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1 Introduction
Let I = (a, b),  ≤ a < b ≤ ∞. Let v and u be almost everywhere positive functions, which
are locally integrable on the interval I .

Let  < p < ∞ and 
p + 

p′ = . Denote by Lp,v ≡ Lp(v, I) the set of all functions f measurable

on I such that ‖f ‖p,v := (
∫ b

a |f (x)|pv(x) dx)

p < ∞.

Let W be a non-negative, strictly increasing and locally absolutely continuous function
on I . Suppose that dW (x)

dx = w(x), a.e. x ∈ I .
We consider the Hardy type operator Tα,β defined by

Tα,β f (x) :=
∫ x

a

u(s)W β (s)f (s)w(s) ds
(W (x) – W (s))–α

, x ∈ I. (.)

When u ≡  and β =  the operator Tα,β is called the fractional integral operator of
a function f with respect to a function W ([], p.). When u ≡  and W (x) = x the
operator (.) becomes the Riemann-Liouville operator Iα defined by

Iαf (x) :=
∫ x

a

sβ f (s) ds
(x – s)–α

. (.)

When u ≡  and W (x) ≡ ln x
a , a > , this operator is the Hadamard operator Hα defined

by

Hαf (x) :=
∫ x

a

(ln s
a )β f (s) ds

s(ln x
s )–α

.
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Moreover, when u ≡  and W (x) = xσ , σ > , we get the operator Eα,β of Erdelyi-Kober
type ([], p.) defined by

Eα,β f (x) := σ

∫ x

a

f (s)sσβ+σ– ds
(xσ – sσ )–α

.

There are a lot of works devoted to the mapping properties of the Riemann-Liouville
operator Iα . Two-weighted estimates of the operator Iα of the order α >  in weighted
Lebesgue spaces were first obtained in the papers [] and []. The singular case  < α < 
was studied with different restrictions in [–] and some others. The most general results
among them are given in [] and [] under the assumption that one of the weight functions
is increasing or decreasing.

In this work we investigate the problems of boundedness and compactness of the oper-
ator Tα,β defined by (.) from Lp,w to Lq,v when  < α < . When α >  the results follow
from the results in [].

The operator Tα,β was studied in [] and [] when u ≡ , β =  and u ≡ , β > – 
p′ ,

respectively.
Due to the non-negativity and monotone increase of the function W the limit

limx→a+ W (x) ≡ W (a) ≥  exists.
We also consider the Hardy type operator T

α,β defined by

T
α,β f (x) :=

∫ x

a

u(s)W β
 (s)f (s)w(s) ds

(W(x) – W(s))–α
, x ∈ I,

where W(x) = W (x) – W (a).
Since we also suppose that β ≥ , for f ≥  we have Tα,β f (x) ≈ T

α,β f (x) + W (a)T
α,f (x),

where the equivalence constants do not depend on x and f . Therefore, without loss of
generality, we can assume that W (a) = . For short writing we denote by ‖K‖ the norm of
a linear operator K acting from one normalized space to another, since from the context
we shall in each case clearly see which spaces the operator is acting between.

The paper is organized as follows: In order not to disturb our discussions later on some
auxiliary statements are given in Section . The main results concerning the boundedness
of operator Tα,β , including the corresponding Hardy type inequalities, can be found in
Section . The main results about the compactness are presented in Section . Moreover,
in Section  some similar results for the dual operator T

α,β are given. Finally, Section  is
reserved for some applications (both new and well-known results).

Conventions The indeterminate form  · ∞ is assumed to be zero. The relations A � B
and A � B, respectively, mean A ≤ cB and A ≥ cB, where a positive constant c can be
dependent only on the parameters p, q, α and β . The relation A ≈ B is interpreted as
A � B � A. The set of all integers is denoted by Z. Moreover, χ(c,a)(·) is the characteristic
function of the interval (c, a) ⊂ I .

2 Auxiliary statements
To prove the main results we shall need some auxiliary results from the standard literature
on Hardy type inequalities (see [] and []).
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Together with the operator (.) we consider the Hardy type operator Hα,β defined by

Hα,β f (x) =


W –α(x)

∫ x

a
u(s)W β (s)f (s)w(s) ds. (.)

It is easy to see that for f ≥  we have

Tα,β f (x) ≥ Hα,β f (x), ∀x ∈ I. (.)

The problem of boundedness of operators of the form (.) in weighted Lebesgue spaces
have been very well studied. The history and development of Hardy type inequalities with
relevant references can be found in [].

In view of [] the following statements are consequences of Theorem  of [].

Lemma . Let  < p ≤ q < ∞ and let the operator Hα,β be defined by (.). Then the in-
equality

(∫ b

a

(
Hα,β f (x)

)qv(x) dx
) 

q
≤ C

(∫ b

a

(
f (x)

)pw(x) dx
) 

p
(.)

holds if and only if

Aα,β = sup
z∈I

(∫ z

a
up′

(s)W p′β (s)w(s) ds
) 

p′ (∫ b

z
W q(α–)(x)v(x) dx

) 
q

< ∞.

Moreover, C ≈ Aα,β .

Lemma . Let  < q < p < ∞, p >  and let the operator Hα,β be defined by (.). Then the
inequality (.) holds if and only if

Bα,β =
(∫ b

a

(∫ b

z
W q(α–)(x)v(x) dx

) p
p–q

×
(∫ z

a
up′

(s)W p′β (s)w(s) ds
) p(q–)

p–q
up′

(z)W p′β (z)w(z) dz
) p–q

pq
< ∞.

