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Abstract
In this paper, we first introduce some new Morrey-type spaces containing generalized
Morrey space and weighted Morrey space with two weights as special cases. Then we
give the weighted strong type and weak type estimates for fractional integral
operators Iα in these new Morrey-type spaces. Furthermore, the weighted strong type
estimate and endpoint estimate of linear commutators [b, Iα ] formed by b and Iα are
established. Also we study related problems about two-weight, weak type
inequalities for Iα and [b, Iα ] in the Morrey-type spaces and give partial results.

MSC: Primary 42B20; secondary 42B25; 42B35

Keywords: fractional integral operators; commutators; Morrey-type spaces;
BMO(Rn); weights; Orlicz spaces

1 Introduction
For given α,  < α < n, the fractional integral operator (or the Riesz potential) Iα of order
α is defined by

Iαf (x) :=


γ (α)

∫
Rn

f (y)
|x – y|n–α

dy, and γ (α) =
π

n
 α�( α

 )
�( n–α

 )
.

It is well known that the Hardy-Littlewood-Sobolev theorem states that the fractional
integral operator Iα is bounded from Lp(Rn) to Lq(Rn) for  < α < n,  < p < n/α and
/q = /p – α/n. Also we know that Iα is bounded from L(Rn) to WLq(Rn) for  < α < n
and q = n/(n – α) (see []). In , Muckenhoupt and Wheeden [] studied the weighted
boundedness of Iα and obtained the following results.

Theorem . ([]) Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. Then the frac-
tional integral operator Iα is bounded from Lp(wp) to Lq(wq).

Theorem . ([]) Let  < α < n, p = , q = n/(n – α) and w ∈ A,q. Then the fractional
integral operator Iα is bounded from L(w) to WLq(wq).
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For  < α < n, the linear commutator [b, Iα] generated by a suitable function b and Iα is
defined by

[b, Iα]f (x) := b(x) · Iαf (x) – Iα(bf )(x)

=


γ (α)

∫
Rn

[b(x) – b(y)] · f (y)
|x – y|n–α

dy.

In , Segovia and Torrea [] proved that [b, Iα] is also bounded from Lp(wp) ( < p <
n/α) to Lq(wq) whenever b ∈ BMO(Rn) (see also [] for the unweighted case).

Theorem . ([]) Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. Suppose that
b ∈ BMO(Rn), then the linear commutator [b, Iα] is bounded from Lp(wp) to Lq(wq).

In , Cruz-Uribe and Fiorenza [] discussed the weighted endpoint inequalities for
commutator of fractional integral operator and proved the following result (see also []
for the unweighted case).

Theorem . ([]) Let  < α < n, p = , q = n/(n – α) and wq ∈ A. Suppose that b ∈
BMO(Rn), then, for any given σ >  and any bounded domain � ⊂ R

n, there is a constant
C > , which does not depend on f , � and σ > , such that

[
wq({x ∈ � :

∣∣[b, Iα](f )(x)
∣∣ > σ

})]/q ≤ C
∫

�

�

( |f (x)|
σ

)
· w(x) dx,

where �(t) = t · ( + log+ t) and log+ t = max{log t, }.

On the other hand, the classical Morrey space was originally introduced by Morrey in
[] to study the local behavior of solutions to second order elliptic partial differential equa-
tions. This classical space and various generalizations on the Euclidean spaceRn have been
extensively studied by many authors. In [], Mizuhara introduced the generalized Morrey
space Lp,	(Rn) which was later extended and studied in []. In [], Komori and Shirai
defined a version of the weighted Morrey space Lp,κ (v, u) which is a natural generalization
of the weighted Lebesgue space.

Let Iα be the fractional integral operator, and let [b, Iα] be its linear commutator. The
main purpose of this paper is twofold. We first define a new kind of Morrey-type spaces
Mp,θ (v, u) containing generalized Morrey space Lp,	(Rn) and weighted Morrey space
Lp,κ (v, u) as special cases. As the Morrey-type spaces may be considered as an extension
of the weighted Lebesgue space, it is natural and important to study the weighted bound-
edness of Iα and [b, Iα] in these new spaces. Then we will establish the weighted strong
type and endpoint estimates for Iα and [b, Iα] in these Morrey-type spaces Mp,θ (v, u) for
all  ≤ p < ∞. In addition, we will discuss two-weight, weak type norm inequalities for Iα
and [b, Iα] in Mp,θ (v, u) and give some partial results.

2 Statements of the main results
2.1 Notations and preliminaries
Let Rn be the n-dimensional Euclidean space of points x = (x, x, . . . , xn) with norm |x| =
(
∑n

i= x
i )/. For x ∈ R

n and r > , let B(x, r) = {x ∈ R
n : |x – x| < r} denote the open ball
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centered at x of radius r, B(x, r)c denote its complement and |B(x, r)| be the Lebesgue
measure of the ball B(x, r). A non-negative function w defined on R

n is called a weight if
it is locally integrable. We first recall the definitions of two weight classes; Ap and Ap,q.

Definition . (Ap weights []) A weight w is said to belong to the class Ap for  < p < ∞,
if there exists a positive constant C such that, for any ball B in R

n,

(


|B|
∫

B
w(x) dx

)/p( 
|B|

∫
B

w(x)–p′/p dx
)/p′

≤ C < ∞,

where p′ is the dual of p such that /p + /p′ = . The class A is defined replacing the above
inequality by


|B|

∫
B

w(x) dx ≤ C · ess inf
x∈B

w(x),

for any ball B in R
n. We also define A∞ =

⋃
≤p<∞ Ap.

Definition . (Ap,q weights []) A weight w is said to belong to the class Ap,q ( < p, q <
∞), if there exists a positive constant C such that, for any ball B in R

n,

(


|B|
∫

B
w(x)q dx

)/q( 
|B|

∫
B

w(x)–p′
dx

)/p′

≤ C < ∞.

The class A,q ( < q < ∞) is defined replacing the above inequality by

(


|B|
∫

B
w(x)q dx

)/q(
ess inf

x∈B


w(x)

)
≤ C < ∞.

Lemma . Suppose that  < α < n,  ≤ p < n/α and /q = /p – α/n. The following state-
ments are true (see []):

(i) If p > , then w ∈ Ap,q implies wq ∈ Aq and w–p′ ∈ Ap′ .
(ii) If p = , then w ∈ A,q if and only if wq ∈ A.

Given a ball B and λ > , λB denotes the ball with the same center as B whose radius is λ

times that of B. For a given weight function w and a Lebesgue measurable set E, we denote
the characteristic function of E by χE , the Lebesgue measure of E by |E| and the weighted
measure of E by w(E), where w(E) :=

∫
E w(x) dx. Given a weight w, we say that w satisfies

the doubling condition if there exists a universal constant C >  such that, for any ball B
in R

n, we have

w(B) ≤ C · w(B). (.)

When w satisfies this doubling condition (.), we denote w ∈ � for brevity. We know
that if w is in A∞, then w ∈ � (see []). Moreover, if w ∈ A∞, then, for any ball B and any
measurable subset E of B, there exists a number δ >  independent of E and B such that
(see [])

w(E)
w(B)

≤ C
( |E|

|B|
)δ

. (.)
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Given a weight function w on R
n, for  ≤ p < ∞, the weighted Lebesgue space Lp(w) is

defined as the set of all functions f such that

‖f ‖Lp(w) :=
(∫

Rn

∣∣f (x)
∣∣pw(x) dx

)/p

< ∞.

We also denote by WLp(w) ( ≤ p < ∞) the weighted weak Lebesgue space consisting of
all measurable functions f such that

‖f ‖WLp(w) := sup
λ>

λ · [w
({

x ∈R
n :

∣∣f (x)
∣∣ > λ

})]/p < ∞.

We next recall some definitions and basic facts about Orlicz spaces needed for the proofs
of the main results. For further information on this subject, we refer to []. A function
A : [, +∞) → [, +∞) is said to be a Young function if it is continuous, convex and strictly
increasing satisfying A() =  and A(t) → +∞ as t → +∞. An important example of
Young function is A(t) = tp( + log+ t)p with some  ≤ p < ∞. Given a Young function A,
we define the A-average of a function f over a ball B by means of the Luxemburg norm:

‖f ‖A,B := inf

{
λ >  :


|B|

∫
B
A

( |f (x)|
λ

)
dx ≤ 

}
.

In particular, when A(t) = tp,  ≤ p < ∞, it is easy to see that A is a Young function and

‖f ‖A,B =
(


|B|

∫
B

∣∣f (x)
∣∣p dx

)/p

;

that is, the Luxemburg norm coincides with the normalized Lp norm. Recall that the fol-
lowing generalization of Hölder’s inequality holds:


|B|

∫
B

∣∣f (x) · g(x)
∣∣dx ≤ ‖f ‖A,B‖g‖Ā,B,

where Ā is the complementary Young function associated to A, which is given by Ā(s) :=
sup≤t<∞[st –A(t)],  ≤ s < ∞. Obviously, �(t) = t · ( + log+ t) is a Young function and its
complementary Young function is �̄(t) ≈ et – . In the present situation, we denote ‖f ‖�,B

and ‖g‖�̄,B by ‖f ‖L log L,B and ‖g‖exp L,B, respectively. So we have


|B|

∫
B

∣∣f (x) · g(x)
∣∣dx ≤ ‖f ‖L log L,B‖g‖exp L,B. (.)

There is a further generalization of Hölder’s inequality that turns out to be useful for our
purpose (see []): Let A, B, and C be Young functions such that, for all t > ,

A–(t) ·B–(t) ≤ C–(t),

where A–(t) is the inverse function of A(t). Then, for all functions f and g and all balls
B ⊂R

n,

‖f · g‖C,B ≤ ‖f ‖A,B‖g‖B,B. (.)
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Let us now recall the definition of the space of BMO(Rn) (see []). BMO(Rn) is the
Banach function space modulo constants with the norm ‖ · ‖∗ defined by

‖b‖∗ := sup
B


|B|

∫
B

∣∣b(x) – bB
∣∣dx < ∞,

where the supremum is taken over all balls B in R
n and bB stands for the mean value of b

over B; that is,

bB :=


|B|
∫

B
b(y) dy.

