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Abstract
In this paper, we study the limit properties of the ratio for order statistics based on
samples from an exponential distribution and obtain the expression of the density
functions, the existence of the moments, the strong law of large numbers for Rnij with
1 ≤ i < j <mn =m. We also discuss other limit theorems such as the central limit
theorem, the law of iterated logarithm, the moderate deviation principle, the almost
sure central limit theorem for self-normalized sums of Rnij with 2≤ i < j <mn =m.
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1 Introduction and main results
Throughout this note, let {Xni,  ≤ i ≤ mn} be a sequence of independent exponential ran-
dom variable with mean λn, let {Xn, n ≥ } =: {(Xni,  ≤ i ≤ mn), n ≥ } be an independent
random sequence, where {mn ≥ } denotes the sample size. Denote the order statistics be
Xn() ≤ Xn() ≤ · · · ≤ Xn(mn), and the ratios of those order statistics

Rnij =
Xn(j)

Xn(i)
,  ≤ i < j ≤ mn.

As we know, the exponential distribution can describe the lifetimes of the equipment, and
the ratios Rnij can measure the stability of equipment, it shows whether or not our system
is stable. Adler [] established the strong law of the ratio Rnj for j ≥  with fixed sample
size mn = m, and the strong law of Rn for mn → ∞ as follows.

Theorem A For fixed sample size mn = m and all α > –,  ≤ j ≤ m, we know

lim
N→∞


(log N)α+

N∑

n=

(log n)α

n
Rnj =

m!
(j – )!(m – j)!(α + )

j–∑

l=

Cl
j–

(–)j–l–

(m – l – ) a.s.

For mn → ∞ and all α > –,

lim
N→∞


(log N)α+

N∑

n=

(log n)α

n
Rn =


α + 

a.s.
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Later on, Miao et al. [] proved the central limit theorem and the almost sure central
limit for Rn with fixed sample size, we state their results as the following theorem.

Theorem B For fixed sample size mn = m,


ηN

N∑

n=

(Rn – ERn) D→ N(, ) as N → ∞,

lim
N→∞


log N

N∑

n=


n

I

{


ηN

N∑

n=

(Rn – ERn) ≤ x

}
= �(x) a.s.

for all X ∈ R, where �(·) denotes the distribution function of N(, ), ηn =  ∨ sup{r >
; nL(r) ≥ r}, L(r) = ER

nI{|Rn| ≤ r}.

In this paper, we will make a further study on the limit properties of Rnij. In the next
section, firstly, we give the expression of the density functions of Rnij for all  ≤ i < j < mn,
it is more interesting that the density function is free of the sample mean λn, this allows
us to change the equipment from sample to sample as long as the underlying distribution
remains an exponential. Also we discuss the existence of the moments for fixed sample size
mn = m. Secondly, we establish the strong law of large number for Rnij with  = i < j < m
and  ≤ i < j < m, respectively. At last we give some limit theorems such as the central limit
theorem, the law of iterated logarithm, the moderate deviation principle, the almost sure
central limit theorem for self-normalized sums of Rnij with  ≤ i < j < m.

In the following, C denotes a positive constant, which may take different values when-
ever it appears in different expressions. an ∼ bn means that an/bn →  as n → ∞.

2 Main results and proofs
2.1 Density functions and moments of Rnij

The first theorem gives the expression of the density functions.

Theorem . For  ≤ i < j ≤ mn, the density function of the ratios Rnij is

fnij(r) =
mn!

(i – )!(j – i – )!(mn – j)!

i–∑

k=

j–i–∑

l=

(–)j–k–l–Ck
i–Cl

j–i–

[i – k + l + r(mn – i – l)] I{r > }. (.)

Proof It is easy to check that the joint density function of Xn(i) and Xn(j) is

f (xi, xj) =
mn!

(i – )!(j – i – )!(mn – j)!

λ

n

[
 – e–xi/λn

]i–[e–xi/λn – e–xj/λn
]j–i–

· e–xi/λn e–(mn–j+)xj/λn I{ < xi < xj}.

Let w = xi, r = xj/xi, then the Jacobian is w, so the joint density function of w and r is

f (w, r) =
mn!

(i – )!(j – i – )!(mn – j)!
w
λ

n

[
 – e–w/λn

]i–[e–w/λn – e–rw/λn
]j–i–

· e–w/λn e–(mn–j+)rw/λn I{w > , r > }.
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Therefore the density function of Rnij is

fnij(r) =
∫ ∞


f (w, r) dw

=
mn!

(i – )!(j – i – )!(mn – j)!

λ

n

i–∑

k=

j–i–∑

l=

(–)j–k–l–Ck
i–Cl

j–i–

·
∫ ∞


we–(i–k+l)w/λn e–(mn–i–l)rw/λn dw

=
mn!

(i – )!(j – i – )!(mn – j)!

i–∑

k=

j–i–∑

l=

(–)j–k–l–Ck
i–Cl

j–i–

·
∫ ∞


te–[(i–k+l)+r(mn–i–l)]tdt

=
mn!