Moreover, C ≈ Bα,β .

Remark . In the case  < q < p < ∞, p >  it is well known and easy to prove that the
value Bα,β is equivalent to the value

B̃α,β =
(∫ b

a

(∫ b

z
W q(α–)(x)v(x) dx

) q
p–q

×
(∫ z

a
up′

(s)W p′β (s)w(s) ds
) q(p–)

p–q
W q(α–)(z)v(z) dz

) p–q
pq

.
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3 Boundedness of the operator Tα,β

The main results in this section read as follows.

Theorem . Let  < α < ,  < p ≤ q < ∞ and β ≥ . Let u be a non-increasing function
on I . Then the operator Tα,β defined by (.) is bounded from Lp,w to Lq,v if and only if
Aα,β < ∞. Moreover, ‖Tα,β‖ ≈ Aα,β .

Theorem . Let  < α < ,  < q < p < ∞, p > 
α

and β ≥ . Let u be a non-increasing
function on I . Then the operator Tα,β is bounded from Lp,w to Lq,v if and only if Bα,β < ∞.
Moreover, ‖Tα,β‖ ≈ Bα,β .

These two theorems can be reformulated as the following new information in the theory
of Hardy type inequalities.

Theorem . Let  < α < , β ≥  and u be a non-increasing function on I . Then the in-
equality

(∫ b

a

(
Tα,β f (x)

)qv(x) dx
) 

q
≤ C

(∫ b

a

(
f (x)

)pw(x) dx
) 

p
(.)

holds if and only if
(a) Aα,β < ∞ for the case  < p ≤ q < ∞,
(b) Bα,β < ∞ for the case  < q < p < ∞, p > 

α
.

Moreover, for the best constant C in (.) it yields C ≈ Aα,β in case (a) and C ≈ Bα,β in
case (b).

Proof of Theorem . Necessity. Let the operator Tα,β be bounded from Lp,w to Lq,v. Then,
in view of (.), the operator Hα,β is bounded from Lp,w to Lq,v, and ‖Tα,β‖ ≥ ‖Hα,β‖. Con-
sequently, by Lemma . we have Aα,β < ∞ and

‖Tα,β‖ � Aα,β . (.)

Sufficiency. Since the function W is continuous and strictly increasing on I and W (a) =
, for any k ∈ Z we can define xk := sup{x : W (x) ≤ k , x ∈ I}. We obtain a sequence of
points {xk}k>–∞ such that  < xk ≤ xk+, ∀k ∈ Z, and if xk < b, then W (xk) = k , k ≤ W (x) ≤
k+ for xk ≤ x ≤ xk+,

∫ xk
xk–

w(s) ds = k–, and if xk+ = b, then
∫ xk+

xk
w(s) ds ≤ k . These facts

will be used below without reminders. We assume that Ik = [xk , xk+), k ∈ Z, Z = {k : k ∈
Z, Ik �= ∅}. Then Z ⊆ Z and I =

⋃
k∈Z Ik =

⋃
k∈Z

Ik . Since Ik = ∅, ∀k ∈ Z \ Z, and integrals
over these intervals are equal to zero, in the sequel, without loss of generality, we can
suppose that Z = Z.

Let Aα,β < ∞. We need to prove that the inequality

‖Tα,β f ‖q,v � Aα,β‖f ‖p,w, f ∈ Lp,w, (.)

holds, which means ‖Tα,β‖ � Aα,β and, together with (.), this gives

‖Tα,β‖ ≈ Aα,β .
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Let f ≥ . Using the relation I =
⋃

k Ik , we have

‖Tα,β f ‖q
q,v =

∑

k

∫ xk+

xk

v(x)
(∫ x

a

u(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

)q

dx

=
∑

k

∫ xk+

xk

v(x)
[(∫ xk–

a
+

∫ x

xk–

)
u(s)W β (s)f (s)w(s) ds

(W (x) – W (s))–α

]q

dx

�
∑

k

∫ xk+

xk

v(x)
(∫ xk–

a

u(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

)q

dx

+
∑

k

∫ xk+

xk

v(x)
(∫ x

xk–

u(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

)q

dx := J + J. (.)

We now estimate J and J separately. Using the monotonicity of W we find that

J =
∑

k

∫ xk+

xk

v(x)
(∫ xk–

a

u(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

)q

dx

≤
∑

k

∫ xk+

xk

v(x)
(∫ xk–

a

u(s)W β(s)f (s)w(s) ds
(W (xk) – W (xk–))–α

)q

dx

= q(–α)
∑

k

∫ xk+

xk

v(x)
(


k+

)q(–α)(∫ xk–

a
u(s)W β(s)f (s)w(s) ds

)q

dx

�
∑

k

∫ xk+

xk

v(x)W q(α–)(x)
(∫ x

a
u(s)W β(s)f (s)w(s) ds

)q

dx ≤ ‖Hα,β f ‖q
q,v.

Hence, by Lemma . we get

J � Aq
α,β‖f ‖q

p,w. (.)

Moreover, by using Hölder’s inequality and the fact that the function u is increasing, we
obtain

J =
∑

k

∫ xk+

xk

v(x)
(∫ x

xk–

u(s)W β (s)f (s)w(s) ds
(W (x) – W (s))–α

)q

dx

≤
∑

k

∫ xk+

xk

v(x)
(∫ x

xk–

f p(s)w(s) ds
) q

p
(∫ x

xk–

up′ (s)W p′β (s)w(s) ds
(W (x) – W (s))p′(–α)

) q
p′

dx

≤
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p
uq(xk–)

×
∫ xk+

xk

v(x)
(∫ x

a

W p′β (s)w(s) ds
(W (x) – W (s))p′(–α)

) q
p′

dx. (.)

