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Abstract
We introduce the concepts of second-order radial composed tangent derivative,
second-order radial tangent derivative, second-order lower radial composed tangent
derivative, and second-order lower radial tangent derivative for set-valued maps by
means of a radial tangent cone, second-order radial tangent set, lower radial tangent
cone, and second-order lower radial tangent set, respectively. Some properties of
second-order tangent derivatives are discussed, using which second-order necessary
optimality conditions are established for a point pair to be a Henig efficient element
of a set-valued optimization problem, and in the expressions the second-order
tangent derivatives of the objective function and the constraint function are
separated.
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1 Introduction
In recent years, first-order optimality conditions in the set-valued optimization have at-
tracted a great deal of attention, and various derivative-like notions have been utilized to
express these optimality conditions. For example, Gong et al. [] introduced the concept of
radial tangent cone and presented several kinds of necessary and sufficient conditions for
some proper efficiencies, Kasimbeyli [] gave necessary and sufficient optimality condi-
tions based on the concept of the radial epiderivatives. At the same time, second-order op-
timality conditions and higher-order optimality conditions for vector optimization prob-
lems have been extensively studied in the literature (see [–]). Jahn et al. [] proposed
second-order epiderivatives for set-valued maps, and by using these concepts they gave
second-order necessary optimality conditions and a sufficient optimality condition in set
optimization. Khan and Isac [] proposed the concept of a second-order composed con-
tingent derivative for set-valued maps, using which they established second-order opti-
mality conditions in set-valued optimization. With a second-order composed contingent
derivative, Zhu et al. [] established second-order Karush-Kuhn-Tucker necessary and
sufficient optimality conditions for a set-valued optimization problem. However, in [, ,
–, ], in the expressions of first-order and higher-order optimality conditions, the tan-
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gent derivatives of the objective function and the constraint function are not separated,
and thus the properties of the derivatives of the objective function are not easily obtained
from those of the constraint function.

On the other hand, some efficient points exhibit certain abnormal properties. To elim-
inate such anomalous efficient points, various concepts of proper efficiency have been
introduced [–]. Henig [] introduced the concept of Henig efficiency, which is very
important for the study of set-valued optimization [, , , ].

In this paper, we introduce a new class of lower radial tangent cones and two new kinds
of second-order tangent sets, using which we introduce four new kinds of second-order
tangent derivatives. We discuss the properties of these second-order tangent derivatives,
using which we establish second-order necessary optimality conditions for a point pair to
be a Henig efficient element of a set-valued optimization problem.

2 Basic concepts
Throughout the paper, let X, Y , and Z be three real normed linear spaces, X , Y , and Z

denote the original points of X, Y , and Z, respectively. Let M be a nonempty subset of Y .
As usual, we denote the interior, closure, and cone hull of M by int M, cl M, and cone M,
respectively. The cone hull of M is defined by

cone M = {λm : λ ≥ , m ∈ M}.

Let C and D be closed convex pointed cones in Y and Z, respectively. A nonempty con-
vex subset B ⊂ C is called a base of C if  /∈ cl B and C = cone B.

Denote the closed unit ball of Y by U . Suppose that C has a base B. Let δ := inf{‖b‖ : b ∈
B} and

Cε(B) := cone(εU + B)

for all  < ε < δ. It is clear that δ >  and Cε(B) is a pointed convex cone for all  < ε < δ (see
[]).

Let F : X → Y be a set-valued map. The domain, graph, and epigraph of F are defined
respectively by

dom F :=
{

x ∈ X : F(x) �= ∅}
,

graph F :=
{

(x, y) ∈ X × Y : y ∈ F(x)
}

,

epi F :=
{

(x, y) ∈ X × Y : y ∈ F(x) + C
}

.

Definition . (See []) Let A be a nonempty subset of X, and let x̂ ∈ cl A. The radial
tangent cone of A at x̂, denoted by R(A, x̂), is given by

R(A, x̂) :=
{

u ∈ X : ∃tn >  and xn ∈ A such that tn(xn – x̂) → u
}

. (.)

Remark . Equation (.) is equivalent to

R(A, x̂) = {u ∈ X : ∃λn >  and un → u such that x̂ + λnun ∈ A,∀n ∈ N},

where N denotes the set of positive integers.
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Definition . (See []) Let A be a nonempty subset of X, and let x̂ ∈ cl A. The contin-
gent cone of A at x̂, denoted by T(A, x̂), is given by

T(A, x̂) :=
{

u ∈ X : ∃tn → + and un → u such that x̂ + tnun ∈ A,∀n ∈ N
}

. (.)

Remark . (See []) Equation (.) is equivalent to

T(A, x̂) :=
{

u ∈ X : ∃λn → +∞ and xn ∈ A such that xn → x̂ and λn(xn – x̂) → u
}

.

Definition . (See []) Let A be a nonempty subset of X, and let x̂ ∈ cl A. The second-
order contingent set of A at x̂ in the direction w, denoted by T(A, x̂, w), is given by

T(A, x̂, w) :=
{

v ∈ X : ∃tn → + and vn → v such that x̂ + tnw +



t
nvn ∈ A

}
.

