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1 Introduction
The theory of inequalities plays an important role in many areas of Mathematics. Among
the most used inequalities we find the triangle inequality. This inequality is the following:

‖x + y‖ ≤ ‖x‖ + ‖y‖,

for any vectors x and y in the normed linear space (X,‖ · ‖) over the real numbers or
complex numbers. Its continuous version is,

∥
∥
∥
∥

∫ b

a
f (t) dt

∥
∥
∥
∥

≤
∫ b

a

∥
∥f (t)

∥
∥dt,

where f : [a, b] ⊂ R → X is a strongly measurable function on the compact interval [a, b]
with values in a Banach space X and ‖f (·)‖ is the Lebesgue integrable on [a, b].

Diaz and Metcalf [] proved a reverse of the triangle inequality in the particular case of
spaces with inner product. Several other reverses of the triangle inequality were obtained
by Dragomir in []. Also, in [] some inequalities for the continuous version of the triangle
inequality using the Bochner integrable functions are given. In [], Rajić gives a charac-
terization of the norm triangle equality in pre-Hilbert C�-modules. In [, ], Maligranda
proved a refinement of the triangle inequality as follows.

Theorem A For nonzero vectors x and y in a normed space (X,‖ · ‖) it is true that
(

 –
∥
∥
∥
∥

x
‖x‖ +

y
‖y‖

∥
∥
∥
∥

)

min
{‖x‖,‖y‖} ≤ ‖x‖ + ‖y‖ – ‖x + y‖

≤
(

 –
∥
∥
∥
∥

x
‖x‖ +

y
‖y‖

∥
∥
∥
∥

)

max
{‖x‖,‖y‖}. ()
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In [] Kato, Saito and Tamura proved the sharp triangle inequality and reverse inequality
in Banach space for nonzero elements x, x, . . . , xn ∈ X, which is in fact a generalization
of Maligranda’s inequality. Another extension of Maligranda’s inequality for n elements in
a Banach space was obtained in Mitani and Saito []. The problem of characterization of
all intermediate values C satisfying  ≤ C ≤ ∑n

k= ‖xk‖ – ‖∑n
k= xk‖, for x, x, . . . , xn in a

Banach space is studied by Mineno, Nakamura and Ohwada [], Dadipour et al. [], Sano
et al. [] and others. For other different results about the triangle inequality we mention
only [–].

The main aim of the present paper is to provide an improvement of the inequality due
to Maligranda. Some other estimates which follow from the triangle inequality are also
presented. Moreover, we can rewrite them as estimates for the so-called norm-angular
distance or Clarkson distance (see e.g. []) between nonzero x and y as α[x, y] = ‖ x

‖x‖ – y
‖y‖‖.

This distance was generalized to the p-angular distance in normed space in []. In [],
Dragomir characterizes this distance obtaining new bounds for it. A survey on the results
for bounds for the angular distance, so named Dunkl-Williams type theorems (see []),
is given by Moslehian et al. [].

2 Estimates of the triangle inequality using integrals
Let (X,‖ · ‖) be a real normed space. The following lemma is evident.

Lemma  For any x, y ∈ X, the function g(s) = ‖x + sy‖, s ∈R, is convex.

Theorem  For any x, y ∈ X we have
(i) ‖x + y‖ ≤ 

∫ 
 ‖( – λ)x + λy‖dλ ≤ ‖x‖ + ‖y‖,

(ii) ‖x‖ + ‖y‖ + ‖x + y‖ ≥ 
∫ 

 ‖( – λ)x + λy‖dλ.

Proof (i) Let a, b ∈ R, a < b arbitrarily chosen. Since the function g(s) = ‖z + su‖, s ∈ R is
convex, for any fixed u, z ∈ X we apply the Hermite-Hadamard inequality, see e.g. [, ]
for a < b:

g
(

a + b


)

≤ 
b – a

∫ b

a
g(s) ds ≤ g(a) + g(b)


.

Therefore we obtain
∥
∥
∥
∥

z +
a + b


u
∥
∥
∥
∥

≤ 
b – a

∫ b

a
‖z + su‖ds ≤ ‖z + au‖ + ‖z + bu‖


. ()

For any a < b and any x, y ∈ X, u = 
a–b (x – y) and z = 

a–b (ay – bx) such that x = z + au and
y = z + bu. By replacing in inequality () we deduce the inequality



‖x + y‖ ≤ 

(b – a)

∫ b

a

∥
∥bx – ay + s(y – x)

∥
∥ds ≤ ‖x‖ + ‖y‖


.

