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Abstract
In this study, the simplex whose vertices are barycenters of the given simplex facets
plays an essential role. The article provides an extension of the Hermite-Hadamard
inequality from the simplex barycenter to any point of the inscribed simplex except
its vertices. A two-sided refinement of the generalized inequality is obtained in
completion of this work.
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1 Introduction
A concise approach to the concept of affinity and convexity is as follows. Let X be a linear
space over the field R. Let P, . . . , Pm ∈ X be points, and let λ, . . . ,λm ∈ R be coefficients.
A linear combination

m∑

j=

λjPj ()

is affine if
∑m

j= λj = . An affine combination is convex if all coefficients λj are nonnegative.
Let S ⊆ X be a set. The set containing all affine combinations of points of S is called

the affine hull of the set S , and it is denoted with affS . A set S is affine if S = affS . Using
the adjective convex instead of affine, and the prefix conv instead of aff, we obtain the
characterization of the convex set.

A convex function f : convS →R satisfies the Jensen inequality

f

( m∑

j=

λjPj

)
≤

m∑

j=

λjf (Pj) ()

for all convex combinations of points Pj ∈ S . An affine function f : affS → R satisfies the
equality in equation () for all affine combinations of points Pj ∈ S .

Throughout the paper, we use the n-dimensional space X = R
n over the field R.

2 Convex functions on the simplex
The section is a review of the known results on the Hermite-Hadamard inequality for
simplices, and it refers to its generic background. The main notification is concentrated
in Lemma ., which is also the generalization of the Hermite-Hadamard inequality.
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Let A, . . . , An+ ∈ R
n be points so that the points A – An+, . . . , An – An+ are linearly

independent. The convex hull of the points Ai written in the form of A · · ·An+ is called
the n-simplex in R

n, and the points Ai are called the vertices. So, we use the denotation

A · · ·An+ = conv{A, . . . , An+}. ()

The convex hull of n vertices is called the facet or (n – )-face of the given n-simplex.
The analytic presentation of points of an n-simplex A = A · · ·An+ in R

n arises from
the n-volume by means of the Lebesgue measure or the Riemann integral. We will use the
abbreviation vol instead of voln.

Let A ∈A be a point, and let Ai be the convex hull of the set containing the point A and
vertices Aj for j �= i, formally as

Ai = conv{A, . . . , Ai–, A, Ai+, . . . , An+}. ()

EachAi is a facet or n-subsimplex ofA, so vol(Ai) =  or  < vol(Ai) ≤ vol(A), respectively.
The sets Ai satisfy A =

⋃n+
i= Ai and vol(Ai ∩Aj) =  for i �= j, and so it follows that vol(A) =∑n+

i= vol(Ai).
The point A can be uniquely represented as the convex combination of the vertices Ai

by means of

A =
n+∑

i=

αiAi, ()

where we have the coefficients

αi =
vol(Ai)
vol(A)

. ()

If the point A belongs to the interior of the n-simplex A, then all sets Ai are n-simplices,
and consequently all coefficients αi are positive. Furthermore, the reverse implications are
valid.

If μ is a positive measure on R
n, and if S ⊆ R

n is a measurable set such that μ(S) > ,
then the integral mean point

S =
(∫

S x dμ(x)
μ(S)

, . . . ,
∫
S xn dμ(x)

μ(S)

)
()

is called the μ-barycenter of the set S . In the above integrals, points x ∈ S are used as
x = (x, . . . , xn). The μ-barycenter S belongs to the convex hull of S . When we use the
Lebesgue measure, we say just barycenter. If S is closed and convex, then a μ-integrable
continuous convex function f : S →R satisfies the inequality

f
(∫

S x dμ(x)
μ(S)

, . . . ,
∫
S xn dμ(x)

μ(S)

)
≤

∫
S f (x) dμ(x)

μ(S)
()

as a special case of Jensen’s inequality for multivariate convex functions; see the excellent
McShane paper in []. If f is affine, then the equality is valid in ().
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We consider a convex function f defined on the n-simplex A = A · · ·An+. The following
lemma presents a basic inequality for a convex function on the simplex, and it refers to the
connection of the simplex barycenter with simplex vertices.

