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Abstract
Sharp remainder terms are explicitly given on the standard Hardy inequalities in
Lp(Rn) with 1 < p < n. Those remainder terms provide a direct and exact
understanding of Hardy type inequalities in the framework of equalities as well as of
the nonexistence of nontrivial extremals.
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1 Results and discussion
The following Hardy inequalities are now well known:
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where  ≤ p < ∞, r > , and f is a real-valued measurable function on (,∞),
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where  ≤ p < n and f ∈ W 
p(Rn) (see [, ] for instance).

We revisit this famous inequality. Particularly, we present equalities which fill the gaps
between the right- and left-hand sides of (.)-(.) with explicit remainder terms for p > .
Those equalities yield (.)-(.) by dropping remainder terms. Moreover, we give a char-
acterization of functions which leads to vanishing remainders. The study of the Hardy
inequalities which is based on the viewpoint of the equality leads to a direct and explicit
understanding of the Hardy type inequalities as well as of the nonexistence of nontrivial
extremals.

To state our main theorems, we introduce some necessary notation. In this paper, we
deal with real-valued functions and we argue with sufficiently smooth functions with com-
pact support in R

n \ {} so that the standard density argument goes through. Let us intro-
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duce
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Rp(ξ , ξ ) =
p – 


|ξ |p–, (.)

for p >  and ξ , η ∈ R, where /p′ =  – /p and Rp(ξ , ξ ) makes sense only if p ≥  and if
p <  and ξ �= . In other words, Rp : (ξ ,η) 	→ Rp(ξ ,η) is well defined on R×R if p ≥  and
on (R×R) \ {(, )} if  < p < . For p with  ≤ p ≤ ∞, the Banach space which consists of
pth integrable Lebesgue measurable functions is denoted by Lp(�). The norm of it is also
denoted by ‖ · ‖Lp or ‖ · ‖p if it does not cause confusion. The Sobolev space of order one
introduced by Lp is denoted W 

p = W 
p(Rn) for  ≤ p < ∞.

The basic properties of Rp are summarized in the following proposition.

Proposition  Let p ∈R satisfy p > . Then Rp satisfies the following properties:
() Rp has the integral representation
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() Rp satisfies the estimates
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where a ∨ b = max(a, b) and a ∧ b = min(a, b) for a, b ≥ .
() Let p >  and let ξ , η ∈R. Then Rp(ξ ,η) =  if and only if ξ = η = .
() Let p ≤  and let ξ , η ∈R \ {}. Then Rp(ξ ,η) > .
() R(ξ ,η) = 

 for all ξ , η ∈R.

We now state our main results.

Theorem  Let n and p satisfy  < p < n. Then the equality
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holds for all f ∈ W 
p(Rn). If the second term on the right hand side of (.) vanishes, then

the left-hand side of (.) is finite if and only if f = .
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Remark  In fact, we prove that if the second term on the right hand side of (.) vanishes,
then there exists a function ϕ : Sn– →R on the unit sphere Sn– such that

f (x) = |x|– n–p
p ϕ

(
x
|x|

)
(.)

almost everywhere in R
n \ {}. In this case,
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and the left-hand side of (.) is finite if and only if ϕ = f = .

Remark  The special case p =  is studied in [].

Theorem  Let p and r satisfy  < p < ∞ and r > . Then:
() The equality
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holds for all real-valued measurable functions on (,∞) with xf ∈ Lp(,∞; x–r– dx). More-
over, there exists c ∈R which satisfies, for almost everywhere x ∈ (,∞),

f (x) = cx
r
p – (.)

when the last term in the right hand side of (.) equals zero. In this case,
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holds for all real-valued measurable functions on (,∞) with xf ∈ Lp(,∞; xr– dx). More-
over, there exists c ∈R which satisfies, for almost everywhere x ∈ (,∞),

f (x) = cx– r
p – (.)
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provided that the last term in the right hand side of (.) vanishes. In this case,
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and the left-hand side of (.) is finite if and only if c = .

Remark  The special case p =  is studied in [].

We prove the theorems in subsequent sections. The first step of the proof is the same as
the standard one. We need the following identity:

∫ |f (x)|p
|x|p dx = –

p
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∫ |f (x)|p–f (x)
|x|p–

x
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which holds for all f ∈ C∞
 (Rn), provided  < p < n. It can be obtained expressing the inte-

gral on the left-hand side by means of the spherical coordinates and using the integration
by parts (cf. [], Proof of Theorem .).

Equation (.) together with the Hölder inequality with /p+/p′ = ,  ≤ p < ∞, implies
(.). In this sense, the standard method depends upon duality. In this paper, we adopt a
different view. We rewrite (.) in the form
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Now the equality (.) can be understood as representing a cancelation as well as an os-
cillation or an orthogonality. This point of view for equation (.) can be stated in the
following way.

Lemma  Let Lp(�,μ) with  < p < ∞ be the Banach space of pth integrable real-valued
functions on a measure space (�,μ) endowed with a norm ‖ · ‖p. Then the following three
assertions are equivalent for any u, v ∈ Lp(�,μ):
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Proof of Lemma  The assertions are trivial for u = v. If u �= v, then the relation
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immediately yields the conclusion. �

The subsequent sections are organized as follows. Proposition  will be proved in Sec-
tion . Section  is devoted to the verification of Theorem . The proof of Theorem  is
given in Section . There is a large literature on Hardy type inequalities and related sub-
jects. See [–] and the references therein for instance.

2 Proof of Proposition 1
First of all, we remark that R(ξ ,η) = /, by definition. This proves Part () as well as Parts
(), (), and () for p = . By a direct calculation, (.) holds if ξ = η. Let ξ �= η. We obtain
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which yields (.). Then Part () follows immediately from Part (). If p >  and Rp(ξ ,η) = ,
then by the integral representation (.) we have θξ + ( – θ )η =  for any θ with  < θ < .
This implies ξ = η = . If p <  and Rp(ξ ,η) = , then |θξ + ( – θ )η| = ∞ for any θ with
 < θ < , which is absurd. This proves Proposition .

3 Proof of Theorem 1
By a standard density argument, it is enough to prove Theorem  for f ∈ C∞
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(.), (.) is then a direct consequence of Lemma  with u = f
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This implies (.), which in turn implies the rest of the statements of the theorem.



Ioku et al. Journal of Inequalities and Applications  (2017) 2017:5 Page 6 of 7

4 Proof of Theorem 2
By integration by parts, we have
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Part () follows by the same argument.

5 Conclusions
In this paper, we examined the sharp remainder terms of the Hardy inequality for Lp-
functions. From these sharp remainder terms, we can derive several consequences includ-
ing the explicit form of the extremal function for the inequality which reveals the nature
of the nonexistence of extremals in the Lp-setting. Our analysis only requires some el-
ementary calculus with some insight in the structure of the remainder term and is also
applicable to other critical type inequalities such as the Hardy inequalities in Ln.
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