A change of variables W (s) = W (x)t in the last integral, implies that

∫ x

a

W p′β (s)w(s) ds
(W (x) – W (s))p′(–α) =

W p′β+(x)
W p′(–α)(x)

∫ 


tp′β ( – t)p′(α–) dt. (.)
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Since β ≥ , α > 
p , the Euler beta function

∫ 
 tp′β (–t)p′(α–) dt converges. Consequently,

from (.) and (.) it follows that

J �
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p
uq(xk–)

∫ xk+

xk

v(x)
W

q
p′ (p′β+) dx

W q(–α)(x)

≤
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p
uq(xk–)W

q
p′ (p′β+)(xk+)

∫ xk+

xk

v(x)W q(α–)(x) dx

= (qβ+ q
p′ ) ∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

× uq(xk–)W
q
p′ (p′β+)(xk–)

∫ xk+

xk

v(x)W q(α–)(x) dx

�
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

× uq(xk–)
(∫ xk–

a
W p′β (s)w(s) ds

) q
p′ ∫ xk+

xk

v(x)W q(α–)(x) dx

≤
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

×
(∫ xk

a
up′

(s)W p′β (s)w(s) ds
) q

p′ ∫ b

xk

v(x)W q(α–)(x) dx

≤ Aq
α,β

∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p
≤ Aq

α,β

(∑

k

∫ xk+

xk–

f p(s)w(s) ds
) q

p

� Aq
α,β‖f ‖q

p,w. (.)

By combining (.), (.) and (.) we obtain (.). The proof is complete. �

Proof of Theorem . Necessity. Similarly to the proof of Theorem . and the estimate

‖Tα,β‖ � Bα,β , (.)

it follows from (.) and Lemma ..
Sufficiency. Let Bα,β < ∞. If we show that ‖Tα,β‖ � Bα,β , then this fact and (.) imply

that ‖Tα,β‖ ≈ Bα,β . Next, we use relation (.). For the estimate J we have obtained J �
‖Hα,β f ‖q

q,v. Hence, by Lemma . we obtain

J � Bq
α,β‖f ‖q

p,w. (.)

Moreover, from Theorem ., obvious estimates and Hölder’s inequality it follows that

J �
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

× uq(xk–)W
q
p′ (p′β+)(xk+)

∫ xk+

xk

v(x)W q(α–)(x) dx
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= (qβ+ q
p′ )(p′β+ – 

) q
p′ ∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

× uq(xk–)
(
(p′β+)(k–) – (p′β+)(k–))

q
p′

∫ xk+

xk

v(x)W q(α–)(x) dx

�
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

× uq(xk–)
(∫ xk–

xk–

W p′β (s)w(s) ds
) q

p′ ∫ xk+

xk

v(x)W q(α–)(x) dx

�
∑

k

(∫ xk+

xk–

f p(s)w(s) ds
) q

p

×
(∫ xk–

xk–

up′
(s)W p′β (s)w(s) ds

) q
p′ ∫ xk+

xk

v(x)W q(α–)(x) dx

(

we apply Hölder’s inequality with the conjugate exponents
p
q

,
p

p – q

)

≤ J
p–q

p


(∑

k

∫ xk+

xk–

f p(s)w(s) ds
) q

p
� J

p–q
p

 ‖f ‖q
p,w, (.)

where

J =
∑

k

(∫ xk–

xk–

up′ (s)W p′β (s)w(s) ds
) q(p–)

p–q
(∫ xk+

xk

v(x)W q(α–)(x) dx
) p

p–q
.

To estimate J we use the relation

(∫ xk–

xk–

up′
(s)W p′β (s)w(s) ds

) q(p–)
p–q

�
∫ xk–

xk–

(∫ t

xk–

up′ (s)W p′β (s)w(s) ds
) p(q–)

p–q
up′ (t)W p′β (t)w(t) dt.

Then

J �
∑

k

∫ xk–

xk–

(∫ t

xk–

up′
(s)W p′β (s)w(s) ds

) p(q–)
p–q

× up′
(t)W p′β (t)w(t) dt

(∫ xk+

xk

v(x)W q(α–)(x) dx
) p

p–q

≤
∑

k

∫ xk–

xk–

(∫ t

a
up′

(s)W p′β (s)w(s) ds
) p(q–)

p–q

×
(∫ b

t
v(x)W q(α–)(x) dx

) p
p–q

up′
(t)W p′β (t)w(t) dt

≤ B
qp

p–q
α,β . (.)
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By substitution of (.) in (.) we obtain

J � Bq
α,β‖f ‖q

p,w. (.)

Now, by combining (.), (.) and (.) we obtain

‖Tα,β f ‖q,v � Bα,β‖f ‖p,w.

Consequently, ‖Tα,β‖q,v � Bα,β . The proof is complete. �

4 Compactness of the operator Tα,β

The main results in this section read as follows.

Theorem . Let  < α < , 
α

< p ≤ q < ∞ and β ≥ . Let u be a non-increasing function
on I . Then the operator Tα,β is compact from Lp,w to Lq,v if and only if Aα,β < ∞ and

lim
z→a+

Aα,β (z) = lim
z→b–

Aα,β (z) = ,

where

Aα,β (z) =
(∫ z

a
up′ (s)W p′β (s)w(s) ds

) 
p′ (∫ b

z
W q(α–)(x)v(x) dx

) 
q

.

