000 1.0000 3.74E+00
100 0.6070 2.0706 1.7816 3.9672 1.03E+00

1,000 1.0094 2.8884 1.9496 4.0123 1.23E–01
5,000 1.0353 2.9643 1.9702 4.0133 5.99E–02
10,000 1.0307 2.9769 1.9774 4.0109 4.59E–02

Take PC = I , where I denotes the  ×  identity matrix. Given the parameters βn = 
(n+)

for n ≥ , λ = 
 . Then by Theorem ., the sequence {xn} is generated by

xn+ = xn –



A∗Axn +




A∗b –


(n + ) xn.

As n → ∞, we have {xn} → x∗ = (, , , )T .

From Table , we can easily see that with iterative number increasing xn approaches to
the exact solution x∗ and the errors gradually approach zero.

In Tian and Jiao [], they use another iterative algorithm to calculate the same example.
Compare Table  with Table , we find that if the parameters βn are the same, when

λ → 
L+ , our algorithm is with fast convergence.

6 Conclusion
In a real Hilbert space, there are many methods to solve the constrained convex mini-
mization problem. However, most of them cannot find the minimum-norm solution. In
this article, we use the regularized gradient-projection algorithm to find the minimum-
norm solution of the constrained convex minimization problem, where  < λ < 

L+ . Then
under some suitable conditions, new strong convergence theorems are obtained. Finally,
we apply this algorithm to the split feasibility problem and use a concrete example and
numerical results to illustrate that our algorithm has fast convergence.
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