Definition . (See [, ]) Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and
(û, v̂) ∈ X × Y . The second-order composed contingent derivative of F at (x̂, ŷ) in the di-
rection (û, v̂) is the set-valued map D′′F(x̂, ŷ, û, v̂) : X → Y defined by

graph D′′F(x̂, ŷ, û, v̂) = T
(
T

(
graph F , (x̂, ŷ)

)
, (û, v̂)

)
.

Definition . (See []) Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and (û, v̂) ∈
X × Y . The second-order contingent derivative of F at (x̂, ŷ) in the direction (û, v̂) is the
set-valued map DF(x̂, ŷ, û, v̂) : X → Y defined by

DF(x̂, ŷ, û, v̂)(x) =
{

y ∈ Y : (x, y) ∈ T(graph F , (x̂, ŷ), (û, v̂)
)}

.

In the following, we introduce a new class of lower radial tangent cones and two new
kinds of second-order tangent sets.

Definition . Let Q be a nonempty subset of X ×Y , and let (x̂, ŷ) ∈ cl Q. The lower radial
tangent cone of Q at (x̂, ŷ) is defined by

Rl
(
Q, (x̂, ŷ)

)
:=

{
(u, v) ∈ X × Y : ∀tn > ,∀un → u,∃vn → v

such that (x̂ + tnun, ŷ + tnvn) ∈ Q
}

.

Definition . Let Q be a nonempty subset of X × Y , and let (x̂, ŷ) ∈ cl Q. The second-
order lower radial tangent set of Q at (x̂, ŷ) in the direction (û, v̂), denoted by R

l (Q, (x̂, ŷ),
(û, v̂)), is given by

R
l
(
Q, (x̂, ŷ), (û, v̂)

)
:=

{
(u, v) ∈ X × Y : ∀tn > ,∀un → u,∃vn → v

such that
(

x̂ + tnû +



t
nun, ŷ + tnv̂ +




t
nvn

)
∈ Q

}
.
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Definition . Let A be a nonempty subset of X, and let x̂ ∈ cl A. The second-order radial
tangent set of A at x̂ in the direction w, denoted by R(A, x̂, w), is given by

R(A, x̂, w) :=
{

v ∈ X : ∃tn >  and vn → v such that x̂ + tnw +



t
nvn ∈ A

}
.

Remark . Let ∅ �= Q ⊂ X × Y , (x̂, ŷ) ∈ cl Q. Then
(i) Rl(Q, (x̂, ŷ)) ⊂ T(Q, (x̂, ŷ)) ⊂ R(Q, (x̂, ŷ));

(ii) R
l (Q, (x̂, ŷ), (û, v̂)) ⊂ T(Q, (x̂, ŷ), (û, v̂)) ⊂ R(Q, (x̂, ŷ), (û, v̂)).

However, none of the inverse inclusions is necessarily true, as is shown in the following
example.

Example . Let R be the set of real numbers, X = Y = R, Q = {(– 
n , 

n ) : n = , , . . .} ∪
{(x, y) : x ≥ , y ≥ } ∪ {(–, –)}, and (x̂, ŷ) = (û, v̂) = (, ). A direct calculation gives
R

l (Q, (, ), (, )) = {(x, y) : x > , y ≥ }, T(Q, (, ), (, )) = {(x, y) : x ≥ , y ≥ } ∪
{(x, ) : x < }, and R(Q, (, ), (, )) = {(x, y) : x ≥ , y ≥ } ∪ {(x, ) : x < } ∪ {(x, x) : x <
} ∪ ⋃∞

n={λ(– 
n , 

n ) : λ > }.

3 The second-order lower radial tangent derivative
In this section, by virtue of the radial tangent cone, the second-order radial tangent set,
the lower radial tangent cone, and the second-order lower radial tangent set, we introduce
the concepts of the second-order radial composed tangent derivative, the second-order
radial tangent derivative, the second-order lower radial composed tangent derivative, and
the second-order lower radial tangent derivative for a set-valued map. Furthermore, we
discuss some important properties of the second-order lower radial composed tangent
derivative and the second-order lower radial tangent derivative.

Definition . Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and (û, v̂) ∈ X × Y .
The second-order radial composed tangent derivative of F at (x̂, ŷ) in the direction (û, v̂)
is the set-valued map R′′F(x̂, ŷ, û, v̂) : X → Y defined by

graph R′′F(x̂, ŷ, û, v̂) = R
(
R
(
epi F , (x̂, ŷ)

)
, (û, v̂)

)
.

If R(R(epi F , (x̂, ŷ)), (û, v̂)) �= ∅, then F is said to be second-order radial composed deriv-
able at (x̂, ŷ) in the direction (û, v̂) or that the second-order radial composed tangent
derivative of F at (x̂, ŷ) in the direction (û, v̂) exists.

Definition . Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and (û, v̂) ∈ X × Y .
The second-order radial tangent derivative of F at (x̂, ŷ) in the direction (û, v̂) is the set-
valued map RF(x̂, ŷ, û, v̂) : X → Y defined by

graph RF(x̂, ŷ, û, v̂) = R(epi F , (x̂, ŷ), (û, v̂)
)
.