If we multiply these inequalities by  and make the change of variable s = ( – λ)a + λb in
the integral, we arrive at relation (i).

(ii) If we apply the Hammer-Bullen inequality, see e.g. [], for a < b we obtain

g(a) + g(b)


+ g
(

a + b


)

≥ 
b – a

∫ b

a
g(s) ds.
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Now, if we proceed similarly to (i) we obtain relation (ii). �

Example  Let X = R
, endowed with the norm ‖(x, x)‖ = max{|x|, |x|}. Let η,μ ∈ [, ]

and define x = (, ), y = (–μ,ημ). We have ‖x‖ = , ‖y‖ = μ, ‖x + y‖ =  + ημ. For λ ∈ [, ],
since ( – λ)(–λη) ≤  and ( – λ)λημ ≥ , we obtain ‖( – λ)x + λy‖ = ‖( – λ – λμ,  – λ +
λημ)‖ =  – λ + λημ and then


∫ 



∥
∥( – λ)x + λy

∥
∥dλ = 

∫ 


( – λ + λημ) dλ =  + ημ.

Hence, relations (i) and (ii) become

(i)  + ημ ≤  + ημ ≤  + μ, (ii)  + μ + ημ ≥  + ημ.

Remark  Since the parameters η, μ can be taken arbitrarily in the interval [, ] in Ex-
ample , it follows that the constants in front of the terms of inequalities (i) and (ii) in
Theorem  are optimal.

Corollary  For nonzero elements x, y from a space with inner product X = (X, 〈·, ·〉) and
any a, b ∈R, a < b, we have

(‖x‖‖y‖ – 〈x, y〉)
‖x‖ + ‖y‖ + 

∫ 
 ‖( – λ)x + λy‖dλ

≤ ‖x‖ + ‖y‖ – ‖x + y‖

≤ (‖x‖‖y‖ – 〈x, y〉)
‖x + y‖ + 

∫ 
 ‖( – λ)x + λy‖dλ

. ()

Proof We have ‖x + y‖ = 〈x + y, x + y〉 = ‖x‖ + 〈x, y〉 + ‖y‖, which implies

‖x + y‖ =
(‖x‖ + ‖y‖) – 

(‖x‖‖y‖ – 〈x, y〉),

which means that

(‖x‖‖y‖ – 〈x, y〉)
‖x‖ + ‖y‖ + ‖x + y‖ = ‖x‖ + ‖y‖ – ‖x + y‖.

Using point (i) from Theorem  in the above equality we obtain the inequalities of the
statement. �

Remark  Inequality () represents an improvement of the Cauchy-Schwarz inequality.

3 Estimates of the triangle inequality using the Tapia semi-product
The Tapia semi-product on the normed space X (see []) is the function (·, ·)T : X × X →
R, defined by

(x, y)T = lim
t↘

ϕ(x + ty) – ϕ(x)
t

,

where ϕ(x) = 
‖x‖, x ∈ X. The above limit exists for any pair of elements x, y ∈ X. The

Tapia semi-product is positive homogeneous in each argument and satisfies the inequality
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|(x, y)T | ≤ ‖x‖‖y‖ for all x, y ∈ X. In the case when the norm ‖ · ‖ is generated by an inner
product 〈·, ·〉, then (x, y)T = 〈x, y〉, for all x, y ∈ X.

For instance, in R
n, with p-norm,  < p < ∞, ‖x‖ = (

∑n
i= |xi|p)/p, for x = (x, x, . . . , xn),

the Tapia semi-product becomes

(x, y)T =
∑n

i= αiyi|xi|p–

(
∑n

i= |xi|p)
p–

p
,

if x �= , where

αi =

{

, if xi = ,
xi
|xi| , otherwise.

For nonzero elements x, y ∈ X denote

v(x, y) =
x

‖x‖ +
y

‖y‖ . ()

First from the Maligranda result we deduce the following inequality.