Lemma . Let μ be a positive measure on R
n. Let A = A · · ·An+ be an n-simplex in R

n

such that μ(A) > . Let A be the μ-barycenter of A, and let
∑n+

i= αiAi be its unique convex
combination by means of

A =
(∫

A x dμ(x)
μ(A)

, . . . ,
∫
A xn dμ(x)

μ(A)

)
=

n+∑

i=

αiAi. ()

Then each convex function f : A→ R satisfies the double inequality

f

( n+∑

i=

αiAi

)
≤

∫
A f (x) dμ(x)

μ(A)
≤

n+∑

i=

αif (Ai). ()

Proof We have three cases depending on the position of the μ-barycenter A within the
simplex A.

If A is an interior point of A, then we take a supporting hyperplane xn+ = h(x) at the
graph point (A, f (A)), and the secant hyperplane xn+ = h(x) passing through the graph
points (A, f (A)), . . . , (An+, f (An+)). Using the affinity of the functions h and h, we get

f

( n+∑

i=

αiAi

)
= h(A) =

∫
A h(x) dμ(x)

μ(A)

≤
∫
A f (x) dμ(x)

μ(A)

≤
∫
A h(x) dμ(x)

μ(A)
= h(A)

=
n+∑

i=

αih(Ai) =
n+∑

i=

αif (Ai) ()

because h(Ai) = f (Ai). So, formula () works for the interior point A.
If A is a relative interior point of a certain k-face where  ≤ k ≤ n – , then we can

apply the previous procedure to the respective k-simplex. For example, if A · · ·Ak+ is
the observed k-face, then the coefficients α, . . . ,αk+ are positive, and the coefficients
αk+, . . . ,αn+ are equal to zero.

If A is a simplex vertex, suppose that A = A, then the trivial inequality f (A) ≤ f (A) ≤
f (A) represents formula (). �

More generally, if the μ-barycenter A lies in the interior of A, the inequality in formula
() holds for all μ-integrable functions f : A→ R that admit a supporting hyperplane at
A, and satisfy the supporting-secant hyperplane inequality

h(x) ≤ f (x) ≤ h(x) ()

for every point x of the simplex A.



Pavić Journal of Inequalities and Applications  (2017) 2017:3 Page 4 of 12

Lemma . was obtained in [], Corollary , the case αi = /(n + ) was obtained in [],
Theorem , and a similar result was obtained in [], Theorem ..

By applying the Lebesgue measure or the Riemann integral in Lemma ., the condition
in () gives the barycenter

A =
(∫

A x dx
vol(A)

, . . . ,
∫
A xn dx
vol(A)

)
=

∑n+
i= Ai

n + 
, ()

and its use in formula () implies the Hermite-Hadamard inequality

f
(∑n+

i= Ai

n + 

)
≤

∫
A f (x) dx
vol(A)

≤
∑n+

i= f (Ai)
n + 

. ()

The above inequality was introduced by Neuman in []. An approach to this inequality
can be found in [].

The discrete version of Lemma . contributes to the Jensen inequality on the sim-
plex.

Corollary . Let A = A · · ·An+ be an n-simplex in R
n, and let P, . . . , Pm ∈A be points.

Let A =
∑m

j= λjPj be a convex combination of the points Pj, and let
∑n+

i= αiAi be the unique
convex combination of the vertices Ai such that

A =
m∑

j=

λjPj =
n+∑

i=

αiAi. ()

Then each convex function f : A→ R satisfies the double inequality

f

( n+∑

i=

αiAi

)
≤

m∑

j=

λjf (Pj) ≤
n+∑

i=

αif (Ai). ()

Proof The discrete measure μ concentrated at the points Pj by the rule

μ
({Pj}

)
= λj ()

can be utilized in Lemma . to obtain the discrete inequality in formula (). �

Putting
∑m

j= λjPj instead of
∑n+

i= αiAi within the first term of formula (), we obtain
the Jensen inequality extended to the right.