If R(epi F , (x̂, ŷ), (û, v̂)) �= ∅, then F is called second-order radial derivable at (x̂, ŷ) in the
direction (û, v̂) or that the second-order radial tangent derivative of F at (x̂, ŷ) in the direc-
tion (û, v̂) exists.
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Definition . Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and (û, v̂) ∈ X × Y .
The second-order lower radial composed tangent derivative of F at (x̂, ŷ) in the direction
(û, v̂) is the set-valued map R′′

l F(x̂, ŷ, û, v̂) : X → Y defined by

graph R′′
l F(x̂, ŷ, û, v̂) = Rl

(
Rl

(
epi F , (x̂, ŷ)

)
, (û, v̂)

)
.

If Rl(Rl(epi F , (x̂, ŷ)), (û, v̂)) �= ∅, then F is said to be second-order lower radial composed
derivable at (x̂, ŷ) in the direction (û, v̂) or that the second-order lower radial composed
tangent derivative of F at (x̂, ŷ) in the direction (û, v̂) exists.

Definition . Let F : X → Y be a set-valued map, (x̂, ŷ) ∈ graph F , and (û, v̂) ∈ X × Y .
The second-order lower radial tangent derivative of F at (x̂, ŷ) in the direction (û, v̂) is the
set-valued map R

l F(x̂, ŷ, û, v̂) : X → Y defined by

graph R
l F(x̂, ŷ, û, v̂) = R

l
(
epi F , (x̂, ŷ), (û, v̂)

)
.

If R
l (epi F , (x̂, ŷ), (û, v̂)) �= ∅, then F is called second-order lower radial derivable at (x̂, ŷ)

in the direction (û, v̂) or that the second-order lower radial tangent derivative of F at (x̂, ŷ)
in the direction (û, v̂) exists.

Proposition . Suppose that E ⊂ X and the second-order lower radial composed tangent
derivative of F : X → Y at (x̂, ŷ) ∈ graph F in the direction (û, v̂) exists. Then

R′′
l F(x̂, ŷ, û, v̂)

(
R
(
R(E, x̂), û

)) ⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
.

Proof Let v ∈ R′′
l F(x̂, ŷ, û, v̂)(R(R(E, x̂), û)). Then there exists u ∈ R(R(E, x̂), û) such that

v ∈ R′′
l F(x̂, ŷ, û, v̂)(u).

Thus,

(u, v) ∈ graph R′′
l F(x̂, ŷ, û, v̂) = Rl

(
Rl

(
epi F , (x̂, ŷ)

)
, (û, v̂)

)
. (.)

From u ∈ R(R(E, x̂), û) it follows that there exist sequences tn >  and un → u such that

û + tnun ∈ R(E, x̂).

Therefore, there exist sequences tk
n >  and uk

n → û + tnun such that

x̂ + tk
nuk

n ∈ E.

For such tn and un, it follows from (.) that there exists a sequence vn → v such that

(û + tnun, v̂ + tnvn) ∈ Rl
(
epi F , (x̂, ŷ)

)
.

Then, for the same tk
n and uk

n, there exists a sequence vk
n → v̂ + tnvn such that

(
x̂ + tk

nuk
n, ŷ + tk

nvk
n
) ∈ epi F ,
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and, consequently,

ŷ + tk
nvk

n ∈ F
(
x̂ + tk

nuk
n
)

+ C.

Thus,

vk
n ∈ 

tk
n

(
F
(
x̂ + tk

nuk
n
)

+ C – ŷ
)
,

and, consequently,

vk
n ∈ cone

(
F(E) + C – ŷ

)
.

Since vk
n → v̂ + tnvn as k → ∞, we obtain

v̂ + tnvn ∈ clcone
(
F(E) + C – ŷ

)
.

Thus,

vn ∈ 
tn

(
clcone

(
F(E) + C – ŷ

)
– v̂

)
,

and, consequently,

vn ∈ cone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
.

Taking n → ∞, we get

v ∈ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
.

So,

R′′
l F(x̂, ŷ, û, v̂)

(
R
(
R(E, x̂), û

)) ⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
. �

Proposition . Suppose that E ⊂ X and the second-order lower radial tangent derivative
of F : X → Y at (x̂, ŷ) ∈ graph F in the direction (û, v̂) exists. Then

R
l F(x̂, ŷ, û, v̂)

(
R(E, x̂, û)

) ⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
.

Proof Let v ∈ R
l F(x̂, ŷ, û, v̂)(R(E, x̂, û)). Then there exists u ∈ R(E, x̂, û) such that

v ∈ R
l F(x̂, ŷ, û, v̂)(u).

Thus,

(u, v) ∈ graph R
l F(x̂, ŷ, û, v̂) = R

l
(
epi F , (x̂, ŷ), (û, v̂)

)
. (.)
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From u ∈ R(E, x̂, û) it follows that there exist sequences tn >  and un → u such that

x̂ + tnû +



t
nun ∈ E.

For such tn and un, it follows from (.) that there exists a sequence vn → v such that

(
x̂ + tnû +




t
nun, ŷ + tnv̂ +




t
nvn

)
∈ epi F .

Then

ŷ + tnv̂ +



t
nvn ∈ F

(
x̂ + tnû +




t
nun

)
+ C,

and, consequently,

v̂ +



tnvn ∈ 
tn

(
F
(

x̂ + tnû +



t
nun

)
+ C – ŷ

)
.

Thus,

v̂ +



tnvn ∈ cone
(
F(E) + C – ŷ

)
.