Theorem  Let x, y ∈ X, be nonzero vectors. Then we have

(x, y)T ≤ ‖x‖ · ‖y‖(∥∥v(x, y)
∥
∥ – 

)

. ()

Proof If in the left inequality of Theorem A we replace y by ty, with t > , t < ‖x‖/‖y‖ and
then we divide them by t we obtain

(

 –
∥
∥v(x, y)

∥
∥
)‖y‖ ≤ ‖y‖ –

‖x + yt‖ – ‖x‖
t

.

Letting t →  we obtain

(

 –
∥
∥v(x, y)

∥
∥
)‖y‖ ≤ ‖y‖ –

(x, y)T

‖x‖ .

From this we obtain immediately equation (). �

Remark  Inequality () is an improvement of the known inequality (x, y)T ≤ ‖x‖ · ‖y‖,
since ‖v(x, y)‖ ≤ .

Theorem  Let x, y ∈ X, be nonzero vectors such that ‖y‖ ≤ ‖x‖ and ‖x‖y �= –‖y‖x. Then

‖x‖ + ‖y‖ – ‖x + y‖ ≥ (

 –
∥
∥v(x, y)

∥
∥
)‖x‖

–
(

 –
(

x + y
‖x + y‖ ,

y
‖y‖

)

T

)
(‖x‖ – ‖y‖), ()

‖x‖ + ‖y‖ – ‖x + y‖ ≤ (

 –
∥
∥v(x, y)

∥
∥
)‖x‖

–
(

 –
(

v(x, y)
‖v(x, y)‖ ,

y
‖y‖

)

T

)
(‖x‖ – ‖y‖), ()
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‖x‖ + ‖y‖ – ‖x + y‖ ≥ (

 –
∥
∥v(x, y)

∥
∥
)‖y‖

+
(

 –
(

x + y
‖x + y‖ ,

x
‖x‖

)

T

)
(‖x‖ – ‖y‖), ()

‖x‖ + ‖y‖ – ‖x + y‖ ≤ (

 –
∥
∥v(x, y)

∥
∥
)‖y‖

+
(

 –
(

v(x, y)
‖v(x, y)‖ ,

x
‖x‖

)

T

)
(‖x‖ – ‖y‖). ()

Proof We choose the following notations:

z =
x

‖x‖ , u =
y

‖y‖ , λ =
‖y‖
‖x‖ , μ =

‖x‖
‖y‖ . ()

For obtaining the first two inequalities we consider the function f : [,∞) →R,

f (s) =  + s – ‖z + su‖, s ∈ [,∞).

Also denote

g(s) = ‖z + su‖, s ∈ [,∞).

The conditions given in the theorem ensure that z + su �= , for s ∈ [,∞). We have

(
z + su

‖z + su‖ , u
)

T
=


‖z + su‖ (z + su, u)T

= lim
t↘

‖z + (s + t)u‖ – ‖z + su‖

t‖z + su‖
= lim

t↘

‖z + (s + t)u‖ – ‖z + su‖
t

= lim
t↘

g(s + t) – g(s)
t

= g ′(s + ),

where we denoted by g ′(s + ) the right derivative of g at point s. Then

f ′(s + ) =  –
(

z + su
‖z + su‖ , u

)

T
, s ∈ [,∞). ()

We show that for λ ∈ [, ] we have

f () – ( – λ)f ′(λ + ) ≤ f (λ) ≤ f () – ( – λ)f ′( + ). ()

Because these inequalities are obvious for λ = , we suppose that  ≤ λ < .
Choose an arbitrary number t > . The function f is the difference between a linear and

a convex function. Then it is concave. Consequently we have

t – 
t – λ

f (λ) +
 – λ

t – λ
f (t) ≤ f ().
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Straightforward computations shows that this inequality can be written equivalently, in
the form

f (λ) ≤ f () – ( – λ)
f (t) – f ()

t – 
.

If we pass to the limit t → , t >  in this inequality we obtain the right side inequality in
().

Also, choose an arbitrary number λ < t < . Since f is concave we have

t – λ

 – λ
f () +

 – t
 – λ

f (λ) ≤ f (t).

After short computations, this inequality can be written equivalently, in the form

f () – ( – λ)
f (t) – f (λ)

t – λ
≤ f (λ).