Corollary . in the case αi = /(n + ) was obtained in [], Corollary .
One of the most influential results of the theory of convex functions is the Jensen in-

equality (see [] and []), and among the most beautiful results is certainly the Hermite-
Hadamard inequality (see [] and []). A significant generalization of the Jensen inequal-
ity for multivariate convex functions can be found in []. Improvements of the Hermite-
Hadamard inequality for univariate convex functions were obtained in []. As for the
Hermite-Hadamard inequality for multivariate convex functions, one may refer to [, ,
, –], and [].
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Figure 1 The inscribed simplex as the barycenter
extension.

3 Main results
Throughout the section, we will use an n-simplex A = A · · ·An+ in the space R

n, and its
two n-subsimplices which will be denoted with B and C .

Let Bi stand for the barycenter of the facet of A not containing the vertex Ai by

Bi =
∑n+

i�=j= Aj

n
, ()

and let B = B · · ·Bn+ be the n-simplex of the vertices Bi.
The simplices A and B in our three-dimensional space are tetrahedrons presented in

Figure . Our aim is to extend the Hermite-Hadamard inequality to all points of the in-
scribed simplex B excepting its vertices. So, we focus on the non-peaked simplex B′ =
B \ {B, . . . , Bn+}.

Lemma . Let A = A · · ·An+ be an n-simplex in R
n, and let A =

∑n+
i= αiAi be a convex

combination of the vertices Ai.
The point A belongs to the n-simplex B = B · · ·Bn+ if and only if the coefficients αi satisfy

αi ≤ /n.
The point A belongs to the non-peaked simplex B′ = B \ {B, . . . , Bn+} if and only if the

coefficients αi satisfy  < αi ≤ /n.

Proof The first statement, relating to the simplex B, will be covered as usual by proving
two directions.

Let us assume that the coefficients αi satisfy the limitations αi ≤ /n. Then the coeffi-
cients

βi =  – nαi ()

are nonnegative, and their sum is equal to . Since βi = –
∑n+

i�=j= βj, the reverse connection

αi =
∑n+

i�=j= βj

n
()
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follows. The last of the convex combinations

A =
n+∑

i=

αiAi

=
n+∑

i=

∑n+
i�=j= βj

n
Ai =

n+∑

i=

βi

∑n+
i�=j= Aj

n

=
n+∑

i=

βiBi ()

confirms that the point A belongs to the simplex B.
Let us assume that the point A belongs to the simplex B. Then we have the convex

combination A =
∑n+

i= λiBi. Using equation () in the reverse direction, we get the convex
combinations equality

n+∑

i=

λiBi =
n+∑

i=

αiAi ()

with the coefficient connections αi =
∑n+

i�=j= λj/n from which we may conclude that αi ≤
/n.

The second statement, relating to the non-peaked simplex B′, follows from the first
statement and the convex combinations in formula () which uniquely represent the facet
barycenters Bi. �

We need another subsimplex of A. Let A be a point belonging to the interior of A. In this
case, the sets Ai defined by formula () are n-simplices. Let Ci stand for the barycenter of
the simplex Ai by means of

Ci =
A +

∑n+
i�=j= Aj

n + 
, ()

and let C = C · · ·Cn+ be the n-simplex of the vertices Ci.

Lemma . Let A = A · · ·An+ be an n-simplex in R
n, and let A =

∑n+
i= αiAi be a convex

combination of the vertices Ai with coefficients αi satisfying αi > .
The point A belongs to the non-peaked simplex C ′ = C \ {C, . . . , Cn+} if and only if the

coefficients αi satisfy the additional limitations αi ≤ /n.