Hence,

vn ∈ 
tn

(
cone

(
F(E) + C – ŷ

)
– v̂

)
.

Therefore,

vn ∈ cone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
.

Taking n → ∞, we get

v ∈ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
.

So,

R
l F(x̂, ŷ, û, v̂)

(
R(E, x̂, û)

) ⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
. �

Remark . If we substitute D′′F(x̂, ŷ, û, v̂) or R′′F(x̂, ŷ, û, v̂) for R′′
l F(x̂, ŷ, û, v̂) in Proposi-

tion ., then none of the inclusions

D′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) ⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)

and

R′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) ⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
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is necessarily true. If we substitute DF(x̂, ŷ, û, v̂) or RF(x̂, ŷ, û, v̂) for R
l F(x̂, ŷ, û, v̂) in

Proposition ., then none of the inclusions

DF(x̂, ŷ, û, v̂)
(
R(E, x̂, û)

) ⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)

and

RF(x̂, ŷ, û, v̂)
(
R(E, x̂, û)

) ⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)

is necessarily true, as is shown in the following example.

Example . Let R be the set of real numbers, X = Y = R, C = {t : t ≥ }, and E = {x : x ≥
}. Define the set-valued map F : X → Y by

F(x) =

{
{y : y ≥ } if x ≥ ,
{y : y ≥ √x} otherwise.

(i) Let (x̂, ŷ) = (, ), (û, v̂) = (, –). A direct calculation gives

R(E, ) = R
(
R(E, ), 

)
= [, +∞),

T
(
epi F , (, )

)
= R

(
epi F , (, )

)
=

{
(x, y) : x > , y ≥ 

} ∪ {
(x, y) : x ≤ , y ∈ R

}
,

T
(
T

(
epi F , (, )

)
, (, –)

)
=

{
(x, y) : x ≤ , y ∈ R

}
,

R
(
R
(
epi F , (, )

)
, (, –)

)
=

{
(x, y) : x ≤ , y ∈ R

} ∪ {
(x, y) : x > , y ≥ 

}
,

D′′F(, , , –)(x) =

{
R, x ≤ ,
∅, x > ,

R′′F(, , , –)(x) =

{
R, x ≤ ,
{y : y ≥ }, x > ,

Rl
(
epi F , (, )

)
=

{
(x, y) : x ∈ R, y ≥ 

}
,

Rl
(
Rl

(
epi F , (, )

)
, (, –)

)
= ∅,

R′′
l F(, , , –)(x) = ∅, x ∈ R.

Consequently,

D′′F(, , , –)
(
R
(
R(E, ), 

))
= R′′F(, , , –)

(
R
(
R(E, ), 

))
= R,

R′′
l F(, , , –)

(
R
(
R(E, ), 

))
= ∅,

clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
= [, +∞).

Then, the inclusion of Proposition . is true. However,

D′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) �⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
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and

R′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) �⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
.

(ii) Let (x̂, ŷ) = (, ), (û, v̂) = (, ). A direct calculation gives

R
(
R(E, ), 

)
= R(E, , ) = R(E, ) = [, +∞),

T
(
T

(
epi F , (, )

)
, (, )

)
= R

(
R
(
epi F , (, )

)
, (, )

)
= T(epi F , (, ), (, )

)

= R(epi F , (, ), (, )
)

= T
(
epi F , (, )

)
= R

(
epi F , (, )

)

=
{

(x, y) : x > , y ≥ 
} ∪ {

(x, y) : x ≤ , y ∈ R
}

,

D′′F(, , , )(x) = R′′F(, , , )(x) =

{
R, x ≤ ,
{y : y ≥ }, x > ,

DF(, , , )(x) = RF(, , , )(x) =

{
R, x ≤ ,
{y : y ≥ }, x > ,

Rl
(
Rl

(
epi F , (, )

)
, (, )

)
= R

l
(
epi F , (, ), (, )

)

= Rl
(
epi F , (, )

)
=

{
(x, y) : x ∈ R, y ≥ 

}
,

R′′
l F(, , , )(x) = R

l F(, , , )(x) = [, +∞), x ∈ R.

Consequently,

D′′F(, , , )
(
R
(
R(E, ), 

))
= R′′F(, , , )

(
R
(
R(E, ), 

))

= DF(, , , )
(
R(E, , )

)

= RF(, , , )
(
R(E, , )

)
= R,

R′′
l F(, , , )

(
R
(
R(E, ), 

))
= R

l F(, , , )
(
R(E, , )

)
= [, +∞),

clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
= clcone

(
cone

(
F(E) + C – ŷ

)
– v̂

)
= [, +∞).

Then, the inclusions of Propositions . and . are true. However,

D′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) �⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
,

R′′F(x̂, ŷ, û, v̂)
(
R
(
R(E, x̂), û

)) �⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
,

DF(x̂, ŷ, û, v̂)
(
R(E, x̂, û)

) �⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
,

and

RF(x̂, ŷ, û, v̂)
(
R(E, x̂, û)

) �⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
.

4 Second-order necessary optimality conditions
Let F : X → Y , G : X → Z , and (F , G) : X → Y×Z be defined by (F , G)(x) = F(x) × G(x).