Passing to the limit t → λ, t > λ we obtain the left side inequality in ().
From equation () we obtain

f ′(λ + ) =  –
(

x + y
‖x + y‖ ,

y
‖y‖

)

T
, f ′( + ) =  –

(
v(x, y)

‖v(x, y)‖ ,
y

‖y‖
)

T
. ()

If we multiply equations () by ‖x‖ and we take into account relations () and also the
following relations:

‖x‖f (λ) = ‖x‖ + ‖y‖ – ‖x + y‖,

‖x‖f () = ‖x‖( –
∥
∥v(x, y)

∥
∥
)

,

‖x‖( – λ) = ‖x‖ – ‖y‖,

we deduce inequalities () and ().
In order to obtain the last two inequalities we consider the function f : [,∞) →R,

f(s) =  + s – ‖sz + u‖, s ∈ [,∞).

The right derivatives of the function f can be obtained immediately from the derivatives
of the function f by interchanging u and z, see equation (). So we obtain

f ′
 (s + ) =  –

(
sz + u

‖sz + u‖ , z
)

T
, s ∈ [,∞). ()

For μ ≥  we show the double inequality:

f() + f ′
 (μ + )(μ – ) ≤ f(μ) ≤ f() + f ′

 ( + )(μ – ). ()

We consider only the case μ > , since for μ =  these inequalities are obvious.
First take an arbitrary number t > μ. Since f is concave, we have

t – μ

t – 
f() +

μ – 
t – 

f(t) ≤ f(μ).
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This inequality can be rewritten in the equivalent form

f() +
f(t) – f(μ)

t – μ
(μ – ) ≤ f(μ).

If we pass to the limit t → μ, t > μ we obtain the left side inequality in ().
Next let us take an arbitrary number  < t < μ. Since f is concave we have

t – 
μ – 

f(μ) +
μ – t
μ – 

f() ≤ f(t).

We can transform this inequality to the form

f(μ) ≤ f() +
f(t) – f()

t – 
(μ – ).

If we pass to the limit t → , t >  we obtain the right side inequality in (). If we multiply
inequalities given in () by ‖y‖ and take into account the relations

‖y‖f(μ) = ‖x‖ + ‖y‖ – ‖x + y‖,

‖y‖f() = ‖y‖( –
∥
∥v(x, y)

∥
∥
)

,

f ′
 ( + ) =  –

(
v(x, y)

‖v(x, y)‖ ,
x

‖x‖
)

T
,

f ′
 (μ + ) =  –

(
x + y

‖x + y‖ ,
x

‖x‖
)

T
,

‖y‖(μ – ) = ‖x‖ – ‖y‖,

we obtain relations () and (). �

Remark  Inequalities () and () improve inequality ().

Example  Let the space X and the vectors x, y be exactly like in Example . Then we
have ‖x‖ + ‖y‖ – ‖x + y‖ = μ( – η). Also v(x, y) = (, ) + (–,η) = (,  + η). Then ( –
‖v(x, y)‖)‖x‖ =  – η. Hence the right inequality in () of Theorem A reads μ( – η) ≤  – η.
We obtain an improvement of this inequality by using inequality () given in Theorem .
Indeed we have

(
v(x, y)

‖v(x, y)‖ ,
y

‖y‖
)

T
=

(

(, ), (–,η)
)

T = lim
t↘


t

(∥
∥(–t,  + tη)

∥
∥

 –
∥
∥(, )

∥
∥

) = η.

It follows ( – ( v(x,y)
‖v(x,y)‖ , y

‖y‖ )T )(‖x‖ – ‖y‖) = ( – η)( – μ). Consequently inequality () from
Theorem  becomes μ( – η) ≤ μ( – η).

It is easy to see that we can write α[x, y] = ‖v(x, –y)‖. Using inequalities () and () we
deduce the following double inequality.

Corollary  For nonzero vectors x and y, such that ‖x‖y �= ‖y‖x,

‖x – y‖ – |‖x‖ – ‖y‖|
min{‖x‖,‖y‖} + A ≤ α[x, y] ≤ ‖x – y‖ + |‖x‖ – ‖y‖|

max{‖x‖,‖y‖} – B, ()
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where

A =
[

 –
(

x – y
‖x – y‖ ,

x
‖x‖

)

T

] |‖x‖ – ‖y‖|
min{‖x‖,‖y‖} ≥ ,

B =
[

 –
(

v(x, –y)
‖v(x, –y)‖ , –

y
‖y‖

)

T

] |‖x‖ – ‖y‖|
max{‖x‖,‖y‖} ≥ .