2.2 Morrey-type spaces
Let us begin with the definitions of the weighted Morrey space with two weights and gen-
eralized Morrey space.

Definition . ([]) Let  ≤ p < ∞ and  < κ < . For two weights u and v on R
n, the

weighted Morrey space Lp,κ (v, u) is defined by

Lp,κ (v, u) :=
{

f ∈ Lp
loc(v) : ‖f ‖Lp,κ (v,u) < ∞}

,

where

‖f ‖Lp,κ (v,u) := sup
B

(


u(B)κ

∫
B

∣∣f (x)
∣∣pv(x) dx

)/p

(.)

and the supremum is taken over all balls B in R
n. If v = u, then we denote Lp,κ (v), for short.

Definition . Let  ≤ p < ∞,  < κ <  and w be a weight on R
n. We denote by WLp,κ (w)

the weighted weak Morrey space of all measurable functions f for which

‖f ‖WLp,κ (w) := sup
B

sup
σ>


w(B)κ/p σ · [w

({
x ∈ B :

∣∣f (x)
∣∣ > σ

})]/p < ∞. (.)

Let 	 = 	(r), r > , be a growth function; that is, a positive increasing function on
(, +∞) and satisfy the following doubling condition:

	(r) ≤ D · 	(r), for all r > , (.)

where D = D(	) ≥  is a doubling constant independent of r.

Definition . ([]) Let  ≤ p < ∞ and 	 be a growth function on (, +∞). Then the
generalized Morrey space Lp,	(Rn) is defined by

Lp,	(
R

n) :=
{

f ∈ Lp
loc

(
R

n) : ‖f ‖Lp,	(Rn) < ∞}
,

where

‖f ‖Lp,	(Rn) := sup
r>;B(x,r)

(


	(r)

∫
B(x,r)

∣∣f (x)
∣∣p dx

)/p

and the supremum is taken over all balls B(x, r) in R
n with x ∈R

n.
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Definition . Let  ≤ p < ∞ and 	 be a growth function on (, +∞). We denote by
WLp,	(Rn) the generalized weak Morrey space of all measurable functions f for which

‖f ‖WLp,	(Rn) := sup
B(x,r)

sup
λ>


	(r)/p λ · ∣∣{x ∈ B(x, r) :

∣∣f (x)
∣∣ > λ

}∣∣/p < ∞.

In order to unify the definitions given above, we now introduce Morrey-type spaces
associated to θ as follows. Let  ≤ κ < . Assume that θ (·) is a positive increasing function
defined in (, +∞) and satisfies the following Dκ condition:

θ (ξ )
ξκ

≤ C · θ (ξ ′)
(ξ ′)κ

, for any  < ξ ′ < ξ < +∞, (.)

where C >  is a constant independent of ξ and ξ ′.

Definition . Let  ≤ p < ∞,  ≤ κ <  and θ satisfy the Dκ condition (.). For two
weights u and v on R

n, we denote by Mp,θ (v, u) the generalized weighted Morrey space,
the space of all locally integrable functions f with finite norm.

Mp,θ (v, u) :=
{

f ∈ Lp
loc(v) : ‖f ‖Mp,θ (v,u) < ∞}

,

where the norm is given by

‖f ‖Mp,θ (v,u) := sup
B

(


θ (u(B))

∫
B

∣∣f (x)
∣∣pv(x) dx

)/p

.

Here the supremum is taken over all balls B in R
n. If v = u, then we denote Mp,θ (v), for

short. Furthermore, we denote by WMp,θ (v) the generalized weighted weak Morrey space
of all measurable functions f for which

‖f ‖WMp,θ (v) := sup
B

sup
σ>


θ (v(B))/p σ · [v

({
x ∈ B :

∣∣f (x)
∣∣ > σ

})]/p < ∞.

According to this definition, we recover the spaces Lp,κ (v, u) and WLp,κ (v) under the
choice of θ (x) = xκ with  < κ < :

Lp,κ (v, u) = Mp,θ (v, u)|θ (x)=xκ , WLp,κ (v) = WMp,θ (v)|θ (x)=xκ .

Also, note that if θ (x) ≡ , then Mp,θ (v) = Lp(v) and WMp,θ (v) = WLp(v), the classical
weighted Lebesgue and weak Lebesgue spaces.

The aim of this paper is to extend Theorems .-. to the corresponding Morrey-type
spaces. Our main results on the boundedness of Iα in the Morrey-type spaces associated
to θ can be formulated as follows.

Theorem . Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. Assume that θ

satisfies the Dκ condition (.) with  ≤ κ < p/q, then the fractional integral operator Iα
is bounded from Mp,θ (wp, wq) into Mq,θq/p (wq).
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Theorem . Let  < α < n, p = , q = n/(n – α) and w ∈ A,q. Assume that θ satisfies the
Dκ condition (.) with  ≤ κ < /q, then the fractional integral operator Iα is bounded
from M,θ (w, wq) into WMq,θq (wq).

Let [b, Iα] be the commutator formed by Iα and BMO function b. For the strong type
estimate of the linear commutator [b, Iα] in the Morrey-type spaces associated to θ , we
will prove

Theorem . Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. Assume that θ

satisfies the Dκ condition (.) with  ≤ κ < p/q and b ∈ BMO(Rn), then the commutator
operator [b, Iα] is bounded from Mp,θ (wp, wq) into Mq,θq/p (wq).

To obtain endpoint estimate for the linear commutator [b, Iα], we first need to define
the weighted A-average of a function f over a ball B by means of the weighted Luxemburg
norm; that is, given a Young function A and w ∈ A∞, we define (see [, ] for instance)

‖f ‖A(w),B := inf

{
σ >  :


w(B)

∫
B
A

( |f (x)|
σ

)
· w(x) dx ≤ 

}
.

When A(t) = t, this norm is denoted by ‖ · ‖L(w),B, and when �(t) = t · ( + log+ t), this norm
is also denoted by ‖ ·‖L log L(w),B. The complementary Young function of �(t) is �̄(t) ≈ et – 
with mean Luxemburg norm denoted by ‖ · ‖exp L(w),B. For w ∈ A∞ and for every ball B in
R

n, we can also show the weighted version of (.). Namely, the following generalized
Hölder inequality in the weighted setting


w(B)

∫
B

∣∣f (x) · g(x)
∣∣w(x) dx ≤ C‖f ‖L log L(w),B‖g‖exp L(w),B (.)

is true (see [] for instance). Now we introduce new Morrey-type spaces of L log L type
associated to θ as follows.

Definition . Let p = ,  ≤ κ <  and θ satisfy the Dκ condition (.). For two weights
u and v on R

n, we denote by M,θ
L log L(v, u) the generalized weighted Morrey space of

L log L type, the space of all locally integrable functions f defined on R
n with finite norm

‖f ‖M,θ
L log L(v,u). We have

M,θ
L log L(v, u) :=

{
f ∈ L

loc(v) : ‖f ‖M,θ
L log L(v,u) < ∞}

,

where

‖f ‖M,θ
L log L(v,u) := sup

B

{
v(B)

θ (u(B))
· ‖f ‖L log L(v),B

}
.

Here the supremum is taken over all balls B in R
n. If v = u, then we denote M,θ

L log L(v) for
brevity.
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Note that t ≤ t · ( + log+ t) for all t > , then, for any ball B ⊂ R
n and v ∈ A∞, we have

‖f ‖L(v),B ≤ ‖f ‖L log L(v),B by definition, i.e., the inequality

‖f ‖L(v),B =


v(B)

∫
B

∣∣f (x)
∣∣ · v(x) dx ≤ ‖f ‖L log L(v),B (.)

holds for any ball B ⊂ R
n. From this, we can further see that, when θ satisfies the Dκ

condition (.) with  ≤ κ < , and u is another weight function,


θ (u(B))

∫
B

∣∣f (x)
∣∣ · v(x) dx =

v(B)
θ (u(B))

· 
v(B)

∫
B

∣∣f (x)
∣∣ · v(x) dx

=
v(B)

θ (u(B))
· ‖f ‖L(v),B

≤ v(B)
θ (u(B))

· ‖f ‖L log L(v),B. (.)

Hence, we have M,θ
L log L(v, u) ⊂M,θ (v, u) by definition.

In Definition ., we also consider the special case when θ is taken to be θ (x) = xκ with
 < κ < , and denote the corresponding space by L,κ

L log L(v, u).

Definition . Let p =  and  < κ < . For two weights u and v on R
n, we denote by

L,κ
L log L(v, u) the weighted Morrey space of L log L type, the space of all locally integrable

functions f defined on R
n with finite norm ‖f ‖L,κ

L log L(v,u). We have

L,κ
L log L(v, u) :=

{
f ∈ L

loc(v) : ‖f ‖L,κ
L log L(v,u) < ∞}

,

where

‖f ‖L,κ
L log L(v,u) := sup

B

{
v(B)

u(B)κ
· ‖f ‖L log L(v),B

}
.

In this situation, we have L,κ
L log L(v, u) ⊂L,κ (v, u).

In the endpoint case p = , we will prove the following weak type L log L estimate of the
linear commutator [b, Iα] in the Morrey-type space associated to θ .