Xu et al. Journal of Inequalities and Applications  (2017) 2017:7 Page 10 of 19

Consider the following optimization problem with set-valued maps:

(VP) min F(x),

s.t. G(x) ∩ (–D) �= ∅, x ∈ X.

The feasible set of (VP) is denoted by Ê, that is, Ê = {x ∈ X : G(x) ∩ (–D) �= ∅}.

Definition . (See [, , ]) Let x̂ ∈ Ê, ŷ ∈ F(x̂). A pair (x̂, ŷ) is called a Henig efficient
element of (VP) if there exists ε ∈ (, δ) such that

(
F(Ê) – ŷ

) ∩ (
– intcone(εU + B)

)
= ∅,

where δ := inf{‖b‖ : b ∈ B}, F(Ê) =
⋃

x∈Ê F(x), and U is the closed unit ball of Y .

Definition . (See []) The interior tangent cone IT(S, ȳ) of S at ȳ is the set of all y ∈ Y
such that for any tn → + and yn → y, we have ȳ + tnyn ∈ S.

Remark . (See []) If S ⊂ Y is convex, ȳ ∈ S, and int S �= ∅, then

IT(S, ȳ) = IT(int S, ȳ) = intcone(S – ȳ).

Theorem . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C) × (–D), F is second-order lower radial composed derivable at (x̂, ŷ)
in the direction (û, v̂), and G is second-order radial composed derivable at (x̂, ẑ) in the di-
rection (û, ŵ). Then there exists ε̂ ∈ (, δ) such that

(
R′′

l F(x̂, ŷ, û, v̂)(x), R′′G(x̂, ẑ, û, ŵ)(x)
) ∩ ((

– intcone(ε̂U + B)
) × (– int D)

)
= ∅ (.)

for all x ∈ dom R′′
l F(x̂, ŷ, û, v̂) ∩ dom R′′G(x̂, ẑ, û, ŵ).

Proof Since (x̂, ŷ) is a Henig efficient element of (VP), there exists a number ε ∈ (, δ)
such that

(
F(Ê) – ŷ

) ∩ (
– intcone(εU + B)

)
= ∅. (.)

On the contrary, suppose that (.) does not hold. Then there exist x̄ ∈ dom R′′
l F(x̂, ŷ,

û, v̂) ∩ dom R′′G(x̂, ẑ, û, ŵ), ȳ ∈ R′′
l F(x̂, ŷ, û, v̂)(x̄), and z̄ ∈ R′′G(x̂, ẑ, û, ŵ)(x̄) such that

ȳ ∈ – intcone(εU + B) (.)

and

z̄ ∈ – int D. (.)

From z̄ ∈ R′′G(x̂, ẑ, û, ŵ)(x̄) it follows that

(x̄, z̄) ∈ graph R′′G(x̂, ẑ, û, ŵ) = R
(
R
(
epi G, (x̂, ẑ)

)
, (û, ŵ)

)
.
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Hence, there exist tn >  and (un, wn) ∈ R(epi G, (x̂, ẑ)) such that

tn
(
(un, wn) – (û, ŵ)

) → (x̄, z̄). (.)

From (.) it follows that there exists N ∈ N such that

tn(wn – ŵ) ∈ – int D, ∀n > N.

Since – int D is a cone, we obtain

wn – ŵ ∈ – int D, ∀n > N.

Since ŵ ∈ –D and –D is a convex cone, it follows that

wn ∈ – int D – D = – int D, ∀n > N. (.)

Since (un, wn) ∈ R(epi G, (x̂, ẑ)), there exist sequences tk
n >  and (xk

n, zk
n) ∈ epi G such that

tk
n
((

xk
n, zk

n
)

– (x̂, ẑ)
) → (un, wn), k → +∞. (.)

It follows from (.) that there exists K(n) ∈ N such that

tk
n
(
zk

n – ẑ
) ∈ – int D, ∀n > N,∀k > K(n).

Since – int D is a cone, we obtain

zk
n – ẑ ∈ – int D, ∀n > N,∀k > K(n).

Since ẑ ∈ –D and –D is a convex cone, it follows that

zk
n ∈ – int D – D = – int D, ∀n > N,∀k > K(n).

Since (xk
n, zk

n) ∈ epi G, we obtain zk
n ∈ G(xk

n) + D. Hence, there exists z̄k
n ∈ G(xk

n) such that
zk

n ∈ z̄k
n + D. Consequently,

z̄k
n ∈ zk

n – D ⊂ – int D – D = – int D.

Thus, G(xk
n) ∩ (–D) �= ∅, that is, xk

n ∈ Ê. It follows from (.) that tk
n(xk

n – x̂) → un as
k → ∞, and hence, un ∈ R(Ê, x̂). It follows from (.) that tn(un – û) → x̄, and hence,
x̄ ∈ R(R(Ê, x̂), û). By Proposition ., since ȳ ∈ R′′

l F(x̂, ŷ, û, v̂)(x̄), we conclude that

ȳ ∈ R′′
l F(x̂, ŷ, û, v̂)

(
R
(
R(Ê, x̂), û

)) ⊂ clcone
(
clcone

(
F(Ê) + C – ŷ

)
– v̂

)
.

From (.) it follows that

clcone
(
clcone

(
F(Ê) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅.