Proof Because of the symmetry we can consider that ‖x‖ ≥ ‖y‖. �

Remark  Inequalities () improve the inequalities for the norm-angular distance, of
Maligranda [], which can be obtained from (). Other inequalities for the norm-angular
distance could be obtained combining all inequalities (), (), (), and ().

4 Inequalities in inner product spaces
In this section we derive inequalities in an inner product space (X, 〈·, ·〉) from Theorem ,
by taking into account that (x, y)T = 〈x, y〉, x, y ∈ X.

Theorem  Let (X, 〈·, ·〉) be an inner product space, with norm ‖ · ‖. For nonzero elements
x, y ∈ X

‖x‖ + ‖y‖ – ‖x + y‖ ≤
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ + ‖y‖), ()

where

∥
∥v(x, y)

∥
∥ =

∥
∥
∥
∥

x
‖x‖ +

y
‖y‖

∥
∥
∥
∥

=

√


(

 +
〈x, y〉

‖x‖ · ‖y‖
)

. ()

Proof Because of the symmetry we can suppose that ‖x‖ ≥ ‖y‖. First we have

∥
∥v(x, y)

∥
∥

 =
〈

x
‖x‖ +

y
‖y‖ ,

x
‖x‖ +

y
‖y‖

〉

= 
(

 +
〈x, y〉

‖x‖ · ‖y‖
)

.

Hence we get (). Next we obtain

(
v(x, y)

‖v(x, y)‖ ,
y

‖y‖
)

T
=


‖y‖ · ‖v(x, y)‖〈 x

‖x‖ +
y

‖y‖ , y〉

=


‖v(x, y)‖
( 〈x, y〉

‖x‖ · ‖y‖ + 
)

=


∥
∥v(x, y)

∥
∥. ()

We can apply Theorem . From equation (), by taking into account equation () we
obtain

‖x‖ + ‖y‖ – ‖x + y‖ ≤ (

 –
∥
∥v(x, y)

∥
∥
)‖x‖

–
(

 –
(

v(x, y)
‖v(x, y)‖ ,

y
‖y‖

)

T

)
(‖x‖ – ‖y‖)
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=
(

 –
∥
∥v(x, y)

∥
∥
)‖x‖ –

(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ – ‖y‖)

=
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ + ‖y‖). �

Remark  From the proof we can see that, in an inner product space, inequality () is
equivalent to inequality (). In a similar way we can obtain

(

 –
∥
∥v(x, y)

∥
∥
)

+
(

 –
〈

v(x, y)
‖v(x, y)‖ ,

x
‖x‖

〉)
(‖x‖ – ‖y‖)

=
(

 –
∥
∥v(x, y)

∥
∥
)

+
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ – ‖y‖)

=
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ + ‖y‖).

This means that, if X is an inner product space, inequality () is also equivalent to inequal-
ity (). Thus in an inner product space equations () and () are equivalent.

Remark  Inequality () can be written equivalently on the form

∥
∥v(x, y)

∥
∥ ≤ ‖x + y‖

‖x‖ + ‖y‖ , x �= , y �= . ()

By changing y by –y in () and taking into account that α[x, y] = ‖v(x, –y)‖, we see that
we have the Dunkl-Williams inequality in an inner product space; see [, ].

Inverse inequalities are given in the next theorem.

Theorem  Let (X, 〈·, ·〉) be an inner product space, with norm ‖ · ‖ and let nonzero ele-
ments x, y ∈ X be such that x + y �= .

(i) If ‖x‖ ≥ ‖y‖, then

‖x‖ + ‖y‖ – ‖x + y‖

≥ ‖x‖ + ‖y‖ –
∥
∥v(x, y)

∥
∥ · ‖y‖ –

〈x + y, x〉(‖x‖ – ‖y‖)
‖x + y‖ · ‖x‖ ()

and

‖x‖ + ‖y‖ – ‖x + y‖

≥ ‖x‖ + ‖y‖ –
∥
∥v(x, y)

∥
∥ · ‖x‖ +

〈x + y, y〉(‖x‖ – ‖y‖)
‖x + y‖ · ‖y‖ . ()

(ii) Without condition ‖x‖ ≥ ‖y‖,

‖x‖ + ‖y‖ – ‖x + y‖ ≥
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ + ‖y‖)