Theorem . Let  < α < n, p = , q = n/(n – α) and w ∈ A,q. Assume that θ satisfies the
Dκ condition (.) with  ≤ κ < /q and b ∈ BMO(Rn), then, for any given σ >  and any
ball B ⊂R

n, there exists a constant C >  independent of f , B and σ >  such that


θ (wq(B))

[
wq({x ∈ B :

∣∣[b, Iα](f )(x)
∣∣ > σ

})]/q ≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
,

where �(t) = t · ( + log+ t). From the definitions, we can roughly say that the commutator
operator [b, Iα] is bounded from M,θ

L log L(w, wq) into WMq,θq (wq).

In particular, if we take θ (x) = xκ with  < κ < , then we immediately get the following
strong type estimate and endpoint estimate of Iα and [b, Iα] in the weighted Morrey spaces.
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Corollary . Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. If  < κ < p/q, then
the fractional integral operator Iα is bounded from Lp,κ (wp, wq) into Lq,κq/p(wq).

Corollary . Let  < α < n, p = , q = n/(n – α) and w ∈ A,q. If  < κ < /q, then the
fractional integral operator Iα is bounded from L,κ (w, wq) into WLq,κq(wq).

Corollary . Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. If  < κ < p/q
and b ∈ BMO(Rn), then the commutator operator [b, Iα] is bounded from Lp,κ (wp, wq) into
Lq,κq/p(wq).

Corollary . Let  < α < n, p = , q = n/(n – α) and w ∈ A,q. If  < κ < /q and b ∈
BMO(Rn), then, for any given σ >  and any ball B ⊂ R

n, there exists a constant C > 
independent of f , B and σ >  such that


wq(B)κ

[
wq({x ∈ B :

∣∣[b, Iα](f )(x)
∣∣ > σ

})]/q ≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L,κ

L log L(w,wq)
,

where �(t) = t · ( + log+ t).

Moreover, for the extreme case κ = p/q of Corollary ., we will show that Iα is bounded
from Lp,κ (wp, wq) into BMO(Rn).

Theorem . Let  < α < n,  < p < n/α, /q = /p – α/n and w ∈ Ap,q. If κ = p/q, then the
fractional integral operator Iα is bounded from Lp,κ (wp, wq) into BMO(Rn).

It should be pointed out that Corollaries . through . were given by Komori and Shirai
in []. Corollary . and Theorem . are new results.

Definition . In the unweighted case (when u = v ≡ ), we denote the correspond-
ing unweighted Morrey-type spaces associated to θ by Mp,θ (Rn), WMp,θ (Rn) and
M,θ

L log L(Rn), respectively. That is, let  ≤ p < ∞ and θ satisfy the Dκ condition (.) with
 ≤ κ < , we define

Mp,θ(
R

n) :=
{

f ∈ Lp
loc

(
R

n) : ‖f ‖Mp,θ (Rn) = sup
B

(


θ (|B|)
∫

B

∣∣f (x)
∣∣p dx

)/p

< ∞
}

,

WMp,θ(
R

n) :=
{

f : ‖f ‖WMp,θ (Rn) = sup
B

sup
σ>


θ (|B|)/p σ · ∣∣{x ∈ B :

∣∣f (x)
∣∣ > σ

}∣∣/p < ∞
}

,

and

M,θ
L log L

(
R

n) :=
{

f ∈ L
loc

(
R

n) : ‖f ‖M,θ
L log L(Rn) = sup

B

( |B|
θ (|B|) · ‖f ‖L log L,B

)
< ∞

}
.

Naturally, when u(x) = v(x) ≡  we have the following unweighted results.

Corollary . Let  < α < n,  < p < n/α and /q = /p –α/n. Assume that θ satisfies the Dκ

condition (.) with  ≤ κ < p/q, then the fractional integral operator Iα is bounded from
Mp,θ (Rn) into Mq,θq/p (Rn).
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Corollary . Let  < α < n, p = , and q = n/(n – α). Assume that θ satisfies the Dκ con-
dition (.) with  ≤ κ < /q, then the fractional integral operator Iα is bounded from
M,θ (Rn) into WMq,θq (Rn).

Corollary . Let  < α < n,  < p < n/α, and /q = /p–α/n. Assume that θ satisfies theDκ

condition (.) with  ≤ κ < p/q and b ∈ BMO(Rn), then the commutator operator [b, Iα]
is bounded from Mp,θ (Rn) into Mq,θq/p (Rn).

Corollary . Let  < α < n, p = , and q = n/(n – α). Assume that θ satisfies the Dκ con-
dition (.) with  ≤ κ < /q and b ∈ BMO(Rn), then, for any given σ >  and any ball
B ⊂R

n, there exists a constant C >  independent of f , B and σ >  such that


θ (|B|)

∣∣{x ∈ B :
∣∣[b, Iα](f )(x)

∣∣ > σ
}∣∣/q ≤ C ·

∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(Rn)
,

where �(t) = t · ( + log+ t).

We also introduce the generalized Morrey space of L log L type.

Definition . Let p =  and 	 be a growth function on (, +∞). We denote by
L,	

L log L(Rn) the generalized Morrey space of L log L type, which is given by

L,	
L log L

(
R

n) :=
{

f ∈ L
loc

(
R

n) : ‖f ‖L,	
L log L(Rn) < ∞}

,

where

‖f ‖L,	
L log L(Rn) := sup

r>;B(x,r)

{ |B(x, r)|
	(r)

· ‖f ‖L log L,B(x,r)

}
.

In this situation, we also have L,	
L log L(Rn) ⊂L,	(Rn).

Below we are going to show that our new Morrey-type spaces can be reduced to gen-
eralized Morrey spaces. In fact, assume that θ (·) is a positive increasing function defined
in (, +∞) and satisfies the Dκ condition (.) with some  ≤ κ < . For any fixed x ∈ R

n

and r > , we set 	(r) := θ (|B(x, r)|). Observe that

	(r) = θ
(∣∣B(x, r)

∣∣) = θ
(
n∣∣B(x, r)

∣∣).

Then it is easy to verify that 	(r), r > , is a growth function with doubling constant D(	) :
 ≤ D(	) < n. Hence, by the choice of 	 mentioned above, we get Mp,θ (Rn) = Lp,	(Rn)
and WMp,θ (Rn) = WLp,	(Rn) for p ∈ [, +∞), and M,θ

L log L(Rn) = L,	
L log L(Rn). Therefore,

by the above unweighted results (Corollaries .-.), we can also obtain strong type esti-
mate and endpoint estimate of Iα and [b, Iα] in the generalized Morrey spaces.

Corollary . Let  < α < n,  < p < n/α and /q = /p – α/n. Suppose that 	 satisfies the
doubling condition (.) and  ≤ D(	) < np/q, then the fractional integral operator Iα is
bounded from Lp,	(Rn) into Lq,	q/p (Rn).
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Corollary . Let  < α < n, p =  and q = n/(n – α). Suppose that 	 satisfies the doubling
condition (.) and  ≤ D(	) < n/q, then the fractional integral operator Iα is bounded from
L,	(Rn) into WLq,	q (Rn).

Corollary . Let  < α < n,  < p < n/α and /q = /p – α/n. Suppose that 	 satisfies the
doubling condition (.) with  ≤ D(	) < np/q and b ∈ BMO(Rn), then the commutator
operator [b, Iα] is bounded from Lp,	(Rn) into Lq,	q/p (Rn).

Corollary . Let  < α < n, p =  and q = n/(n – α). Suppose that 	 satisfies the doubling
condition (.) with  ≤ D(	) < n/q and b ∈ BMO(Rn), then, for any given σ >  and any
ball B(x, r) ⊂ R

n, there exists a constant C >  independent of f , B(x, r) and σ >  such
that


	(r)

∣∣{x ∈ B(x, r) :
∣∣[b, Iα](f )(x)

∣∣ > σ
}∣∣/q ≤ C ·

∥∥∥∥�

( |f |
σ

)∥∥∥∥
L,	

L log L(Rn)
,

where �(t) = t · ( + log+ t).

We will also prove the following result which can be regarded as a supplement of Corol-
laries . and ..

Theorem . Let  < α < n,  < p < n/α and /q = /p – α/n. Suppose that 	 satisfies the
following condition:

	(r) ≤ C · rnp/q, for all r > , (.)

where C = C(	) >  is a universal constant independent of r. Then the fractional integral
operator Iα is bounded from Lp,	(Rn) into BMO(Rn).

It is worth pointing out that Corollaries . through . were obtained by Nakai in [].
Corollary . and Theorem . seem to be new, as far as we know.

Throughout this paper, the letter C always denotes a positive constant that is indepen-
dent of the essential variables but whose value may vary at each occurrence. We also use
A ≈ B to denote the equivalence of A and B; that is, there exist two positive constants C,
C independent of quantities A and B such that CA ≤ B ≤ CA. Equivalently, we could de-
fine the above notions of this section with cubes in place of balls and we will use whichever
is more appropriate, depending on the circumstances.

3 Proofs of Theorems 2.1 and 2.2

Proof of Theorem . Here and in the following, for any positive number γ > , we denote
f γ (x) := [f (x)]γ by convention. For example, when  < p < q < ∞, we have [f q/p(x)]/q =
[f (x)]/p. Let f ∈ Mp,θ (wp, wq) with  < p, q < ∞ and w ∈ Ap,q. For an arbitrary point
x ∈ R

n, set B = B(x, rB) for the ball centered at x and of radius rB, B = B(x, rB). We
represent f as

f = f · χB + f · χ(B)c := f + f;
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by the linearity of the fractional integral operator Iα , one can write


θ (wq(B))/p

(∫
B

∣∣Iα(f )(x)
∣∣qwq(x) dx

)/q

≤ 
θ (wq(B))/p

(∫
B

∣∣Iα(f)(x)
∣∣qwq(x) dx

)/q

+


θ (wq(B))/p

(∫
B

∣∣Iα(f)(x)
∣∣qwq(x) dx

)/q

:= I + I.