Proof Suppose that the coefficients αi satisfy  < αi ≤ /n. Let βi be the coefficients as
in equation (). Using the trivial equality A = A/(n + ) + nA/(n + ), and the coefficient
connections of equation (), we get

A =
n+∑

i=

αiAi =


n + 
A +

n
n + 

n+∑

i=

αiAi

=
n+∑

i=

βi
A

n + 
+

n+∑

i=

n+∑

i�=j=

βj
Ai

n + 
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=
n+∑

i=

βi
A

n + 
+

n+∑

i=

βi

n+∑

i�=j=

Aj

n + 

=
n+∑

i=

βi
A +

∑n+
i�=j= Aj

n + 
=

n+∑

i=

βiCi ()

indicating that the point A lies in the simplex C . To show that the convex combination
∑n+

i= βiCi does not represent any vertex, we will assume that some βi = . Then αi = 
as opposed to the assumption that all αi are positive.

The proof of the reverse implication goes exactly in the same way as in the proof of
Lemma .. �

Each simplex C is homothetic to the simplex B. Namely, combining equations () and
(), we can represent each vertex Ci by the convex combination

Ci =


n + 
A +

n
n + 

Bi. ()

Then it follows that

Ci – A =
n

n + 
(Bi – A),

and using free vectors, we have the equality
––→
ACi = (n/(n + ))

––→
ABi. So, the simplices C and

B are similar respecting the homothety with the center at A and the coefficient n/(n + ).
If A ∈ B′, then C ⊂ B′ by the convex combinations in formula (). Combining

Lemma . and Lemma ., and applying Corollary . to the simplex inclusions C ⊂ B
and B ⊂A, we get the Jensen type inequality as follows.

Corollary . Let A = A · · ·An+ be an n-simplex in R
n, let A =

∑n+
i= αiAi be a convex

combination of the vertices Ai with coefficients αi satisfying  < αi ≤ /n, and let βi = –nαi.
Then it follows that

n+∑

i=

βiCi =
n+∑

i=

βiBi =
n+∑

i=

αiAi, ()

and each convex function f : A→R satisfies the double inequality

n+∑

i=

βif (Ci) ≤
n+∑

i=

βif (Bi) ≤
n+∑

i=

αif (Ai). ()

The point A used in the previous corollary lies in the interior of the simplex A because
the coefficients αi are positive. In that case, the sets Ai are n-simplices, and they will be
used in the main theorem that follows.

Theorem . Let A = A · · ·An+ be an n-simplex in R
n, let A =

∑n+
i= αiAi be a convex

combination of the vertices Ai with coefficients αi satisfying  < αi ≤ /n, and let βi = –nαi.
Let Ai be the simplices defined by formula ().
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Then each convex function f : A→ R satisfies the double inequality

f

( n+∑

i=

αiAi

)
≤

n+∑

i=

βi

∫
Ai

f (x) dx
vol(Ai)

≤
n+∑

i=

αif (Ai). ()

Proof Using the convex combinations equality
∑n+

i= αiAi =
∑n+

i= βiCi, and applying the
Jensen inequality to f (

∑n+
i= βiCi), we get

f

( n+∑

i=

αiAi

)
≤

n+∑

i=

βif (Ci) =
n+∑

i=

βif
(A +

∑n+
i�=j= Aj

n + 

)
.

Summing the products of the Hermite-Hadamard inequalities for the function f on the
simplices Ai and the coefficients βi, it follows that

n+∑

i=

βif
(A +

∑n+
i�=j= Aj

n + 

)
≤

n+∑

i=

βi

∫
Ai

f (x) dx
vol(Ai)

≤
n+∑

i=

βi
f (A) +

∑n+
i�=j= f (Aj)

n + 
.

Repeating the procedure which was used for the derivation of formula (), we obtain the
series of equalities

n+∑

i=

βi
f (A) +

∑n+
i�=j= f (Aj)

n + 
=


n + 

f (A) +
n

n + 

n+∑

i=

βi

∑n+
i�=j= f (Aj)

n

=


n + 
f (A) +

n
n + 

n+∑

i=

∑n+
i�=j= βj

n
f (Ai)

=


n + 
f

( n+∑

i=

αiAi

)
+

n
n + 

n+∑

i=

αif (Ai).