+
(




∥
∥v(x, y)

∥
∥

 – 
)

(‖x‖ – ‖y‖)

‖x + y‖ . ()
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Proof (i) We can apply Theorem . From equation () we obtain

‖x‖ + ‖y‖ – ‖x + y‖

≥ (

 –
∥
∥v(x, y)

∥
∥
)‖y‖ +

(

 –
〈x, y〉 + ‖x‖

‖x + y‖ · ‖x‖
)

(‖x‖ – ‖y‖)

= ‖x‖ + ‖y‖ –
∥
∥v(x, y)

∥
∥ · ‖y‖ –

〈x + y, x〉(‖x‖ – ‖y‖)
‖x + y‖ · ‖x‖ .

So we proved inequality ().
We apply Theorem . From equation () we deduce that

‖x‖ + ‖y‖ – ‖x + y‖

≥ (

 –
∥
∥v(x, y)

∥
∥
)‖x‖ –

(

 –
〈x, y〉 + ‖y‖

‖x + y‖ · ‖y‖
)

(‖x‖ – ‖y‖)

= ‖x‖ + ‖y‖ –
∥
∥v(x, y)

∥
∥ · ‖x‖ +

〈x + y, y〉(‖x‖ – ‖y‖)
‖x + y‖ · ‖y‖ .

So we proved inequality () too.
(ii) By virtue of the symmetry of equation () we can suppose that ‖x‖ ≥ ‖y‖. If we add

inequalities () and () and then we divide by  we obtain

‖x‖ + ‖y‖ – ‖x + y‖

≥ ‖x‖ + ‖y‖ –


∥
∥v(x, y)

∥
∥
(‖x‖ + ‖y‖)

+
〈x, y〉(‖x‖ – ‖y‖)

‖x‖ · ‖y‖ · ‖x + y‖ –
(‖x‖ – ‖y‖)

‖x + y‖

=
(

 –


∥
∥v(x, y)

∥
∥

)
(‖x‖ + ‖y‖) +

(



∥
∥v(x, y)

∥
∥

 – 
)

(‖x‖ – ‖y‖)

‖x + y‖ . �

Remark  From the proof of Theorem  it follows that in an inner product space equation
() is equivalent to equation () and equation () is equivalent to equation ().

Remark  Inequality () has the advantage of the symmetry, but in general it does not
improve the triangle inequality.

Remark  We note also that inequality () is equivalent to inequality (). Indeed, equa-
tion () can be written in equivalent form,

‖x‖ · ‖x + y‖ ≤ (‖x‖ + 〈x, y〉)(‖x‖ – ‖y‖) +
∥
∥v(x, y)

∥
∥ · ‖x‖ · ‖y‖ · ‖x + y‖.

Then

(‖x‖ + ‖y‖)
( 〈x, y〉

‖x‖ + ‖y‖ + 
)

≤ ∥
∥v(x, y)

∥
∥ · ‖x + y‖,

and then

∥
∥v(x, y)

∥
∥

 ≤ ∥
∥v(x, y)

∥
∥ · ‖x + y‖

‖x‖ + ‖y‖ .
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If v(x, y) �=  we obtain (). If v(x, y) =  then equation () is obvious but also equation
() is obvious, since v(x, y) =  implies ‖x‖y = –‖y‖x and then ‖x + y‖ = ‖x‖ – ‖y‖, then
inequality () is reduced to an equality.

Also inequality () is equivalent to inequality (). Indeed, equation () can be written
in equivalent form,

(‖y‖ + 〈x, y〉)(‖x‖ – ‖y‖) + ‖y‖ · ‖x + y‖ ≤ ∥
∥v(x, y)

∥
∥ · ‖x‖ · ‖y‖ · ‖x + y‖,

and then

∥
∥v(x, y)

∥
∥

 ≤ ∥
∥v(x, y)

∥
∥ · ‖x + y‖

‖x‖ + ‖y‖ .

From this, we reason similarly to in the case of equation ().
In conclusion, all relations (), (), (), (), and consequently also (), are equivalent

to each other, for x �= , y �= , x + y �= . From Remarks  and  it follows that if X is
an inner product space inequalities (), (), (), and () are equivalent to each other, for
‖x‖ ≥ ‖y‖ >  and ‖x‖y �= –‖y‖x.
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