Below we will give the estimates of I and I, respectively. By the weighted (Lp, Lq)-
boundedness of Iα (see Theorem .), we have

I ≤ 
θ (wq(B))/p

∥∥Iα(f)
∥∥

Lq(wq)

≤ C · 
θ (wq(B))/p

(∫
B

∣∣f (x)
∣∣pwp(x) dx

)/p

≤ C‖f ‖Mp,θ (wp ,wq) · θ (wq(B))/p

θ (wq(B))/p .

Since w ∈ Ap,q, we get wq ∈ Aq ⊂ A∞ by Lemma .(i). Moreover, since  < wq(B) <
wq(B) < +∞ when wq ∈ Aq with  < q < ∞, then by the Dκ condition (.) of θ and in-
equality (.), we obtain

I ≤ C‖f ‖Mp,θ (wp ,wq) · wq(B)κ/p

wq(B)κ/p

≤ C‖f ‖Mp,θ (wp ,wq).

As for the term I, it is clear that, when x ∈ B and y ∈ (B)c, we get |x – y| ≈ |x – y|. We
then decompose R

n into a geometrically increasing sequence of concentric balls, and we
obtain the following pointwise estimate:

∣∣Iα(f)(x)
∣∣ ≤

∫
Rn

|f(y)|
|x – y|n–α

dy

≤ C
∫

(B)c

|f (y)|
|x – y|n–α

dy

≤ C
∞∑
j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy. (.)

From this, it follows that

I ≤ C · wq(B)/q

θ (wq(B))/p

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy.



Wang Journal of Inequalities and Applications  (2017) 2017:6 Page 13 of 33

By using Hölder’s inequality and the Ap,q condition on w, we get


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy

≤ 
|j+B|–α/n

(∫
j+B

∣∣f (y)
∣∣pwp(y) dy

)/p(∫
j+B

w(y)–p′
dy

)/p′

≤ C‖f ‖Mp,θ (wp ,wq) · θ (wq(j+B))/p

wq(j+B)/q .

Hence

I ≤ C‖f ‖Mp,θ (wp ,wq) ×
∞∑
j=

θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q .

Notice that wq ∈ Aq ⊂ A∞ for  < q < ∞, then by using the Dκ condition (.) of θ again,
the inequality (.) with exponent δ >  and the fact that  ≤ κ < p/q, we find that

∞∑
j=

θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q ≤ C
∞∑
j=

wq(B)/q–κ/p

wq(j+B)/q–κ/p

≤ C
∞∑
j=

( |B|
|j+B|

)δ(/q–κ/p)

≤ C
∞∑
j=

(


(j+)n

)δ(/q–κ/p)

≤ C, (.)

which gives our desired estimate I ≤ C‖f ‖Mp,θ (wp ,wq). Combining the above estimates for
I and I, and then taking the supremum over all balls B ⊂ R

n, we complete the proof of
Theorem .. �

Proof of Theorem . Let f ∈ M,θ (w, wq) with  < q < ∞ and w ∈ A,q. For an arbitrary
ball B = B(x, rB) ⊂R

n, we represent f as

f = f · χB + f · χ(B)c := f + f;

then, for any given σ > , by the linearity of the fractional integral operator Iα , one can
write


θ (wq(B))

σ · [wq({x ∈ B :
∣∣Iα(f )(x)

∣∣ > σ
})]/q

≤ 
θ (wq(B))

σ · [wq({x ∈ B :
∣∣Iα(f)(x)

∣∣ > σ /
})]/q

+


θ (wq(B))
σ · [wq({x ∈ B :

∣∣Iα(f)(x)
∣∣ > σ /

})]/q

:= I ′
 + I ′

.
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We first consider the term I ′
. By the weighted weak (, q)-boundedness of Iα (see Theo-

rem .), we have

I ′
 ≤ C · 

θ (wq(B))
‖f‖L(w)

= C · 
θ (wq(B))

(∫
B

∣∣f (x)
∣∣w(x) dx

)

≤ C‖f ‖M,θ (w,wq) · θ (wq(B))
θ (wq(B))

.

Since w is in the class A,q, we get wq ∈ A ⊂ A∞ by Lemma .(ii). Moreover, since
 < wq(B) < wq(B) < +∞ when wq ∈ A, then we apply the Dκ condition (.) of θ and
inequality (.) to obtain

I ′
 ≤ C‖f ‖M,θ (w,wq) · wq(B)κ

wq(B)κ

≤ C‖f ‖M,θ (w,wq).

As for the term I ′
, it follows directly from Chebyshev’s inequality and the pointwise esti-

mate (.) that

I ′
 ≤ 

θ (wq(B))
σ · 

σ

(∫
B

∣∣Iα(f)(x)
∣∣qwq(x) dx

)/q

≤ C · wq(B)/q

θ (wq(B))

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy.

Moreover, by applying Hölder’s inequality and then the reverse Hölder inequality in suc-
cession, we can show that wq ∈ A if and only if w ∈ A ∩RHq (see []), where RHq denotes
the reverse Hölder class. Another application of A condition on w shows that


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy ≤ C · |j+B|α/n

w(j+B)
· ess inf

y∈j+B
w(y)

∫
j+B

∣∣f (y)
∣∣dy

≤ C · |j+B|α/n

w(j+B)

(∫
j+B

∣∣f (y)
∣∣w(y) dy

)

≤ C‖f ‖M,θ (w,wq) · |j+B|α/n

w(j+B)
· θ(

wq(j+B
))

.

In addition, note that w ∈ RHq. We are able to verify that, for any j ∈ Z
+,

wq(j+B
)/q =

(∫
j+B

wq(x) dx
)/q

≤ C · ∣∣j+B
∣∣/q– · w

(
j+B

)
,

which is equivalent to

|j+B|α/n

w(j+B)
≤ C · 

wq(j+B)/q . (.)
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Consequently,

I ′
 ≤ C‖f ‖M,θ (w,wq) ×

∞∑
j=

θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q .

Recall that wq ∈ A ⊂ A∞, therefore, by using the Dκ condition (.) of θ again, the in-
equality (.) with exponent δ∗ >  and the fact that  ≤ κ < /q, we get

∞∑
j=

θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q ≤ C
∞∑
j=

wq(B)/q–κ

wq(j+B)/q–κ

≤ C
∞∑
j=

( |B|
|j+B|

)δ∗(/q–κ)

≤ C
∞∑
j=

(


(j+)n

)δ∗(/q–κ)

≤ C, (.)

which implies our desired estimate I ′
 ≤ C‖f ‖M,θ (w,wq). Summing up the above estimates

for I ′
 and I ′

, and then taking the supremum over all balls B ⊂ R
n and all σ > , we finish

the proof of Theorem .. �

4 Proofs of Theorems 2.3 and 2.4
To prove our main theorems in this section, we need the following lemma about BMO
functions.

Lemma . Let b be a function in BMO(Rn).
(i) For every ball B in R

n and for all j ∈ Z
+, then

|bj+B – bB| ≤ C · (j + )‖b‖∗.

(ii) For  < q < ∞, every ball B in R
n and for all μ ∈ A∞, then

(∫
B

∣∣b(x) – bB
∣∣q

μ(x) dx
)/q

≤ C‖b‖∗ · μ(B)/q.

Proof For the proof of (i), we refer the reader to []. For the proof of (ii), we refer the
reader to []. �

Proof of Theorem . Let f ∈ Mp,θ (wp, wq) with  < p, q < ∞ and w ∈ Ap,q. For each fixed
ball B = B(x, rB) ⊂ R

n, as before, we represent f as f = f + f, where f = f · χB, B =
B(x, rB) ⊂R

n. By the linearity of the commutator operator [b, Iα], we write


θ (wq(B))/p

(∫
B

∣∣[b, Iα](f )(x)
∣∣qwq(x) dx

)/q

≤ 
θ (wq(B))/p

(∫
B

∣∣[b, Iα](f)(x)
∣∣qwq(x) dx

)/q
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+


θ (wq(B))/p

(∫
B

∣∣[b, Iα](f)(x)
∣∣qwq(x) dx

)/q

:= J + J.

Since w is in the class Ap,q, we get wq ∈ Aq ⊂ A∞ by Lemma .(i). By using Theorem .,
the Dκ condition (.) of θ and inequality (.), we obtain

J ≤ 
θ (wq(B))/p

∥∥[b, Iα](f)
∥∥

Lq(wq)

≤ C · 
θ (wq(B))/p

(∫
B

∣∣f (x)
∣∣pwp(x) dx

)/p

≤ C‖f ‖Mp,θ (wp ,wq) · θ (wq(B))/p

θ (wq(B))/p

≤ C‖f ‖Mp,θ (wp ,wq) · wq(B)κ/p

wq(B)κ/p

≤ C‖f ‖Mp,θ (wp ,wq).

Let us now turn to the estimate of J. By definition, for any x ∈ B, we have

∣∣[b, Iα](f)(x)
∣∣ ≤ ∣∣b(x) – bB

∣∣ · ∣∣Iα(f)(x)
∣∣ +

∣∣Iα(
[bB – b]f

)
(x)

∣∣.
In the proof of Theorem ., we have already shown that (see (.))

∣∣Iα(f)(x)
∣∣ ≤ C

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy.

Following the same argument as in (.), we can also prove that

∣∣Iα(
[bB – b]f

)
(x)

∣∣ ≤
∫
Rn

|[bB – b(y)]f(y)|
|x – y|n–α

dy

≤ C
∫

(B)c

|[bB – b(y)]f (y)|
|x – y|n–α

dy

≤ C
∞∑
j=


|j+B|–α/n

∫
j+B

∣∣b(y) – bB
∣∣ · ∣∣f (y)

∣∣dy. (.)