Theorem . Let  < α < , p > 
α

and β ≥ . Let u be a non-increasing function on I . If
b < ∞ and  < q < p < ∞ or b = ∞ and  < q < p < ∞, then the operator Tα,β is compact
from Lp,w to Lq,v if and only if Bα,β < ∞.

Proof of Theorem . Necessity. Let the operator Tα,β be compact from Lp,w to Lq,v. Then
it is bounded and consequently, by Theorem ., we have Aα,β < ∞. First we need to show
that limz→a+ Aα,β (z) = . Consider the family of functions {ft}t∈I , where

ft(x) = χ(a,t)(x)up′–(x)W (p′–)β (x)
(∫ t

a
up′

(s)W p′β (s)w(s) ds
)– 

p
, x ∈ I. (.)

We note that
(∫ b

a

∣
∣ft(x)

∣
∣pw(x) dx

) 
p

=
(∫ t

a

∣
∣ft(x)

∣
∣pw(x) dx

) 
p

=
(∫ t

a
up′

(s)W p′β (s)w(s) ds
)– 

p

×
(∫ t

a
up′

(s)W p′β (s)w(s) ds
) 

p
= . (.)

Next we show that the family of functions {ft}t∈I defined by (.) converges weakly to
zero in Lp,w. Let g ∈ Lp′ ,w–p′ = (Lp,w)∗. Then, by Hölder’s inequality and (.), we find that

∫ b

a
ft(x)g(x) dx ≤

(∫ t

a

∣
∣ft(x)

∣
∣pw(x) dx

) 
p
(∫ t

a

∣
∣g(s)

∣
∣p′

w–p′
(s) ds

) 
p′

=
(∫ t

a

∣
∣g(s)

∣
∣p′

w–p′
(s) ds

) 
p′

. (.)
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Since g ∈ Lp′ ,w–p′ , the last integral in (.) converges to zero as t → a+, which means
weak convergence of the family of functions {ft} to zero as t → a+. Therefore, from the
compactness of the operator Tα,β from Lp,w to Lq,v it follows that

lim
t→a+

‖Tα,β ft‖q,v = . (.)

Moreover,

‖Tα,β ft‖q
q,v =

∫ b

a
v(x)

(∫ x

a

u(s)W β(s)ft(s)w(s) ds
(W (x) – W (s))–α

)q

dx

≥
∫ b

t
v(x)

(∫ t

a

u(s)W β(s)ft(s)w(s) ds
(W (x) – W (s))–α

)q

dx

≥
∫ b

t

v(x) dx
W q(–α)(x)

(∫ t

a
up′

(s)W p′β (s)w(s) ds
)– q

p

×
(∫ t

a
up′

(s)W p′β (s)w(s) ds
)q

= Aq
α,β (t). (.)

From (.) and (.) it follows that limt→a+ Aα,β (t) = .
Now, we show that limt→b– Aα,β (t) = .
From the compactness of the operator Tα,β from Lp,w to Lq,v compactness of the conju-

gate operator follows:

T∗
α,βg(s) = u(s)W p(s)w(s)

∫ b

s

g(x) dx
(W (x) – W (s))–α

from Lq′ ,v–q′ to Lp′ ,w–p′ .
For t ∈ I we introduce the family {gt}t∈I of functions:

gt(x) = χ[t,b)(x)
(∫ b

t
W q(α–)(x)v(x) dx

)– 
q′

W (q–)(α–)(x)v(x). (.)

The family {gt}t∈I of functions defined by (.) is correctly defined, since due to condition
Aα,β < ∞ the involving integrals are finite. We show that for all t ∈ I the functions gt ∈
Lq′ ,v–q′ converge weakly to zero as t → b–.

Indeed,

‖gt‖q′ ,v–q′ =
(∫ b

t

∣
∣gt(x)

∣
∣q′

v–q′
(x) dx

) 
q′

=
(∫ b

t
W q(α–)(x)v(x) dx

)– 
q′ (∫ b

t

∣
∣W (q–)(α–)(x)v(x)

∣
∣q′

v–q′
(x) dx

) 
q′

=
(∫ b

t
W q(α–)(x)v(x) dx

)– 
q′ (∫ b

t
W q(α–)(x)v(x) dx

) 
q′

= . (.)
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By using (.) with f ∈ Lq,v = (Lq′ ,v–q′ )∗ we obtain

∫ b

a
gs(x)f (x) dx ≤

(∫ b

t

∣
∣gt(x)

∣
∣q′

v– q′
q (x) dx

) 
q′ (∫ b

t

∣
∣f (x)

∣
∣qv(x) dx

) 
q

≤ ‖gt‖q′ ,v–q′
(∫ b

t

∣
∣f (x)

∣
∣qv(x) dx

) 
q

=
(∫ b

t

∣
∣f (x)

∣
∣qv(x) dx

) 
q

.

Since f ∈ Lq,v, the last integral tends to zero as t → b–, which gives the weak convergence
to zero of {gt}t∈I in Lq′ ,v–q′ as t → b–. By compactness of T∗

α,β : Lq′ ,v–q′ → Lp′ ,w–p′ it follows
that

lim
s→b–

∥
∥T∗

α,βgt
∥
∥

p′ ,w–p′ = . (.)