Xu et al. Journal of Inequalities and Applications  (2017) 2017:7 Page 12 of 19

Since – intcone(εU + B) is open, we obtain

cone
(
clcone

(
F(Ê) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅.

Since cone(εU + B) is a pointed cone, it follows that

(
clcone

(
F(Ê) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅,

and thus,

clcone
(
F(Ê) + C – ŷ

) ∩ (
v̂ – intcone(εU + B)

) �= ∅.

It follows from v̂ ∈ –C ⊂ – cone(εU + B) that

v̂ – int
(
cone(εU + B)

) ⊂ – cone(εU + B) – int
(
cone(εU + B)

)

⊂ – intcone(εU + B).

Consequently,

clcone
(
F(Ê) + C – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

In the similar way, we conclude that

(
F(Ê) + C – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

Since C ⊂ cone(εU + B) and cone(εU + B) is a point cone, we obtain

(
F(Ê) – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

This is a contradiction to (.). The proof is completed. �

Corollary . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C) × (–D), F is second-order lower radial composed derivable at (x̂, ŷ) in
the direction (û, v̂), and G is second-order lower radial composed derivable at (x̂, ẑ) in the
direction (û, ŵ). Then there exists a number ε̂ ∈ (, δ) such that

(
R′′

l F(x̂, ŷ, û, v̂)(x), R′′
l G(x̂, ẑ, û, ŵ)(x)

) ∩ ((
– intcone(ε̂U + B)

) × (– int D)
)

= ∅

for all x ∈ dom R′′
l F(x̂, ŷ, û, v̂) ∩ dom R′′

l G(x̂, ẑ, û, ŵ).

Proof The proof follows directly from Theorem . and Remark .(ii). �

Corollary . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C) × (–D), C has a convex base B, F is second-order lower radial com-
posed derivable at (x̂, ŷ) in the direction (û, v̂), and G is second-order lower radial composed
derivable at (x̂, ẑ) in the direction (û, ŵ). Then there exists a number ε̂ ∈ (, δ) such that

(
R′′

l F(x̂, ŷ, û, v̂)(x), R′′
l G(x̂, ẑ, û, ŵ)(x)

) ∩ (
IT

(
– intcone(ε̂U + B), –v̂

) × (– int D)
)

= ∅

for all x ∈ dom R′′
l F(x̂, ŷ, û, v̂) ∩ dom R′′

l G(x̂, ẑ, û, ŵ).
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Proof

IT
(
– intcone(ε̂U + B), –v̂

)
= intcone

(
– intcone(ε̂U + B) + v̂

)

⊂ –C – intcone(ε̂U + B)

⊂ – cone(ε̂U + B) – intcone(ε̂U + B)

⊂ – intcone(ε̂U + B). �

We provide the following example to explain Theorem . and Corollaries . and ..

Example . Let R be the set of real numbers, X = Y = Z = R, C = D = {t : t ≥ }, B = {}.
Define the set-valued maps F : X → Y and G : X → Z by

F(x) = G(x) =

{
{y : y ≥ } if x ≥ ,
{y : y ≥ x} otherwise.

Let (x̂, ŷ) = (, ), (û, v̂, ŵ) = (, , ) ∈ X × (–C) × (–D), ε = 
 . A direct calculation gives

ẑ ∈ G() ∩ (–D) = {},
Rl

(
epi F , (, )

)
= Rl

(
epi G, (, )

)
=

{
(x, y) : x > , y ≥ 

}
,

R
(
epi G, (, )

)
=

{
(x, y) : x ∈ R, y ≥ 

}
,

Rl
(
Rl

(
epi F , (, )

)
, (, )

)
= Rl

(
Rl

(
epi G, (, )

)
, (, )

)
=

{
(x, y) : x > , y ≥ 

}
,

R
(
R
(
epi G, (, )

)
, (, )

)
=

{
(x, y) : x ∈ R, y ≥ 

}
,

R′′
l F(, , , )(x) = R′′

l G(, , , )(x) =

{
{y : y ≥ } if x > ,
∅ otherwise,

R′′G(, , , )(x) = [, +∞), x ∈ R,

IT
(
– intcone(εU + B), –v̂

)
= – intcone(εU + B) = (–∞, ).

Then, the inclusions of Theorem . and Corollaries . and . are true.

Theorem . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C) × (–D), F is second-order lower radial derivable at (x̂, ŷ) in the di-
rection (û, v̂), and G is second-order radial derivable at (x̂, ẑ) in the direction (û, ŵ). Then
there exists a number ε̂ ∈ (, δ) such that

(
R

l F(x̂, ŷ, û, v̂)(x), RG(x̂, ẑ, û, ŵ)(x)
) ∩ ((

– intcone(ε̂U + B)
) × (– int D)

)
= ∅ (.)

for all x ∈ dom R
l F(x̂, ŷ, û, v̂) ∩ dom RG(x̂, ẑ, û, ŵ).

Proof On the contrary, suppose that (.) does not hold. Then, for any ε ∈ (, δ), there exist
x̄ ∈ dom R

l F(x̂, ŷ, û, v̂) ∩ dom RG(x̂, ẑ, û, ŵ), ȳ ∈ R
l F(x̂, ŷ, û, v̂)(x̄), and z̄ ∈ RG(x̂, ẑ, û, ŵ)(x̄)

such that

ȳ ∈ – intcone(εU + B) (.)
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and

z̄ ∈ – int D. (.)