Hence, from the above two pointwise estimates for |Iα(f)(x)| and |Iα([bB – b]f)(x)|, it fol-
lows that

J ≤ C
θ (wq(B))/p

(∫
B

∣∣b(x) – bB
∣∣qwq(x) dx

)/q

×
( ∞∑

j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy

)

+ C · wq(B)/q

θ (wq(B))/p

∞∑
j=


|j+B|–α/n

∫
j+B

|bj+B – bB| · ∣∣f (y)
∣∣dy

+ C · wq(B)/q

θ (wq(B))/p

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣b(y) – bj+B
∣∣ · ∣∣f (y)

∣∣dy

:= J + J + J.
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Below we will give the estimates of J, J and J, respectively. To estimate J, note that
wq ∈ Aq ⊂ A∞ with  < q < ∞. Using the second part of Lemma ., Hölder’s inequality,
and the Ap,q condition on w, we obtain

J ≤ C‖b‖∗ · wq(B)/q

θ (wq(B))/p ×
( ∞∑

j=


|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy

)

≤ C‖b‖∗ · wq(B)/q

θ (wq(B))/p

∞∑
j=


|j+B|–α/n

(∫
j+B

∣∣f (y)
∣∣pwp(y) dy

)/p

×
(∫

j+B
w(y)–p′

dy
)/p′

≤ C‖f ‖Mp,θ (wp ,wq) ×
∞∑
j=

θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q

≤ C‖f ‖Mp,θ (wp ,wq),

where in the last inequality we have used the estimate (.). To estimate J, applying the
first part of Lemma ., Hölder’s inequality, and the Ap,q condition on w, we can deduce
that

J ≤ C‖b‖∗ · wq(B)/q

θ (wq(B))/p ×
∞∑
j=

(j + )
|j+B|–α/n

∫
j+B

∣∣f (y)
∣∣dy

≤ C‖b‖∗ · wq(B)/q

θ (wq(B))/p

∞∑
j=

(j + )
|j+B|–α/n

(∫
j+B

∣∣f (y)
∣∣pwp(y) dy

)/p

×
(∫

j+B
w(y)–p′

dy
)/p′

≤ C‖f ‖Mp,θ (wp ,wq) ×
∞∑
j=

(j + ) · θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q .

For any j ∈ Z
+, since  < wq(B) < wq(j+B) < +∞ when wq ∈ Aq with  < q < ∞, by using

the Dκ condition (.) of θ and the inequality (.) with exponent δ > , we thus obtain

∞∑
j=

(j + ) · θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q ≤ C
∞∑
j=

(j + ) · wq(B)/q–κ/p

wq(j+B)/q–κ/p

≤ C
∞∑
j=

(j + ) ·
( |B|

|j+B|
)δ(/q–κ/p)

≤ C
∞∑
j=

(j + ) ·
(


(j+)n

)δ(/q–κ/p)

≤ C, (.)

where the last series is convergent since the exponent δ(/q – κ/p) is positive. This im-
plies our desired estimate J ≤ C‖f ‖Mp,θ (wp ,wq). It remains to estimate the last term J. An
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application of Hölder’s inequality shows that

J ≤ C · wq(B)/q

θ (wq(B))/p

∞∑
j=


|j+B|–α/n

(∫
j+B

∣∣f (y)
∣∣pwp(y) dy

)/p

×
(∫

j+B

∣∣b(y) – bj+B
∣∣p′

w(y)–p′
dy

)/p′

.

If we set μ(y) = w(y)–p′ , then we have μ ∈ Ap′ ⊂ A∞ because w ∈ Ap,q by Lemma .(i).
Thus, it follows from the second part of Lemma . and the Ap,q condition that

(∫
j+B

∣∣b(y) – bj+B
∣∣p′

μ(y) dy
)/p′

≤ C‖b‖∗ · μ(
j+B

)/p′

= C‖b‖∗ ·
(∫

j+B
w(y)–p′

dy
)/p′

≤ C‖b‖∗ · |j+B|–α/n

wq(j+B)/q . (.)

Therefore, in view of the estimates (.) and (.), we conclude that

J ≤ C‖b‖∗ · wq(B)/q

θ (wq(B))/p

∞∑
j=


wq(j+B)/q

(∫
j+B

∣∣f (y)
∣∣pwp(y) dy

)/p

≤ C‖f ‖Mp,θ (wp ,wq) ×
∞∑
j=

θ (wq(j+B))/p

θ (wq(B))/p · wq(B)/q

wq(j+B)/q

≤ C‖f ‖Mp,θ (wp ,wq).

Summarizing the estimates derived above and then taking the supremum over all balls
B ⊂R

n, we complete the proof of Theorem .. �

Proof of Theorem . For any fixed ball B = B(x, rB) in R
n, as before, we represent f as

f = f + f, where f = f ·χB, B = B(x, rB) ⊂R
n. Then, for any given σ > , by the linearity

of the commutator operator [b, Iα], we write


θ (wq(B))

· [wq({x ∈ B :
∣∣[b, Iα](f )(x)

∣∣ > σ
})]/q

≤ 
θ (wq(B))

· [wq({x ∈ B :
∣∣[b, Iα](f)(x)

∣∣ > σ /
})]/q

+


θ (wq(B))
· [wq({x ∈ B :

∣∣[b, Iα](f)(x)
∣∣ > σ /

})]/q

:= J ′
 + J ′

.
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We first consider the term J ′
. By using Theorem . and the previous estimate (.), we

get

J ′
 ≤ C · 

θ (wq(B))

∫
Rn

�

( |f(x)|
σ

)
· w(x) dx

= C · 
θ (wq(B))

∫
B

�

( |f (x)|
σ

)
· w(x) dx

= C · θ (wq(B))
θ (wq(B))

· 
θ (wq(B))

∫
B

�

( |f (x)|
σ

)
· w(x) dx

≤ C · θ (wq(B))
θ (wq(B))

· w(B)
θ (wq(B))

·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),B

.

Since w is a weight in the class A,q, one has wq ∈ A ⊂ A∞ by Lemma .(ii). Moreover,
since  < wq(B) < wq(B) < +∞ when wq ∈ A, by the Dκ condition (.) of θ and inequality
(.), we have

J ′
 ≤ C · wq(B)κ

wq(B)κ
·
{

w(B)
θ (wq(B))

·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),B

}

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
,

which is our desired estimate. We now turn to dealing with the term J ′
. Recall that the

inequality

∣∣[b, Iα](f)(x)
∣∣ ≤ ∣∣b(x) – bB

∣∣ · ∣∣Iα(f)(x)
∣∣ +

∣∣Iα(
[bB – b]f

)
(x)

∣∣

is valid. So we can further decompose J ′
 as

J ′
 ≤ 

θ (wq(B))
· [wq({x ∈ B :

∣∣b(x) – bB
∣∣ · ∣∣Iα(f)(x)

∣∣ > σ /
})]/q

+


θ (wq(B))
· [wq({x ∈ B :

∣∣Iα(
[bB – b]f

)
(x)

∣∣ > σ /
})]/q

:= J ′
 + J ′

.

By using the previous pointwise estimate (.), Chebyshev’s inequality together with
Lemma .(ii), we deduce that

J ′
 ≤ 

θ (wq(B))
· 
σ

(∫
B

∣∣b(x) – bB
∣∣q · ∣∣Iα(f)(x)

∣∣qwq(x) dx
)/q

≤ C
∞∑
j=


|j+B|–α/n

∫
j+B

|f (y)|
σ

dy × 
θ (wq(B))

·
(∫

B

∣∣b(x) – bB
∣∣qwq(x) dx

)/q

≤ C‖b‖∗
∞∑
j=


|j+B|–α/n

∫
j+B

|f (y)|
σ

dy × wq(B)/q

θ (wq(B))
.

Furthermore, note that t ≤ �(t) = t · ( + log+ t) for any t > . As we pointed out in Theo-
rem . that wq ∈ A if and only if w ∈ A ∩ RHq, it then follows from the A condition and
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the previous estimate (.) that

J ′
 ≤ C

∞∑
j=


|j+B|–α/n

∫
j+B

�

( |f (y)|
σ

)
dy × wq(B)/q

θ (wq(B))

≤ C
∞∑
j=

|j+B|α/n

w(j+B)

∫
j+B

�

( |f (y)|
σ

)
· w(y) dy × wq(B)/q

θ (wq(B))

≤ C
∞∑
j=

∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

× ∣∣j+B
∣∣α/n · wq(B)/q

θ (wq(B))

= C
∞∑
j=

{
w(j+B)

θ (wq(j+B))
·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

}

× |j+B|α/n

w(j+B)
· θ (wq(j+B))

θ (wq(B))
· wq(B)/q.

In view of (.) and (.), we have

J ′
 ≤ C ·

∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
×

∞∑
j=

|j+B|α/n

w(j+B)
· θ (wq(j+B))

θ (wq(B))
· wq(B)/q

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
×

∞∑
j=

θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
.

On the other hand, applying the pointwise estimate (.) and Chebyshev’s inequality, we
get

J ′
 ≤ 

θ (wq(B))
· 
σ

(∫
B

∣∣Iα(
[bB – b]f

)
(x)

∣∣qwq(x) dx
)/q

≤ wq(B)/q

θ (wq(B))
· C
σ

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣b(y) – bB
∣∣ · ∣∣f (y)

∣∣dy

≤ wq(B)/q

θ (wq(B))
· C
σ

∞∑
j=


|j+B|–α/n

∫
j+B

∣∣b(y) – bj+B
∣∣ · ∣∣f (y)

∣∣dy

+
wq(B)/q

θ (wq(B))
· C
σ

∞∑
j=


|j+B|–α/n

∫
j+B

|bj+B – bB| · ∣∣f (y)
∣∣dy

:= J ′
 + J ′

.