Finally, applying the Jensen inequality to f (
∑n+

i= αiAi), we get the last inequality


n + 

f

( n+∑

i=

αiAi

)
+

n
n + 

n+∑

i=

αif (Ai) ≤
n+∑

i=

αif (Ai).

Bringing together all of the above, we obtain the multiple inequality

f

( n+∑

i=

αiAi

)
≤

n+∑

i=

βif
(A +

∑n+
i�=j= Aj

n + 

)
≤

n+∑

i=

βi

∫
Ai

f (x) dx
vol(Ai)

≤
n+∑

i=

βi
f (A) +

∑n+
i�=j= f (Aj)

n + 
≤

n+∑

i=

αif (Ai), ()

of which the most important part is the double inequality in formula (). �

The inequality in formula () is a generalization and refinement of the Hermite-
Hadamard inequality. Taking the coefficients αi = /(n + ), in which case βi = /(n + ),
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we realize the five terms inequality

f
(∑n+

i= Ai

n + 

)
≤ 

n + 

n+∑

i=

f
(Ai + (n + )

∑n+
i�=j= Aj

(n + )(n + )

)
≤

∫
A f (x) dx
vol(A)

≤ 
n + 

f
(∑n+

i= Ai

n + 

)
+

n
n + 

∑n+
i= f (Ai)
n + 

≤
∑n+

i= f (Ai)
n + 

, ()

where the second and fourth terms refine the Hermite-Hadamard inequality. The third
term is generated from all of n +  simplices Ai. In the present case, these simplices have
the same volume equal to vol(A)/(n + ).

The inequality in formula () excepting the second term was obtained in [], Theo-
rem . Similar inequalities concerning the standard n-simplex were obtained in [, ] and
[]. Special refinements of the left and right-hand side of the Hermite-Hadamard inequal-
ity were recently obtained in [] and [].

4 Generalization to the function barycenter
If μ is a positive measure on R

n, if S ⊆ R
n is a measurable set, and if g : S → R is a

nonnegative integrable function such that
∫
S g(x) dμ(x) > , then the integral mean point

S =
(∫

S xg(x) dμ(x)∫
S g(x) dμ(x)

, . . . ,
∫
S xng(x) dμ(x)∫
S g(x) dμ(x)

)
()

can be called the μ-barycenter of the function g . It is about the following measure. Intro-
ducing the measure ν as

ν(S) =
∫

S
g(x) dμ(x), ()

we get

S =
(∫

S x dν(x)
ν(S)

, . . . ,
∫
S xn dν(x)

ν(S)

)
. ()

Thus the μ-barycenter of the function g coincides with the ν-barycenter of its domain S .
So, the barycenter S belongs to the convex hull of the set S . By using the unit function
g(x) =  in formula (), it is reduced to formula ().

Utilizing the function barycenter instead of the set barycenter, we have the following
reformulation of Lemma ..

Lemma . Let μ be a positive measure on R
n. Let A = A · · ·An+ be an n-simplex in R

n,
and let g : A → R be a nonnegative integrable function such that

∫
A g(x) dμ(x) > . Let A

be the μ-barycenter of g , and let
∑n+

i= αiAi be its unique convex combination by means
of

A =
(∫

A xg(x) dμ(x)∫
A g(x) dμ(x)

, . . . ,
∫
A xng(x) dμ(x)∫
A g(x) dμ(x)

)
=

n+∑

i=

αiAi. ()
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Then each convex function f : A→ R satisfies the double inequality

f

( n+∑

i=

αiAi

)
≤

∫
A f (x)g(x) dμ(x)∫

A g(x) dμ(x)
≤

n+∑

i=

αif (Ai). ()

The proof of Lemma . can be employed as the proof of Lemma . by using the mea-
sure ν in formula () or by utilizing the affinity of the hyperplanes h and h in the form
of the equalities

h,

(∫
A xg(x) dμ(x)∫
A g(x) dμ(x)

, . . . ,
∫
A xng(x) dμ(x)∫
A g(x) dμ(x)

)
=

∫
A h,(x)g(x) dμ(x)∫

A g(x) dμ(x)
. ()

Lemma . is an extension of the Fejér inequality (see []) to multivariable convex func-
tions. As regards univariable convex functions, using the Lebesgue measure on R and a
closed interval as -simplex in Lemma ., we get the following generalization of the Fejér
inequality.