From z̄ ∈ RG(x̂, ẑ, û, ŵ)(x̄) it follows that

(x̄, z̄) ∈ graph RG(x̂, ẑ, û, ŵ) = R(epi G, (x̂, ẑ), (û, ŵ)
)
.

Hence, there exist tn > , xn → x̄, and zn → z̄ such that

(
x̂ + tnû +




t
nxn, ẑ + tnŵ +




t
nzn

)
∈ epi G.

Thus,

ẑ + tnŵ +



t
nzn ∈ G

(
x̂ + tnû +




t
nxn

)
+ D. (.)

The set of positive integers is denoted by N . From (.) and zn → z̄ it follows that there
exists N ∈ N such that

zn ∈ – int D, ∀n > N.

Since – int D and –D are convex cones, we obtain

ẑ + tnŵ +



t
nzn ∈ –D – D – int D = – int D, ∀n > N. (.)

It follows from (.) that there exists z̃n ∈ G(x̂ + tnû + 
 t

nxn) such that

ẑ + tnŵ +



t
nzn ∈ {z̃n} + D.

Since (.) and D is a convex cone, we obtain

z̃n ∈
{

ẑ + tnŵ +



t
nzn

}
– D ⊂ – int D – D = – int D ⊂ –D.

Thus,

G
(

x̂ + tnû +



t
nxn

)
∩ (–D) �= ∅,

that is,

x̂ + tnû +



t
nxn ∈ Ê.

From tn >  and xn → x̄ it follows that x̄ ∈ R(Ê, x̂, û). By Proposition . and ȳ ∈
R

l F(x̂, ŷ, û, v̂)(x̄) we obtain

ȳ ∈ R
l F(x̂, ŷ, û, v̂)

(
R(Ê, x̂, û)

) ⊂ clcone
(
cone

(
F(Ê) + C – ŷ

)
– v̂

)
.
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It follows from (.) that

clcone
(
cone

(
F(Ê) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅.

Since – intcone(εU + B) is open, we obtain

cone
(
cone

(
F( ˆ̂E) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅.

Since cone(εU + B) is a pointed cone, it follows that

(
cone

(
F(Ê) + C – ŷ

)
– v̂

) ∩ (
– intcone(εU + B)

) �= ∅,

and thus,

cone
(
F(Ê) + C – ŷ

) ∩ (
v̂ – intcone(εU + B)

) �= ∅.

It follows from v̂ ∈ –C ⊂ – cone(εU + B) that

v̂ – int
(
cone(εU + B)

) ⊂ – cone(εU + B) – int
(
cone(εU + B)

)

⊂ – intcone(εU + B).

Consequently,

cone
(
F(Ê) + C – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

In a similar way, we conclude that

(
F(Ê) + C – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

Since C ⊂ cone(εU + B) and cone(εU + B) is a pointed cone, we obtain

(
F(Ê) – ŷ

) ∩ (
– intcone(εU + B)

) �= ∅.

This is a contradiction to the assumption that (x̂, ŷ) is a Henig minimizer of (VP). �

Corollary . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C)× (–D), F is second-order lower radial derivable at (x̂, ŷ) in the direction
(û, v̂), and G is second-order lower radial derivable at (x̂, ẑ) in the direction (û, ŵ). Then
there exists a number ε̂ ∈ (, δ) such that

(
R

l F(x̂, ŷ, û, v̂)(x), R
l G(x̂, ẑ, û, ŵ)(x)

) ∩ ((
– intcone(ε̂U + B)

) × (– int D)
)

= ∅

for all x ∈ dom R
l F(x̂, ŷ, û, v̂) ∩ dom R

l G(x̂, ẑ, û, ŵ).

Proof The proof follows immediately from Theorem . and Remark .(ii). �
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Corollary . Suppose that (x̂, ŷ) is a Henig efficient element of (VP), ẑ ∈ G(x̂) ∩ (–D),
(û, v̂, ŵ) ∈ X × (–C) × (–D), B is a base of C, F is second-order lower radial derivable at
(x̂, ŷ) in the direction (û, v̂), and G is second-order lower radial derivable at (x̂, ẑ) in the
direction (û, ŵ). Then there exists a number ε̂ ∈ (, δ) such that

(
R

l F(x̂, ŷ, û, v̂)(x), R
l G(x̂, ẑ, û, ŵ)(x)

) ∩ (
IT

(
– intcone(ε̂U + B), –v̂

) × (– int D)
)

= ∅

for all x ∈ dom R
l F(x̂, ŷ, û, v̂) ∩ dom R

l G(x̂, ẑ, û, ŵ).

Proof It is similar to the proof of Corollary .. �

We give the following example to illustrate Theorem . and Corollaries . and ..

Example . Let R be the set of real numbers, X = Y = Z = R, C = D = {t : t ≥ }, and
B = {}. Define the set-valued maps F : X → Y and G : X → Z by

F(x) = {y : y ≥ }, x ∈ R,

G(x) = {y : y ≥ x}, x ∈ R.