For the term J ′
, since w ∈ A, it follows from the A condition and the fact t ≤ �(t) that

J ′
 ≤ C

σ
· wq(B)/q

θ (wq(B))

∞∑
j=

|j+B|α/n

w(j+B)

∫
j+B

∣∣b(y) – bj+B
∣∣ · ∣∣f (y)

∣∣w(y) dy

≤ C · wq(B)/q

θ (wq(B))

∞∑
j=

|j+B|α/n

w(j+B)

∫
j+B

∣∣b(y) – bj+B
∣∣ · �

( |f (y)|
σ

)
w(y) dy.
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Furthermore, we use the generalized Hölder inequality with weight (.) to obtain

J ′
 ≤ C · wq(B)/q

θ (wq(B))

∞∑
j=

∣∣j+B
∣∣α/n · ‖b – bj+B‖exp L(w),j+B

∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

≤ C‖b‖∗ · wq(B)/q

θ (wq(B))

∞∑
j=

∣∣j+B
∣∣α/n ·

∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

.

In the last inequality, we have used the well-known fact that (see [])

‖b – bB‖exp L(w),B ≤ C‖b‖∗, for any ball B ⊂R
n. (.)

It is equivalent to the inequality


w(B)

∫
B

exp

( |b(y) – bB|
c‖b‖∗

)
w(y) dy ≤ C,

which is just a corollary of the well-known John-Nirenberg inequality (see []) and the
comparison property of A weights. Hence, by the estimates (.) and (.),

J ′
 ≤ C‖b‖∗

∞∑
j=

{
w(j+B)

θ (wq(j+B))
·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

}

× |j+B|α/n

w(j+B)
· θ (wq(j+B))

θ (wq(B))
· wq(B)/q

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
×

∞∑
j=

θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
.

For the last term J ′
 we proceed as follows. Using the first part of Lemma . together with

the facts w ∈ A and t ≤ �(t) = t · ( + log+ t), we deduce that

J ′
 ≤ C · wq(B)/q

θ (wq(B))

∞∑
j=

(j + )‖b‖∗ · 
|j+B|–α/n

∫
j+B

|f (y)|
σ

dy

≤ C · wq(B)/q

θ (wq(B))

∞∑
j=

(j + )‖b‖∗ · |j+B|α/n

w(j+B)

∫
j+B

|f (y)|
σ

· w(y) dy

≤ C‖b‖∗ · wq(B)/q

θ (wq(B))

∞∑
j=

(j + )|j+B|α/n

w(j+B)

∫
j+B

�

( |f (y)|
σ

)
· w(y) dy.

Making use of the inequalities (.) and (.), we further obtain

J ′
 ≤ C · wq(B)/q

θ (wq(B))

∞∑
j=

(j + )
∣∣j+B

∣∣α/n ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

= C ·
∞∑
j=

{
w(j+B)

θ (wq(j+B))
·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
L log L(w),j+B

}
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× (j + ) · |j+B|α/n

w(j+B)
· θ (wq(j+B))

θ (wq(B))
· wq(B)/q

≤ C ·
∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
×

∞∑
j=

(j + ) · θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q .

Recall that wq ∈ A ⊂ A∞ with  < q < ∞. We can now argue exactly as we did in the
estimation of J to get (now choose δ∗ in (.))

∞∑
j=

(j + ) · θ (wq(j+B))
θ (wq(B))

· wq(B)/q

wq(j+B)/q ≤ C
∞∑
j=

(j + ) · wq(B)/q–κ

wq(j+B)/q–κ

≤ C
∞∑
j=

(j + ) ·
( |B|

|j+B|
)δ∗(/q–κ)

≤ C
∞∑
j=

(j + ) ·
(


(j+)n

)δ∗(/q–κ)

≤ C. (.)

Notice that the exponent δ∗(/q – κ) is positive by the choice of κ , which guarantees that
the last series is convergent. If we substitute this estimate (.) into the term J ′

, then we
get the desired inequality

J ′
 ≤ C ·

∥∥∥∥�

( |f |
σ

)∥∥∥∥
M,θ

L log L(w,wq)
.

This completes the proof of Theorem .. �

5 Proofs of Theorems 2.5 and 2.6

Proof of Theorem . Let f ∈ Mp,θ (wp, wq) with  < p, q < ∞ and w ∈ Ap,q. For any given
ball B = B(x, rB) in R

n, it suffices to prove that the following inequality


|B|

∫
B

∣∣Iαf (x) – (Iαf )B
∣∣dx ≤ C‖f ‖Lp,κ (wp ,wq) (.)

holds. Decompose f as f = f + f, where f = f · χB, f = f · χ(B)c , B = B(x, rB). By the
linearity of the fractional integral operator Iα , the left-hand side of (.) can be divided
into two parts. That is,


|B|

∫
B

∣∣Iαf (x) – (Iαf )B
∣∣dx

≤ 
|B|

∫
B

∣∣Iαf(x) – (Iαf)B
∣∣dx +


|B|

∫
B

∣∣Iαf(x) – (Iαf)B
∣∣dx

:= I + II.
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First let us consider the term I . Applying the weighted (Lp, Lq)-boundedness of Iα (see
Theorem .) and Hölder’s inequality, we obtain

I ≤ 
|B|

∫
B

∣∣Iαf(x)
∣∣dx

≤ 
|B|

(∫
B

∣∣Iαf(x)
∣∣qwq(x) dx

)/q(∫
B

w(x)–q′
dx

)/q′

≤ C
|B|

(∫
B

∣∣f (x)
∣∣pwp(x) dx

)/p(∫
B

w(x)–q′
dx

)/q′

≤ C‖f ‖Lp,κ (wp ,wq) · wq(B)κ/p

|B|
(∫

B
w(x)–q′

dx
)/q′

.

Since w is a weight in the class Ap,q, one has wq ∈ Aq ⊂ A∞ by Lemma .(i). By definition,
it reads

(


|B|
∫

B
wq(x) dx

)/q( 
|B|

∫
B

[
wq(x)

]–q′/q dx
)/q′

≤ C,

which implies

(∫
B

w(x)–q′
dx

)/q′

≤ C · |B|
wq(B)/q . (.)

Since wq ∈ Aq ⊂ A∞, wq ∈ �. Using the inequalities (.) and (.) and noting the fact
that κ = p/q, we have

I ≤ C‖f ‖Lp,κ (wp ,wq) · wq(B)/q

wq(B)/q ≤ C‖f ‖Lp,κ (wp ,wq).

Now we estimate II . For any x ∈ B,

∣∣Iαf(x) – (Iαf)B
∣∣ =

∣∣∣∣ 
|B|

∫
B

[
Iαf(x) – Iαf(y)

]
dy

∣∣∣∣
=

∣∣∣∣ 
|B|

∫
B

{∫
(B)c

[


|x – z|n–α
–


|y – z|n–α

]
f (z) dz

}
dy

∣∣∣∣

≤ 
|B|

∫
B

{∫
(B)c

∣∣∣∣ 
|x – z|n–α

–


|y – z|n–α

∣∣∣∣ · ∣∣f (z)
∣∣dz

}
dy.

Since both x and y are in B, z ∈ (B)c, by a purely geometric observation, we must have
|x – z| ≥ |x – y|. This fact along with the mean value theorem yields

∣∣Iαf(x) – (Iαf)B
∣∣ ≤ C

|B|
∫

B

{∫
(B)c

|x – y|
|x – z|n–α+ · ∣∣f (z)

∣∣dz
}

dy

≤ C
∫

(B)c

rB

|z – x|n–α+ · ∣∣f (z)
∣∣dz

≤ C
∞∑
j=


j · 

|j+B|–α/n

∫
j+B

∣∣f (z)
∣∣dz. (.)
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Furthermore, by using Hölder’s inequality and the Ap,q condition on w, we get, for any
x ∈ B,

∣∣Iαf(x) – (Iαf)B
∣∣ ≤ C

∞∑
j=


j · 

|j+B|–α/n

×
(∫

j+B

∣∣f (y)
∣∣pwp(y) dy

)/p(∫
j+B

w(y)–p′
dy

)/p′

≤ C‖f ‖Lp,κ (wp ,wq) ·
∞∑
j=


j · wq(j+B)κ/p

wq(j+B)/q

= C‖f ‖Lp,κ (wp ,wq) ·
∞∑
j=


j

≤ C‖f ‖Lp,κ (wp ,wq). (.)

From the pointwise estimate (.), it readily follows that

II =


|B|
∫

B

∣∣Iαf(x) – (Iαf)B
∣∣dx ≤ C‖f ‖Lp,κ (wp ,wq).

By combining the above estimates for I and II , we are done. �

Proof of Theorem . Let f ∈ Lp,	(Rn) with  < p < ∞. For any given ball B = B(x, rB) in
R

n, it is sufficient to prove that the following inequality


|B(x, rB)|

∫
B(x,rB)

∣∣Iαf (x) – (Iαf )B
∣∣dx ≤ C‖f ‖Lp,	(Rn) (.)

holds. Decompose f as f = f + f, where f = f ·χB, f = f ·χ(B)c , B = B(x, rB). As in the
proof of Theorem ., we can also divide the left-hand side of (.) into two parts. That is,


|B(x, rB)|

∫
B(x,rB)

∣∣Iαf (x) – (Iαf )B
∣∣dx

≤ 
|B(x, rB)|

∫
B(x,rB)

∣∣Iαf(x) – (Iαf)B
∣∣dx +


|B(x, rB)|

∫
B(x,rB)

∣∣Iαf(x) – (Iαf)B
∣∣dx

:= I ′ + II ′.