Corollary . Let [a, b] be a closed interval in R, and let g : [a, b] → R be a nonnegative
integrable function such that

∫ b
a g(x) dx > . Let c be the barycenter of g , and let αa + βb be

its unique convex combination by means of

c =
∫ b

a xg(x) dx
∫ b

a g(x) dx
= αa + βb. ()

Then each convex function f : [a, b] → R satisfies the double inequality

f (αa + βb) ≤
∫ b

a f (x)g(x) dx
∫ b

a g(x) dx
≤ αf (a) + βf (b). ()

Fejér used a nonnegative integrable function g that is symmetric with respect to the
midpoint c = (a + b)/. Such a function satisfies g(x) = g(c – x), and therefore

∫ b

a
(x – c)g(x) dx = .

As a consequence it follows that

∫ b
a xg(x) dx
∫ b

a g(x) dx
=

∫ b
a (x – c)g(x) dx

∫ b
a g(x) dx

+
∫ b

a cg(x) dx
∫ b

a g(x) dx
=

a + b


,

and formula () with α = β = / turns into the Fejér inequality

f
(

a + b


)
≤

∫ b
a f (x)g(x) dx
∫ b

a g(x) dx
≤ f (a) + f (b)


. ()

Using the barycenters of the restrictions of g onto simplices Ai in formula (), we have
the following generalization of Theorem ..



Pavić Journal of Inequalities and Applications  (2017) 2017:3 Page 11 of 12

Theorem . Let μ be a positive measure on R
n. Let A = A · · ·An+ be an n-simplex in R

n,
let A =

∑n+
i= αiAi be a convex combination of the vertices Ai with coefficients αi satisfying

 < αi ≤ /n, and let βi =  – nαi. Let Ai be the simplices defined by formula (), and let
gi : Ai →R be nonnegative integrable functions such that

∫
Ai

gi(x) dμ(x) >  and

Ci =
(∫

Ai
xgi(x) dμ(x)

∫
Ai

gi(x) dμ(x)
, . . . ,

∫
Ai

xngi(x) dμ(x)
∫
Ai

gi(x) dμ(x)

)
=

A +
∑n+

i�=j= Aj

n + 
. ()

Then each convex function f : A→ R satisfies the double inequality

f

( n+∑

i=

αiAi

)
≤

n+∑

i=

βi

∫
Ai

f (x)gi(x) dμ(x)
∫
Ai

gi(x) dμ(x)
≤

n+∑

i=

αif (Ai). ()

Proof The first step of the proof is to apply Lemma . to the functions f and gi on the
simplex Ai in the way of

f
(A +

∑n+
i�=j= Aj

n + 

)
≤

∫
Ai

f (x)gi(x) dμ(x)
∫
Ai

gi(x) dμ(x)
≤ f (A) +

∑n+
i�=j= f (Aj)

n + 
.

Summing the products of the above inequalities with the coefficients βi, we obtain the
double inequality that may be combined with formula (), and so we obtain the multiple
inequality

f

( n+∑

i=

αiAi

)
≤

n+∑

i=

βif
(A +

∑n+
i�=j= Aj

n + 

)
≤

n+∑

i=

βi

∫
Ai

f (x)gi(x) dμ(x)
∫
Ai

gi(x) dμ(x)

≤
n+∑

i=

βi
f (A) +

∑n+
i�=j= f (Aj)

n + 
≤

n+∑

i=

αif (Ai) ()

containing the double inequality in formula (). �

The conditions in formula () require that the μ-barycenter of the function gi coincides
with the barycenter Ci = (A +

∑n+
i�=j= Aj)/(n + ) of the simplex Ai.

Using the Lebesgue measure and functions gi(x) = , the inequality in formula () re-
duces to the inequality in formula ().
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