Furthermore, we note that

∥
∥T∗

α,βgt
∥
∥

p′ ,w–p′ =
(∫ b

a

∣
∣u(s)W β(s)w(s)

∣
∣p′

×
(∫ b

s

gt(x) dx
(W (x) – W (s))–α

)p′

w–p′ (s) ds
) 

p′

≥
(∫ t

a
up′

(s)W p′β (s)w(s)
(∫ b

t

gt(x) dx
(W (x) – W (s))–α

)p′

ds
) 

p′

≥
(∫ t

a
up′ (s)W p′β (s)w(s) ds

) 
p′ (∫ b

t
W q(α–)(x)v(x) dx

)– 
q′

×
(∫ b

t

W (q–)(α–)(x)v(x) dx
W –α(x)

)q

= Aα,β (t).

Hence, according to (.) we have lims→b– Aα,β (s) = . The proof of the necessity is com-
plete.

Sufficiency. For a < c < d < b we define

Pcf := χ(a,c]f , Pcdf := χ(c,d]f , Qdf := χ(d,b)f .

Then

f = Pcf + Pcdf + Qdf

and since PcTα,βPcd ≡ , PcTα,βQd ≡ , PcdTα,βQd ≡ , we have

Tα,β f = PcdTα,βPcdf + PcTα,βPcf + PcdTα,βPcf + QdTα,β f . (.)

We show that the operator PcdTα,βPcd is compact from Lp,w to Lq,v. Since PcdTα,βPcdf (x) =
 for x ∈ I \ (c, d), it is enough to show that the operator PcdTα,βPcd is compact from
Lp,w(c, d) to Lq,v(c, d). This, in turn, is equivalent to compactness of the operator

Tf (x) =
∫ d

c
K(x, s)f (s) ds
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from Lp(c, d) to Lq(c, d) with the kernel

K(x, s) =
u(s)W β (s)v


q (x)χ(c,d)(x – s)w


p′ (s)

(W (x) – W (s))–α
.

Let {xk}k∈Z be the sequence of points defined in the proof of Theorem .. There are points
xi, xn+, xi < xn+ such that xi ≤ c < xi+, xn < d ≤ xn+. We assume that the numbers c, d are
chosen so that xi+ < xn. Similarly to obtaining estimates of J and J in Theorem ., we
have

∫ d

c

(∫ d

c

∣
∣K(x, s)

∣
∣p′

ds
) q

p′
dx

=
∫ d

c
v(x)

(∫ x

c

up′ (s)W p′β (s)w(s) ds
(W (x) – W (s))p′(–α)

) q
p′

dx

≤
n∑

k=i

∫ xk+

xk

v(x)
[(∫ xk–

a
+

∫ x

xk–

)
up′ (s)W p′β (s)w(s) ds
(W (x) – W (s))p′(–α)

] q
p′

dx

≤ μ(n – i + )Aq
α,β < ∞,

where the constant μ does not depend on i, n.
Therefore, on the basis of the Kantarovich condition ([], p.), the operator T is com-

pact from Lp(c, d) to Lq(c, d), which is equivalent to compactness of the operator PcdTα,βPcd

from Lp,w to Lq,v.
From (.) it follows that

‖Tα,β – PcdTα,βPcd‖ ≤ ‖PcTα,βPc‖ + ‖PcdTα,βPc‖ + ‖QdTα,β‖. (.)

We will show that the right-hand side of (.) tends to zero at c → a and d → b. Then
the operator Tα,β as the uniform limit of compact operators is compact from Lp,w to Lq,v.

By using Theorem . we find that

‖PcTα,βPcf ‖q,v =
(∫ c

a
v(x)

∣
∣
∣
∣

∫ x

a

u(s)W β (s)f (s)w(s) ds
(W (x) – W (s))–α

∣
∣
∣
∣

q

dx
) 

q

� sup
a<z<c

(∫ z

a
up′

(s)W p′β (s)w(s) ds
) 

p′

×
(∫ c

z
v(x)W q(α–)(x) dx

) 
q
‖f ‖p,w

≤ sup
a<z<c

Aα,β (z)‖f ‖p,w.

Consequently, ‖PcTα,βPc‖ � supa<z<c Aα,β (z). Hence,

lim
c→a+

‖PcTα,βPc‖ � lim
c→a+

sup
a<z<c

Aα,β (z) = lim
z→a+

Aα,β (z) = . (.)

To estimate ‖PcdTα,βPc‖ we assume that vε(x) = v(x) for x ∈ (c, d] and vε(x) = εqv(x) for
x ∈ (a, c], uε(s) = u(s) for s ∈ (a, c] and uε(s) = εu(s) for s ∈ (c, d], where  > ε > . Obviously,
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the function uε is non-increasing on I . Then, according to Theorem ., we obtain

‖PcdTα,βPc‖q,v =
(∫ d

c
v(x)

∣
∣
∣
∣

∫ c

a

u(s)W β (s)f (s)w(s) ds
(W (x) – W (s))–α

∣
∣
∣
∣

q

dx
) 

q

≤
(∫ d

a
vε(x)

∣
∣
∣
∣

∫ x

a

uε(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

∣
∣
∣
∣

q

dx
) 

q

� Aε
α,β‖f ‖p,w, (.)

where

Aε
α,β = sup

a<z<d

(∫ d

z
W q(α–)(x)vε(x) dx

) 
q
(∫ z

a
up′

ε (s)W p′β (s)w(s) ds
) 

p′
.