(i – )!(j – i – )!(mn – j)!

i–∑

k=

j–i–∑

l=

(–)j–k–l– Ck
i–Cl

j–i–

[i – k + l + r(mn – i – l)] . �

The next theorem treats the moments of Rnij with fixed sample size mn = m.

Theorem . For fixed sample size mn = m and  = i < j ≤ m, we know

ERγ

nj =

{
<∞,  < γ < ,
=∞, γ ≥ ,

and with  ≤ i < j ≤ m,

ERγ

nij =

{
<∞,  < γ < ,
=∞, γ ≥ .

Let L(r) = E(Rnij – ERnij)I{|Rnij – ERnij| ≤ r},  ≤ i < j ≤ m, then L(r) is a slowly varying
function at ∞.

Proof For  = i < j ≤ m, by (.), it is easy to check that

fnj(r) =
m!

(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–


[ + l + r(m – l – )]

∼ cm,j

r as r → ∞,

where cm,j is a constant depend only on m and j. Obviously the γ -order moment is finite
for  < γ <  and is infinite for γ ≥ .

For  ≤ i < j ≤ m, similarly we can obtain fnij(r) ∼ dm,i,j
r , where dm,i,j is a constant depend

only on m, i and j, so the γ -order moment is finite for  < γ <  and is infinite for γ ≥ .
Furthermore it is not difficult to verify that L(r) = ER

nijI{|Rnij| ≤ r} varies slowly at ∞,
then by the fact that if L(x) = E|X|I{|X| ≤ x} is a slowly varying function at ∞, then La(x) =
E|X – a|I{|X – a| ≤ x} also varies slowly at ∞ for any a ∈ R, the proof is completed. �
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Remark . Miao et al. [] obtained the density function for Rnj for fixed sample size
mn = m, they also proved that the expectation of Rnj is finite and the truncated second
moment is slowly varying at ∞. Adler [] also claimed that all the Rnj have infinite expec-
tations for fixed sample size, so our theorems extended their results.

2.2 Strong law of large numbers of Rnij

From our assumptions, we know that {Rnij, n ≥ } is an independent sequence with the
same distribution for fixed sample size mn = m. As Theorem . states that the Rnj do not
have the expectation, so the strong law of large numbers with them is not typical. Here
we give the weighted strong law of large number as follows. At first, we list the following
lemma, that is, Theorem . from De la Peña et al. [], which will be used in the proof.

Lemma . Let {Xn, n ≥ } be a sequence of independent random variables, denote Sn =
∑n

i= Xi, if bn ↗ ∞, and
∑∞

i= Var(Xi)/b
i < ∞, then (Sn – ESn)/bn →  a.s.

Theorem . Let {an, n ≥ } be a sequence of positive real numbers and {bn, n ≥ } be a
sequence of nondecreasing positive real numbers with limn→∞ bn = ∞ and

∞∑

n=

an

bn
< ∞, (.)

lim
N→∞


bN

N∑

n=

an log

(
bn

an

)
= λ ∈ [,∞). (.)

Then, for the fixed sample size mn = m and  ≤ j ≤ m, we have

lim
N→∞


bN

N∑

n=

anRnj =
λm!

(j – )!(m – j)!

j–∑

l=

Cl
j–

(–)j–l–

(m – l – ) a.s. (.)

For mn → ∞,

lim
N→∞


bN

N∑

n=

anRn = λ a.s. (.)

Proof By (.) we get cn = bn/an → ∞, so without loss of generality we assume that cn ≥ 
for any n ≥ . Notice that


bN

N∑

n=

anRnj =


bN

N∑

n=

an
[
RnjI{ ≤ Rnj ≤ cn} – ERnjI{ ≤ Rnj ≤ cn}

]

+


bN

N∑

n=

anRnjI{Rnj > cn}

+


bN

N∑

n=

anERnjI{ ≤ Rnj ≤ cn}

= I + I + I. (.)
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By (.) and (.), it is easy to show

∞∑

n=

Var

(

cn

(
RnjI{ ≤ Rnj ≤ cn} – ERnjI{ ≤ Rnj ≤ cn}

))

≤
∞∑

n=


c

n
ER

njI{ ≤ Rnj ≤ cn}

=
∞∑

n=

m!
c

n(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–

∫ cn



r

[l +  + r(m – l – )] dr

≤ C
∞∑

n=


c

n

j–∑

l=

∫ cn


 dr ≤ C

∞∑

n=


cn

= C
∞∑

n=

an

bn
< ∞,

then by Lemma ., we have

I →  a.s. n → ∞. (.)

For any  < ε < ,

∞∑

n=

P
{

RnjI{Rnj > cn} > ε
}

=
∞∑

n=

P{Rnj > cn} =
∞∑

n=

m!
(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–

∫ ∞

cn


[l +  + r(m – l – )] dr

≤ C
∞∑

n=

j–∑

l=

∫ ∞

cn


r dr ≤ C

∞∑

n=


cn

= C
∞∑

n=

an

bn
< ∞.