First let us consider the term I ′. Since Iα is bounded from Lp(Rn) to Lq(Rn), by Hölder’s
inequality, we obtain

I ′ ≤ 
|B(x, rB)|

∫
B(x,rB)

∣∣Iαf(x)
∣∣dx

≤ 
|B(x, rB)|

(∫
B(x,rB)

∣∣Iαf(x)
∣∣q dx

)/q(∫
B(x,rB)

q′
dx

)/q′

≤ C
|B(x, rB)|

(∫
B(x,rB)

∣∣f (x)
∣∣p dx

)/p∣∣B(x, rB)
∣∣/q′

≤ C‖f ‖Lp,	(Rn) · 	(rB)/p

|B(x, rB)|/q .
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Applying our assumption (.) on 	, we further have

I ′ ≤ C‖f ‖Lp,	(Rn) · (rB)n/q

|B(x, rB)|/q ≤ C‖f ‖Lp,	(Rn).

On the other hand, in Theorem ., we have already shown that, for any x ∈ B (see (.)),

∣∣Iαf(x) – (Iαf)B
∣∣ ≤ C

∞∑
j=


j · 

|B(x, j+rB)|–α/n

∫
B(x,j+rB)

∣∣f (z)
∣∣dz.

Moreover, by using Hölder’s inequality and the assumption (.) on 	, we can deduce
that

∣∣Iαf(x) – (Iαf)B
∣∣

≤ C
∞∑
j=


j · 

|B(x, j+rB)|–α/n

(∫
B(x,j+rB)

∣∣f (z)
∣∣p dz

)/p∣∣B(
x, j+rB

)∣∣/p′

≤ C‖f ‖Lp,	(Rn) ×
∞∑
j=


j · 	(j+rB)/p

|B(x, j+rB)|/p–α/n

≤ C‖f ‖Lp,	(Rn) ×
∞∑
j=


j · (j+rB)n/q

|B(x, j+rB)|/q

≤ C‖f ‖Lp,	(Rn).

Therefore,

II ′ =


|B(x, rB)|
∫

B(x,rB)

∣∣Iαf(x) – (Iαf)B
∣∣dx ≤ C‖f ‖Lp,	(Rn).

By combining the above estimates for I ′ and II ′, we are done. �

6 Partial results on two-weight problems
In the last section, we consider related problems about two-weight, weak type norm in-
equalities for Iα and [b, Iα]. In [], Cruz-Uribe and Pérez considered the problem of find-
ing sufficient conditions on a pair of weights (u, v) which ensure the boundedness of the
operator Iα from Lp(v) to WLp(u), where  < p < ∞. They gave a sufficient Ap-type condi-
tion (see (.) below), and proved a two-weight, weak type (p, p) inequality for Iα(see also
[] for another, simpler proof ), which solved a problem posed by Sawyer and Wheeden
in [].

Theorem . ([, ]) Let  < α < n and  < p < ∞. Given a pair of weights (u, v), suppose
that, for some r >  and for all cubes Q,

|Q|α/n ·
(


|Q|

∫
Q

u(x)r dx
)/(rp)( 

|Q|
∫

Q
v(x)–p′/p dx

)/p′

≤ C < ∞. (.)

Then the fractional integral operator Iα satisfies the weak type (p, p) inequality



Wang Journal of Inequalities and Applications  (2017) 2017:6 Page 26 of 33

u
({

x ∈R
n :

∣∣Iαf (x)
∣∣ > σ

}) ≤ C
σ p

∫
Rn

∣∣f (x)
∣∣pv(x) dx, for any σ > , (.)

where C does not depend on f and σ > .

Moreover, in [], Li improved this result by replacing the ‘power bump’ in (.) by a
smaller ‘Orlicz bump’. On the other hand, in [], Liu and Lu obtained a sufficient Ap-type
condition for the commutator [b, Iα] to satisfy the two-weight weak type (p, p) inequality,
where  < p < ∞. That condition is an Ap-type condition in the scale of Orlicz spaces (see
(.) below).

Theorem . ([]) Let  < α < n,  < p < ∞ and b ∈ BMO(Rn). Given a pair of weights
(u, v), suppose that, for some r >  and for all cubes Q,

|Q|α/n ·
(


|Q|

∫
Q

u(x)r dx
)/(rp)∥∥v–/p∥∥

A,Q ≤ C < ∞, (.)

whereA(t) = tp′ (+ log+ t)p′ . Then the linear commutator [b, Iα] satisfies the weak type (p, p)
inequality

u
({

x ∈R
n :

∣∣[b, Iα](f )(x)
∣∣ > σ

}) ≤ C
σ p

∫
Rn

∣∣f (x)
∣∣pv(x) dx, for any σ > , (.)

where C does not depend on f and σ > .

Here and in the following, all cubes are assumed to have their sides parallel to the co-
ordinate axes, Q(x,�) will denote the cube centered at x and has side length �. For any
cube Q(x,�) and any λ > , we denote by λQ the cube with the same center as Q whose
side length is λ times that of Q, i.e., λQ := Q(x,λ�). We now extend the results mentioned
above to the Morrey-type spaces associated to θ .

Theorem . Let  < α < n and  < p < ∞. Given a pair of weights (u, v), suppose that,
for some r >  and for all cubes Q, (.) holds. If θ satisfies the Dκ condition (.) with
 ≤ κ <  and u ∈ �, then the fractional integral operator Iα is bounded from Mp,θ (v, u)
into WMp,θ (u).

Theorem . Let  < α < n,  < p < ∞ and b ∈ BMO(Rn). Given a pair of weights (u, v),
suppose that, for some r >  and for all cubes Q, (.) holds. If θ satisfies the Dκ condi-
tion (.) with  ≤ κ <  and u ∈ A∞, then the linear commutator [b, Iα] is bounded from
Mp,θ (v, u) into WMp,θ (u).

Proof of Theorem . Let f ∈ Mp,θ (v, u) with  < p < ∞. For arbitrary x ∈ R
n, set Q =

Q(x,�) for the cube centered at x and with the side length �. Let

f = f · χQ + f · χ(Q)c := f + f,
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where χQ denotes the characteristic function of Q = Q(x, �). Then, for any given σ > ,
we write


θ (u(Q))/p σ · [u

({
x ∈ Q :

∣∣Iα(f )(x)
∣∣ > σ

})]/p

≤ 
θ (u(Q))/p σ · [u

({
x ∈ Q :

∣∣Iα(f)(x)
∣∣ > σ /

})]/p

+


θ (u(Q))/p σ · [u
({

x ∈ Q :
∣∣Iα(f)(x)

∣∣ > σ /
})]/p

:= K + K.

Using Theorem ., the Dκ condition (.) of θ and inequality (.) (consider cube Q in-
stead of ball B), we get

K ≤ C · 
θ (u(Q))/p

(∫
Rn

∣∣f(x)
∣∣pv(x) dx

)/p

= C · 
θ (u(Q))/p

(∫
Q

∣∣f (x)
∣∣pv(x) dx

)/p

≤ C‖f ‖Mp,θ (v,u) · θ (u(Q))/p

θ (u(Q))/p

≤ C‖f ‖Mp,θ (v,u) · u(Q)κ/p

u(Q)κ/p

≤ C‖f ‖Mp,θ (v,u).

As for the term K, using the same methods and steps as in dealing with I in Theorem .,
we can also obtain, for any x ∈ Q,

∣∣Iα(f)(x)
∣∣ ≤ C

∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣f (y)
∣∣dy. (.)

This pointwise estimate (.) together with Chebyshev’s inequality implies

K ≤ 
θ (u(Q))/p ·

(∫
Q

∣∣Iα(f)(x)
∣∣pu(x) dx

)/p

≤ C · u(Q)/p

θ (u(Q))/p

∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣f (y)
∣∣dy.

Moreover, an application of Hölder’s inequality shows that

K ≤ C · u(Q)/p

θ (u(Q))/p

∞∑
j=


|j+Q|–α/n

(∫
j+Q

∣∣f (y)
∣∣pv(y) dy

)/p

×
(∫

j+Q
v(y)–p′/p dy

)/p′

≤ C‖f ‖Mp,θ (v,u) · u(Q)/p

θ (u(Q))/p

∞∑
j=

θ (u(j+Q))/p

|j+Q|–α/n ×
(∫

j+Q
v(y)–p′/p dy

)/p′

.
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For any j ∈ Z
+, since  < u(Q) < u(j+Q) < +∞ when u is a weight function, by the Dκ

condition (.) of θ with  ≤ κ < , we can see that

θ (u(j+Q))/p

θ (u(Q))/p ≤ u(j+Q)κ/p

u(Q)κ/p . (.)

In addition, we apply Hölder’s inequality with exponent r to get

u
(
j+Q

)
=

∫
j+Q

u(y) dy ≤ ∣∣j+Q
∣∣/r′

(∫
j+Q

u(y)r dy
)/r

. (.)

Hence, in view of (.) and (.) derived above, we have

K ≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p · u(j+Q)/p

|j+Q|–α/n ×
(∫

j+Q
v(y)–p′/p dy

)/p′

≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p · |j+Q|/(r′p)

|j+Q|–α/n

×
(∫

j+Q
u(y)r dy

)/(rp)(∫
j+Q

v(y)–p′/p dy
)/p′

≤ C‖f ‖Mp,θ (v,u) ×
∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p .