We estimate the expression Aε
α,β from the above as follows:

Aε
α,β ≤ sup

a<z<c

(∫ d

c
W q(α–)(x)v(x) dx + εq

∫ c

z
W q(α–)(x)v(x) dx

) 
q

×
(∫ z

a
up′

(s)W p′β (s)w(s) ds
) 

p′

+ sup
c<z<d

(∫ d

z
W q(α–)(x)v(x) dx

) 
q

×
(∫ c

a
up′ (s)W p′β (s)w(s) ds + εp′

∫ z

c
up′ (s)W p′β (s)w(s) ds

) 
p′

≤ sup
a<z<c

(∫ d

c
W q(α–)(x)v(x) dx

)(∫ z

a
up′

(s)W p′β (s)w(s) ds
)

+ εAα,β

+ sup
c<z<d

(∫ d

z
W q(α–)(x)v(x) dx

) 
q
(∫ c

a
up′

(s)W p′β (s)w(s) ds
) 

p′
+ εAα,β

≤ 
(
Aα,β (c) + εAα,β

)
. (.)

Since the left side of (.) does not depend on ε > , substituting (.) in (.) and
letting ε → , we get

‖PcdTα,βPcf ‖ � Aα,β (c)‖f ‖p,w.

Therefore ‖PcdTα,βPc‖ � Aα,β (c) and we conclude that

lim
c→a+

‖PcdTα,βPc‖ � lim
c→a+

Aα,β (c) = . (.)

Next, arguing as above we find that

‖QdTα,β f ‖q,v =
(∫ b

d
v(x)

∣
∣
∣
∣

∫ x

a

u(s)W β(s)f (s)w(s) ds
(W (x) – W (s))–α

∣
∣
∣
∣

q

dx
) 

q

� sup
d<z<b

Aα,β (z)‖f ‖p,w.
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Consequently,

lim
d→b–

‖QdTα,β‖ ≤ lim
d→b–

sup
d<z<b

Aα,β (z) = lim
z→b–

Aα,β (z) = . (.)

From (.), (.) and (.) it follows that the right-hand side of (.) tends to zero as
c → a+ and d → b–. The proof is complete. �

Proof of Theorem . In the case b < ∞ and  < q < p < ∞ the statement of Theorem .
follows from the Ando theorem and its generalizations []. Therefore, we only need to
prove Theorem . in the case a = , b = ∞ and  < q < p < ∞.

Necessity. Let the operator Tα,β be compact from Lp,w to Lq,v. Then the operator is
bounded. Hence, by Theorem ., Bα,β < ∞.

Sufficiency. Let Bα,β < ∞. Here Tα,β f = PdTα,βPdf + QdTα,β f . Therefore

‖Tα,β – PdTα,βPd‖ ≤ ‖QdTα,β‖. (.)

Since d < ∞, the operator PdTα,βPd is compact from Lp,w(, d) to Lq,v(, d), which is equiv-
alent to its compactness from Lp,w to Lq,v. We show that the right-hand side of (.) tends
to zero as d → ∞. Then the operator Tα,β is compact from Lp,w to Lq,v as the uniform limit
of compact operators.

Let  > ε > . To estimate ‖QdTα,β f ‖ we suppose that vε(x) = v(x) for x ∈ [d,∞) and
vε(x) = εqv(x) for x ∈ (, d). Using the relations Bα,β ≈ B̃α,β (see Remark .), in view of
Theorem ., we have

‖QdTα,β f ‖ ≤
(∫ ∞

a
vε(x)

∣
∣
∣
∣

∫ x

a

u(s)W β (s)f (s)w(s) ds
(W (x) – W (s))–α

∣
∣
∣
∣

q

dx
) 

q

� B̃ε
α,β‖f ‖p,w

or

‖QdTα,β‖ � B̃ε
α,β , (.)

where

B̃ε
α,β =

(∫ ∞

a

(∫ ∞

z
W q(α–)(x)vε(x) dx

) q
p–q

×
(∫ z

a
up′

(s)W p′β (s)w(s) ds
) q(p–)

p–q
W q(α–)(z)vε(z) dz

) p–q
pq

.

Passing to the limit ε → +, from (.) it follows that

‖QdTα,β‖ �
(∫ ∞

d

(∫ ∞

z
W q(α–)(x)v(x) dx

) q
p–q

×
(∫ z

a
up′

(s)W p′β (s)w(s) ds
) q(p–)

p–q
W q(α–)(z)v(z) dz

) p–q
pq

.
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Hence,

lim
d→∞

‖QdTα,β‖ = . (.)

Obviously, (.) implies that the right-hand side of (.) tends to zero as d → ∞. The
proof is complete. �

5 Some dual results
Here we consider the dual operator K∗

α,β defined by

K∗
α,βg(s) =

∫ b

s

u(s)W β (s)g(x)v(x) dx
(W (x) – W (s))–α

(.)

and its mapping properties from Lp,v to Lq,w.
We define

A∗
α,β (z) :=

(∫ z

a
uq(s)W qβ(s)w(s) ds

) 
q
(∫ b

z
W p′(α–)(x)v(x) dx

) 
p′

,

A∗
α,β = sup

z∈I
A∗

α,β (z).

Our first main result here reads as follows.

Theorem . Let  < α < ,  < p ≤ q < 
–α

and β ≥ . Let u be a non-increasing function
on I . Then the operator K∗

α,β defined by (.)
(i) is bounded from Lp,v to Lq,w if and only if A∗

α,β < ∞ and moreover, ‖K∗
α,β‖ ≈ A∗

α,β ;
(ii) is compact from Lp,v to Lq,w if and only if A∗

α,β < ∞ and

lim
z→a+

A∗
α,β (z) = lim

z→b–
A∗

α,β (z) = .