Then by the Borel-Cantelli lemma, we get

RnjI{Rnj > cn} →  a.s. n → ∞. (.)

By (.) and (.), we can obtain

lim sup
N→∞


bN

N∑

n=

an ≤ λ. (.)

Therefore combining (.) with (.), we can easily conclude

I →  a.s. n → ∞. (.)

For I, by (.) and noting cn → ∞, we get

ERnjI{ ≤ Rnj ≤ cn}

=
m!

(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–

∫ cn



r
[l +  + r(m – l – )] dr
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=
m!

(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–


(m – l – )

∫ l++cn(m–l–)

m

[

y

–
i + 
y

]
dy

=
m!

(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–


(m – l – )

·
[

log
l +  + cn(m – l – )

m
– (i + )

(

m

–


l +  + cn(m – l – )

)]

∼ m!
(j – )!(m – j)!

j–∑

l=

(–)j–l–Cl
j–


(m – l – ) log(cn);

then combining with (.), we show

I → λm!
(j – )!(m – j)!

j–∑

l=

Cl
j–

(–)j–l–

(m – l – ) , n → ∞. (.)

So the proof of (.) is completed by combining (.), (.), (.), and (.).
By the same argument as in the proof of (.), we can get (.), so we omit it here. �

Remark . If we take an = (log n)α
n , bn = (log n)α+, α > –, it is easy to check that condi-

tions (.) and (.) hold with λ = 
α+ , so Theorems . and . and . from Adler [] are

special cases of our Theorem .. There are some other sequences satisfying conditions
(.) and (.), such as (a) an = , bn = nβ , β > , λ = ; (b) an = , bn = n(log n)γ , γ > , λ = ;
(c) an = , bn = n(log n)(log log n)δ , δ > , λ = ; (d) an = (log log n)θ

n , bn = (log n)(log log n)θ ,
θ ∈ R, λ = 

 , so the conditions (.) and (.) are mild conditions. At the end of this re-
mark, we point out that only when an = L(n)/n, where L(n) is a slowly varying function,
the limit value λ will be λ > , this is known as an exact strong law, one can refer to Adler
[] for more details. For the weak law, i.e., convergence in probability, one can see Feller
[] for full details.

For Rnij, i ≥ , since the expectation is finite, by the classical strong law of large numbers,
we have the following.

Theorem . For fixed mn = m, we have for  ≤ i < j ≤ m,

lim
N→∞


N

N∑

n=

(Rnij – ERnij) =  a.s. (.)

2.3 Other limit properties for Rnij, 2 ≤ i < j ≤ m
By the above discussion, we know that, for fixed sample size mn = m and  ≤ i < j ≤ m,
{Rnij, n ≥ } is a sequence of independent and identically distributed random variables with
finite mean, and L(r) = E(Rnij – ERnij)I{|Rnij – ERnij| ≤ r} is a slowly varying function at ∞.
Therefore the limit properties of Rnij for fixed sample size can easily be established by those
of the self-normalized sums. We list some of them, such as the central limit theorem (CLT),
the law of iterated logarithm (LIL), the moderate deviation principle (MDP), the almost
sure central limit theorem (ASCLT). Denote SN =

∑N
n=(Rnij – ERnij), V 

N =
∑N

n=(Rnij –
ERnij).
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Theorem . (CLT) For fixed sample size mn = m, we know

SN

VN

D→ N(, ). (.)

Proof By Theorem . from Giné et al. [], we can obtain the CLT for Rnij. �

Theorem . (LIL) For fixed sample size mn = m, we get

lim sup
N→∞

SN

VN
√

 log log N
=  a.s. (.)

Proof By Theorem  from Griffin and Kuelbs [], the LIL for Rnij holds. �

Theorem . (MDP) Let {xn, n ≥ } be a sequence of positive numbers with xn → ∞ and
xn = o(

√
n), as n → ∞, then, for fixed sample size mn = m, we conclude

lim
N→∞


x

N
P
{

SN

VN
≥ xN

}
= –




. (.)

Proof By Theorem . from Shao [], we can prove the MDP for Rnij. �

Theorem . (ASCLT) Suppose that  ≤ α < / and set dk = exp{(log k)α}/k and Dn =
∑n

k= dk . Then, for fixed sample size mn = m and any x ∈ R,

lim
k→∞


Dk

k∑

N=

dN I
{

SN

VN
≤ x

}
= �(x) a.s., (.)

where �(·) is the distribution function of the standard normal random variable.

Proof By Corollary  from Zhang [], we know ASCLT for Rnij holds. �

Remark . It is easy to check that ηN /VN
p→ , then by the Slutsky lemma and Theo-

rem ., we can get Theorem . from Miao et al. [].
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