Let (x̂, ŷ) = (, ), (û, v̂, ŵ) = (–, , –), and ε = 
 . A direct calculation gives

ẑ ∈ G() ∩ (–D) = {},
R

l
(
epi F , (, ), (–, )

)
=

{
(x, y) : x ∈ R, y ≥ 

}
,

R(epi G, (, ), (–, –)
)

=
{

(x, y) : x ∈ R, y ≥ x
}

,

R
l
(
epi G, (, ), (–, –)

)
=

{
(x, y) : x ∈ R, y ≥ x

}
,

R
l F(, , –, )(x) = {y : y ≥ }, x ∈ R,

R
l G(, , –, –)(x) = RG(, , –, –)(x) = {y : y ≥ x}, x ∈ R,

IT
(
– intcone(εU + B), –v̂

)
= – intcone(εU + B) = (–∞, ).

Then, the inclusions of Theorem . and Corollaries . and . are true.

Let us recall that the upper (inferior) limit in the sense of Painlevé-Kuratowski of a
set-valued map � : X → Y is defined as lim supu→ū �(u) := {y ∈ Y : ∃un → ū,∃yn ∈
�(un) such that yn → y} and lim infu→ū �(u) := {y ∈ Y : ∀un → ū,∃yn ∈ �(un) such that
yn → y}. If f : X → Y is Fréchet differentiable at x̂ ∈ X, its Fréchet derivative is denoted by
f ′(x̂).

The profile map of F is the set-valued map F+ : X → Y defined by F+(x) = F(x) + C,
x ∈ dom F .

In what follows, we consider vector optimization.
Let f : X → Y , g : X → Z.
Consider the following vector optimization:

(P) min f (x),

s.t. g(x) ∈ –D, x ∈ X.
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Similarly to Definition . in [], we introduce the following second-order generalized
lower (upper) directional derivative for vector-valued functions.

Definition . Let f : X → Y be Fréchet differentiable at x̂, and û, x ∈ X. The parabolic
second-order generalized lower directional derivative of x̂ in the direction (û, x) is

D̃
l f (x̂, û)(x) := lim inf

t>,x′→x

f (x̂ + tû + 
 tx′) – f (x̂) – tf ′(x̂)û


 t

.

Remark . When the set-valued map F becomes to a vector-valued function f , which is
Fréchet differentiable at x̂, letting v̂ := f ′(x̂)û, we have

R
l F(x̂, ŷ, û, v̂)(x) = D̃

l f+(x̂, û)(x) = lim inf
t>,x′→x

f+(x̂ + tû + 
 tx′) – f+(x̂) – tf ′(x̂)û


 t

.

Definition . Let f : X → Y be Fréchet differentiable at x̂, and û, x ∈ X. The parabolic
second-order generalized upper directional derivative of x̂ in the direction (û, x) is

D̃f (x̂, û)(x) := lim sup
t>,x′→x

f (x̂ + tû + 
 tx′) – f (x̂) – tf ′(x̂)û


 t

.

Remark . When the set-valued map F becomes to a vector-valued function f , which is
Fréchet differentiable at x̂, letting v̂ := f ′(x̂)û, we have

RF(x̂, ŷ, û, v̂)(x) = D̃f+(x̂, û)(x) = lim sup
t>,x′→x

f+(x̂ + tû + 
 tx′) – f+(x̂) – tf ′(x̂)û


 t

.

Corollary . Suppose that (x̂, ŷ) is a Henig efficient element of (P) and g(x̂) ∈ –D. Then
there exists a number ε̂ ∈ (, δ) such that

(
D̃

l f+(x̂, û)(x), D̃g+(x̂, û)(x)
) ∩ ((

– intcone(ε̂U + B)
) × (– int D)

)
= ∅

for any x ∈ dom D̃
l f+(x̂, û) ∩ dom D̃g+(x̂, û).

Proof The proof follows immediately from Theorem . and Remarks . and .. �

5 Conclusions
In this paper, we introduced some new kinds of lower radial tangent cone, second-order
lower radial tangent set, and second-order radial tangent set. By virtue of these concepts,
second-order radial composed tangent derivative, second-order radial tangent deriva-
tive, second-order lower radial composed tangent derivative, and second-order lower
radial tangent derivative for a set-valued map are introduced. Compared with the second-
order composed contingent derivative D′′F(x̂, ŷ, û, v̂) introduced in [, ], the second-
order contingent derivative DF(x̂, ŷ, û, v̂), second-order radial composed tangent deriva-
tive R′′F(x̂, ŷ, û, v̂), and second-order radial tangent derivative RF(x̂, ŷ, û, v̂), second-order
lower radial composed tangent derivative R′′

l F(x̂, ŷ, û, v̂), and second-order lower radial
tangent derivative R

l F(x̂, ŷ, û, v̂) have nice properties:

R′′
l F(x̂, ŷ, û, v̂)

(
R
(
R(E, x̂), û

)) ⊂ clcone
(
clcone

(
F(E) + C – ŷ

)
– v̂

)
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and

R
l F(x̂, ŷ, û, v̂)

(
R(E, x̂, û)

) ⊂ clcone
(
cone

(
F(E) + C – ŷ

)
– v̂

)
,

which are demonstrated in Propositions . and .. Just applying these properties, we
established second-order necessary optimality conditions for a point pair to be a Henig
efficient element of a set-valued optimization problem where the second-order tangent
derivatives of the objective function and constraint function are separated.
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