Proof The operator K∗
α,β acting from Lp,v to Lq,w is conjugate to the operator

Kα,β f (x) = v(x)
∫ x

a

u(s)W β(s)f (s) ds
(W (x) – W (s))–α

acting from Lq′ ,w–q′ to Lp′ ,v–p′ , which is equivalent to the action of the operator Tα,β

from Lq′ ,w to Lp′ ,v. Consequently, the operator K∗
α,β is bounded and compact from Lp,v

to Lq,w if and only if the operator Tα,β is, respectively, bounded and compact from Lq′ ,w
to Lp′ ,v. Moreover, ‖K∗

α,β‖ = ‖Tα,β‖. Since, by the conditions of Theorem . we have

α

< q′ ≤ p′ < ∞, the statements (i) and (ii) in Theorem . follow directly from Theo-
rem . and Theorem .. The proof is complete. �

Similarly, in view of Theorem . we have the following.

Theorem . Let  < α < ,  < q < min{p, 
α– }, p >  and β ≥ . Let u be a non-increasing

function on I . Then the operator K∗
α,β defined by (.) is bounded and compact from Lp,v to
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Lq,w if and only if B∗
α,β < ∞, where

B∗
α,β =

(∫ b

a

(∫ b

z
W p′(α–)(x)v(x) dx

) q(p–)
p–q

(∫ z

a
uq(s)W qβ(s)w(s) ds

) q
p–q

× uq(s)W qβ(s)w(s) ds
) p–q

pq
.

Theorems . and . imply especially the following new information in the theory of
Hardy type inequalities.

Theorem . Let  < α < , β ≥  and u be a non-increasing function on I . Then

(∫ b

a

(
K∗

α,β f (x)
)qw(x) dx

) 
q

≤ C
(∫ b

a

(
f (x)

)pv(x) dx
) 

p
(.)

holds if and only if
(a) A∗

α,β < ∞ for the case  < p ≤ q ≤ 
–α

,
(b) B∗

α,β < ∞ for the case  < q < min(p, 
α– ), p > .

Moreover, for the best constant C in (.) it yields C ≈ A∗
α,β in case (a) and C ≈ B∗

α,β in
case (b).

Theorem . supplements the results of [].

6 Applications
By applying our results in special cases we obtain both new and well-known results. Here
we just consider the Riemann-Liouville, Erdelyi-Kober, and Hadamard operators men-
tioned in our introduction. We use the weight functions ρ and ω and consider these op-
erators on the forms Ĩα , Ẽα,γ and H̃α defined by

Ĩαf (x) := ρ(x)
[
Iα(f ω)

]
(x),

Ẽα,γ f (x) := ρ(x)
[
Eα,γ (f ω)

]
(x),

H̃αf (x) := ρ(x)
[
Hα(f ω)

]
(x),

where ρ and ω are almost everywhere positive functions locally summable on I with de-
grees q and p′, respectively.

The action of the operator Tα,β from Lp,v to Lq,w is equivalent to the action of the operator

T̃α,β f (x) = v

q (x)

∫ x

a

u(s)W β(s)w

p′ (s)f (s) ds

(W (x) – W (s))–α

from Lp to Lq. Therefore, in the case W (x) = x we have ρ(x) = v

q (x), ω(x) = u(x)xβ and

Ĩαf (x) = ρ(x)
∫ x

a

ω(s)f (s) ds
(x – s)–α

.
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If W (x) = xσ , σ > , then u(s)W β(s)w

p′ (s) = u(s)sσβ– σ–

p′ = u(s)sσγ +σ–, where γ = β – σ–
σp .

Consequently, ρ(x) = v

q (x), ω(s) = u(s) and

Ẽα,γ f (x) = ρ(x)
∫ x

a

ω(s)sσγ +σ–f (s) ds
(xσ – sσ )–α

.

Now, we assume that a >  and W (x) = ln x
a . Then u(s)W β (s)w


p′ (s) = u(s)(ln s

a )β ( a
s )


p′ =

a

p′ u(s)s


p (ln s

a )β 
s . In this case ρ(x) = v


q (x), ω(s) = u(s)s


p (ln s

a )β and

H̃αf (x) = ρ(x)
∫ x

a

ω(s)f (s) ds
s(ln x

s )–α
.

Below we present statements for boundedness and compactness of the operators Ĩα ,
Ẽα,γ and H̃α from Lp to Lq. These statements are consequences of Theorems ., ., .,
and ..

We define

A
α(z) :=

(∫ b

z

(
ρ(x)xα–)q dx

) 
q
(∫ z

a
ωp′

(s) ds
) 

p′
, A

α := sup
z∈I

A
α(z),

B
α :=

(∫ b

a

(∫ b

z

∣
∣ρ(x)xα–∣∣q dx

) p
p–q

(∫ z

a
ωp′ (s) ds

) p(q–)
p–q

ωp′ (z) dz
) p–q

pq
.

Corollary . Let  < α < , β ≥  and ω(s) = u(s)sβ . Let u be a non-increasing function
on I . Then:

(i) for 
α

< p ≤ q < ∞ the operator Ĩα is bounded from Lp to Lq if and only if A
α < ∞ and,

moreover, ‖̃Iα‖ ≈ A
α ; it is compact from Lp to Lq if and only if A

α < ∞ and
limz→a+ A

α(z) = limz→b– A
α(z) = ;

(ii) for  < q < p < ∞ and p > 
α

the operator Ĩα is bounded (compact if b < ∞ or b = ∞
and  ≤ q < p < ∞) from Lp to Lq if and only if B

α < ∞.