The last inequality is obtained by the Ap-type condition (.) on (u, v). Furthermore, since
u ∈ �, we can easily check that there exists a reverse doubling constant D = D(u) > 
independent of Q such that (see Lemma . in [])

u(Q) ≥ D · u(Q), for any cube Q ⊂R
n,

which implies that, for any j ∈ Z
+, u(j+Q) ≥ Dj+ · u(Q) by iteration. Hence,

∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p ≤
∞∑
j=

(
u(Q)

Dj+ · u(Q)

)(–κ)/p

=
∞∑
j=

(


Dj+

)(–κ)/p

≤ C, (.)

where the last series is convergent since the reverse doubling constant D >  and  ≤ κ < .
This yields our desired estimate K ≤ C‖f ‖Mp,θ (v,u). Summing up the above estimates for
K and K, and then taking the supremum over all cubes Q ⊂ R

n and all σ > , we finish
the proof of Theorem .. �

Proof of Theorem . Let f ∈Mp,θ (v, u) with  < p < ∞. For an arbitrary cube Q = Q(x,�)
in R

n, as before, we set

f = f + f, f = f · χQ, f = f · χ(Q)c .
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Then, for any given σ > , we write


θ (u(Q))/p σ · [u

({
x ∈ Q :

∣∣[b, Iα](f )(x)
∣∣ > σ

})]/p

≤ 
θ (u(Q))/p σ · [u

({
x ∈ Q :

∣∣[b, Iα](f)(x)
∣∣ > σ /

})]/p

+


θ (u(Q))/p σ · [u
({

x ∈ Q :
∣∣[b, Iα](f)(x)

∣∣ > σ /
})]/p

:= K ′
 + K ′

.

Applying Theorem ., the Dκ condition (.) of θ and inequality (.) (consider cube Q
instead of ball B), we get

K ′
 ≤ C · 

θ (u(Q))/p

(∫
Rn

∣∣f(x)
∣∣pv(x) dx

)/p

= C · 
θ (u(Q))/p

(∫
Q

∣∣f (x)
∣∣pv(x) dx

)/p

≤ C‖f ‖Mp,θ (v,u) · θ (u(Q))/p

θ (u(Q))/p

≤ C‖f ‖Mp,θ (v,u) · u(Q)κ/p

u(Q)κ/p

≤ C‖f ‖Mp,θ (v,u).

Next we estimate K ′
. For any x ∈ Q, from the definition of [b, Iα], we can see that

∣∣[b, Iα](f)(x)
∣∣ ≤ ∣∣b(x) – bQ

∣∣ · ∣∣Iα(f)(x)
∣∣ +

∣∣Iα(
[bQ – b]f

)
(x)

∣∣
:= ξ (x) + η(x).

Consequently, we can further divide K ′
 into two parts,

K ′
 ≤ 

θ (u(Q))/p σ · [u
({

x ∈ Q : ξ (x) > σ /
})]/p

+


θ (u(Q))/p σ · [u
({

x ∈ Q : η(x) > σ /
})]/p

:= K ′
 + K ′

.

For the term K ′
, it follows from the pointwise estimate (.) mentioned above and Cheby-

shev’s inequality that

K ′
 ≤ 

θ (u(Q))/p ·
(∫

Q

∣∣ξ (x)
∣∣pu(x) dx

)/p

≤ C
θ (u(Q))/p ·

(∫
Q

∣∣b(x) – bQ
∣∣pu(x) dx

)/p

×
( ∞∑

j=


|j+Q|–α/n

∫
j+Q

∣∣f (y)
∣∣dy

)

≤ C · u(Q)/p

θ (u(Q))/p

∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣f (y)
∣∣dy,
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where in the last inequality we have used the fact that Lemma .(ii) still holds when B re-
placed by Q and u is an A∞ weight. Repeating the arguments in the proof of Theorem .,
we can show that K ′

 ≤ C‖f ‖Mp,θ (v,u). As for the term K ′
, we can show the following point-

wise estimate in the same manner as in the proof of Theorem .:

η(x) =
∣∣Iα(

[bQ – b]f
)
(x)

∣∣

≤ C
∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣b(y) – bQ
∣∣ · ∣∣f (y)

∣∣dy.

This, together with Chebyshev’s inequality yields

K ′
 ≤ 

θ (u(Q))/p ·
(∫

Q

∣∣η(x)
∣∣pu(x) dx

)/p

≤ C · u(Q)/p

θ (u(Q))/p ·
∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣b(y) – bQ
∣∣ · ∣∣f (y)

∣∣dy

≤ C · u(Q)/p

θ (u(Q))/p ·
∞∑
j=


|j+Q|–α/n

∫
j+Q

∣∣b(y) – bj+Q
∣∣ · ∣∣f (y)

∣∣dy

+ C · u(Q)/p

θ (u(Q))/p ·
∞∑
j=


|j+Q|–α/n

∫
j+Q

|bj+Q – bQ| · ∣∣f (y)
∣∣dy

:= K ′
 + K ′

.

An application of Hölder’s inequality leads to

K ′
 ≤ C · u(Q)/p

θ (u(Q))/p ·
∞∑
j=


|j+Q|–α/n

(∫
j+Q

∣∣f (y)
∣∣pv(y) dy

)/p

×
(∫

j+Q

∣∣b(y) – bj+Q
∣∣p′

v(y)–p′/p dy
)/p′

≤ C‖f ‖Mp,θ (v,u) · u(Q)/p

θ (u(Q))/p ·
∞∑
j=

θ (u(j+Q))/p

|j+Q|–α/n

× ∣∣j+Q
∣∣/p′∥∥(b – bj+Q) · v–/p∥∥

C,j+Q,

where C(t) = tp′ is a Young function. For  < p < ∞, we know the inverse function of C(t)
is C–(t) = t/p′ . Observe that

C–(t) = t/p′ =
t/p′

 + log+ t
× (

 + log+ t
)

= A–(t) ·B–(t),

where

A(t) ≈ tp′(
 + log+ t

)p′
and B(t) ≈ et – .
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Thus, by inequality (.) and the unweighted version of inequality (.) (when w ≡ ), we
have

∥∥(b – bj+Q) · v–/p∥∥
C,j+Q ≤ C‖b – bj+Q‖B,j+Q · ∥∥v–/p∥∥

A,j+Q

≤ C‖b‖∗ · ∥∥v–/p∥∥
A,j+Q.

Since u is an A∞ weight, one has u ∈ �. Moreover, in view of (.) and (.), we can
deduce that

K ′
 ≤ C‖b‖∗‖f ‖Mp,θ (v,u)

∞∑
j=

u(j+Q)κ/p

u(Q)κ/p · u(Q)/p

|j+Q|/p–α/n · ∥∥v–/p∥∥
A,j+Q

≤ C‖b‖∗‖f ‖Mp,θ (v,u)

∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p

× ∣∣j+Q
∣∣α/n

(


|j+Q|
∫

j+Q
u(x)r dx

)/(rp)

· ∥∥v–/p∥∥
A,j+Q

≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

u(Q)(–κ)/p

u(j+Q)(–κ)/p

≤ C‖f ‖Mp,θ (v,u).

The last inequality is obtained by the Ap-type condition (.) on (u, v) and the estimate
(.). It remains to estimate the last term K ′

. Applying Lemma .(i) (use Q instead of B)
and Hölder’s inequality, we get

K ′
 ≤ C · u(Q)/p

θ (u(Q))/p

∞∑
j=

(j + )‖b‖∗
|j+Q|–α/n

∫
j+Q

∣∣f (y)
∣∣dy

≤ C · u(Q)/p

θ (u(Q))/p

∞∑
j=

(j + )‖b‖∗
|j+Q|–α/n

(∫
j+Q

∣∣f (y)
∣∣pv(y) dy

)/p

×
(∫

j+Q
v(y)–p′/p dy

)/p′

≤ C‖f ‖Mp,θ (v,u) · u(Q)/p

θ (u(Q))/p

∞∑
j=

(j + ) · θ (u(j+Q))/p

|j+Q|–α/n

×
(∫

j+Q
v(y)–p′/p dy

)/p′

.

Let C(t), A(t) be the same as before. Obviously, C(t) ≤ A(t) for all t > , then it is not
difficult to see that, for any given cube Q ⊂ R

n, we have ‖f ‖C,Q ≤ ‖f ‖A,Q by definition,
which implies that condition (.) is stronger than condition (.). This fact together with
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(.) and (.) yields

K ′
 ≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

(j + ) · u(Q)(–κ)/p

u(j+Q)(–κ)/p · u(j+Q)/p

|j+Q|–α/n

×
(∫

j+Q
v(y)–p′/p dy

)/p′

≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

(j + ) · u(Q)(–κ)/p

u(j+Q)(–κ)/p · |j+Q|/(r′p)

|j+Q|–α/n

×
(∫

j+Q
u(y)r dy

)/(rp)(∫
j+Q

v(y)–p′/p dy
)/p′

≤ C‖f ‖Mp,θ (v,u)

∞∑
j=

(j + ) · u(Q)(–κ)/p

u(j+Q)(–κ)/p .

Moreover, by our additional hypothesis on u : u ∈ A∞ and inequality (.) with exponent
δ >  (use Q instead of B), we finally obtain

∞∑
j=

(j + ) · u(Q)(–κ)/p

u(j+Q)(–κ)/p ≤ C
∞∑
j=

(j + ) ·
( |Q|

|j+Q|
)δ(–κ)/p

≤ C
∞∑
j=

(j + ) ·
(


(j+)n

)δ(–κ)/p

≤ C,

which in turn shows that K ′
 ≤ C‖f ‖Mp,θ (v,u). Summing up all the above estimates, and

then taking the supremum over all cubes Q ⊂R
n and all σ > , we therefore conclude the

proof of Theorem .. �

In particular, if we take θ (x) = xκ with  < κ < , then we immediately get the following
two-weight, weak type (p, p) inequalities for Iα and [b, Iα] in the weighted Morrey spaces.

Corollary . Let  < p < ∞,  < κ <  and  < α < n. Given a pair of weights (u, v), suppose
that, for some r >  and for all cubes Q, (.) holds. If u ∈ �, then the fractional integral
operator Iα is bounded from Lp,κ (v, u) into WLp,κ (u).

Corollary . Let  < p < ∞,  < κ < , b ∈ BMO(Rn) and  < α < n. Given a pair of weights
(u, v), suppose that, for some r >  and for all cubes Q, (.) holds. If u ∈ A∞, then the linear
commutator [b, Iα] is bounded from Lp,κ (v, u) into WLp,κ (u).
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