Remark . Corollary . generalizes the results of Theorems  and ,  and  in [],
where the case β =  was considered. Even in this case the results of Corollary . are
different (and in a sense simpler to use) than those in [], because in [] the statements are
given in terms of two expressions while here we only need one condition.

We define

A
α,γ (z) :=

(∫ b

z

∣
∣ρ(x)xσ (α–)∣∣q dx

) 
q
(∫ z

a

∣
∣ω(s)sσγ +σ–∣∣p′

ds
) 

p′
,

A
α,γ := sup

z∈I
A

α,γ (z),

B
α,γ :=

(∫ b

a

(∫ b

z

∣
∣ρ(x)xσ (α–)∣∣q dx

) p
p–q

×
(∫ z

a

∣
∣ω(s)sσγ +σ–∣∣p′

ds
) p(p–)

p–q ∣
∣ω(z)zσγ +σ–∣∣p′

dz
) p–q

pq
.
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Corollary . Let  < α < , σ > , β ≥  and γ = β – σ–
σp . Let ω be a non-increasing

function on I . Then:
(i) for 

α
< p ≤ q < ∞ the operator Ẽα,γ is bounded from Lp to Lq if and only if A

α,γ < ∞
and, moreover, ‖Ẽα,γ ‖ ≈ A

α,γ ; it is compact from Lp to Lq if and only if A
α,γ < ∞ and

limz→a+ A
α,γ (z) = limz→b– A

α,γ (z) = ;
(ii) for  < q < p < ∞ and p > 

α
the operator Ẽα,γ is bounded (compact if b < ∞ or b = ∞

and  ≤ q < p < ∞) from Lp to Lq if and only if B
α,γ < ∞.

To formulate statements corresponding to the operator H̃α we define

A
α(z) :=

(∫ b

z

∣
∣
∣
∣ρ(x)

(

ln
x
a

)α–∣∣
∣
∣

q

dx
) 

q
(∫ z

a
ωp′

(s) ds
) 

p′
, A

α := sup
z∈I

A
α(z),

B
α :=

(∫ b

a

(∫ b

z

∣
∣
∣
∣ρ(x)

(

ln
x
a

)α–∣∣
∣
∣

q

dx
) p

p–q
(∫ z

a
ωp′

(s) ds
) p(q–)

p–q
ωp′

(z) dz
) p–q

pq
.

Corollary . Let a > ,  < α < , β ≥  and ω(s) = u(s)s

p (ln s

a )β . Let u be a non-
increasing function on I . Then:

(i) for 
α

< p ≤ q < ∞ the operator H̃α is bounded from Lp to Lq if and only if A
α < ∞

and, moreover, ‖H̃α‖ ≈ A
α ; it is compact from Lp to Lq if and only if A

α < ∞ and
limz→a+ A

α(z) = limz→b– A
α(z) = ;

(ii) for  < q < p < ∞ and p > 
α

the operator H̃α is bounded (compact if b < ∞ or b = ∞
and  ≤ q < p < ∞) from Lp to Lq if and only if B

α < ∞.

Finally, we consider the operator Ĩ∗
αg(s) = ρ(s)[I∗

α(gω)](s), s ∈ I , acting from Lp to Lq,
where I∗

α is the Weyl operator

I∗
αg(s) =

∫ b

s

g(x) dx
(x – s)–α

.

The action of the operator K∗
α,β from Lp,v to Lq,w is equivalent to the action of the operator

K̃∗
α,βg(s) = w


q (s)u(s)W β(s)

∫ b

s

v

p′ (x)g(x) dx

(W (x) – W (s))–α

from Lp to Lq. Therefore, when W (x) = x we have

ρ(s) = u(s)sβ , ω(x) = v

p′ (x),

Ĩ∗
αg(s) = ρ(s)

∫ b

s

ω(x)g(x) dx
(x – s)–α

.

We define

A∗
α(z) :=

(∫ z

a
ρq(s) ds

) 
q
(∫ b

z

∣
∣ω(x)xα–∣∣p′

dx
) 

p′
, A∗

α := sup
z∈I

A∗
α(z),

B∗
α :=

(∫ b

a

(∫ b

z

∣
∣ω(x)xα–∣∣p′

dx
) q(p–)

p–q
(∫ z

a
ρq(s) ds

) q
p–q

ρq(z) dz
) p–q

pq
.
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From Theorems . and . we have the following result.

Corollary . Let  < α < , β ≥  and ρ(s) = u(s)sβ . Let u be a non-increasing function
on I . Then:

(i) for  < p ≤ q < 
–α

the operator Ĩ∗
α is bounded from Lp to Lq if and only if A∗

α < ∞
and, moreover, ‖̃Iα‖ ≈ A∗

α ; it is compact from Lp to Lq if and only if A∗
α < ∞ and

limz→a+ A∗
α(z) = limz→b– A∗

α(z) = ;
(ii) for  < q < {min(p, 

–α
)} < ∞ and p >  the operator Ĩ∗

α is bounded (compact) from Lp

to Lq if and only if B∗
α < ∞.

Remark . From the results in Corollary .-. follow some corresponding Hardy type
inequalities, which seem to be new even as they are special cases of our Theorems .
and ..
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