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Abstract
In this paper, we study the complete moment convergence of the sums of ρ̃-mixing
sequences which are double-indexed randomly weighted and stochastically
dominated by a random variable X . Under the different moment conditions on X and
weights, many complete moment convergence and complete convergence results
are obtained. Moreover, some simulations are given for illustration.
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1 Introduction
Let {Xn, n ≥ } be a random variable sequence defined on a fixed probability space
(�,F , P). Denote FS = σ (Xi, i ∈ S ⊂N). For given sub-σ -algebras B,R of F , let

ρ(B,R) = sup
X∈L(B),Y∈L(R)

|EXY – EXEY |
(Var X · Var Y )/ .

Define

ρ̃(k) = supρ(FS,FT ),

where the supremum is taken over all finite subsets S, T ⊂N such that

dist(S, T) = min
j∈S,h∈T

|j – h| ≥ k, k ≥ .

Obviously, one has  ≤ ρ̃(k + ) ≤ ρ̃(k) ≤  and ρ̃() = .

Definition  A sequence of random variables {Xn, n ≥ } is said to be a ρ̃-mixing sequence
if there exists k ∈N such that ρ̃(k) < .

The concept of ρ̃-mixing random variables dates back to Stein []. Bradley [] studied the
properties of ρ̃-mixing random variables and obtained the central limit theorem. There
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are many examples of the structure of ρ̃-mixing random variables. Let {en, n ≥ } be a
sequence of independent identically distributed (i.i.d.) random variables with zero mean
and finite variance. For n ≥ , let Xn =

∑p
i= cien–i, where p is a positive integer and ci are

constants, i = , , , . . . , p. It is known that {Xn} is a moving average process with order p.
It can be checked that {Xn} is a ρ̃-mixing process. Moreover, if {Xn} is a strictly stationary,
finite-state, irreducible, and aperiodic Markov chain, then it is a ρ̃-mixing sequence (see
Bradley []). There are many results for ρ̃-mixing sequences; see Peligrad and Gut []
and Utev and Peligrad [] for the moment inequalities, Sung [] and Hu et al. [] for the
inverse moments, Yang et al. [] for the nonlinear regression model, Wang et al. [] for
the Bahadur representation, etc.

On the one hand, since Hsu and Robbins [] gave the concept of complete convergence,
it has been an important basic tool to study the convergence in probability and statistics.
Baum and Katz [] extended the complete convergence of Hsu and Robbins [], Chow
[] first investigated the complete moment convergence. Many authors extend the results
of complete convergence from the independent case to the dependent cases. For the strong
convergence, complete convergence and the applications for NOD sequences, we can refer
to Sung [, ], Wu [], Chen et al. [] among others. Similarly, for NSD sequences, they
are referenced by Shen et al. [], Wang et al. [], Deng et al. [], Shen et al. [], Wang
et al. [] among others. For END sequences, we can refer to Wang et al. [], Hu et al.
[], Wang et al. [], etc. For more results of strong convergence, complete convergence
and the applications, one can refer to Hu et al. [], Rosalsky and Volodin [], Wang et
al. [], Wu et al. [], Yang et al. [], Yang and Hu [], Wang et al. [] and so on. In
addition, for ρ̃-mixing sequences, we can refer to Kuczmaszewska [], An and Yuan [],
Wang et al. [], Sung [], Wu et al. [] for the study of convergence and applications.

On the other hand, there are many authors who study the convergence of random vari-
ables which are randomly weighted. For example, Thanh and Yin [] established the al-
most sure and complete convergence of randomly weighted sums of independent random
elements in Banach spaces; Thanh et al. [] investigated complete convergence of the
randomly weighted sums of ρ̃-mixing sequences and gave the application to linear-time-
invariant systems; Cabrera et al. [] investigated the conditional mean convergence and
conditional almost sure convergence for randomly weighted sums of dependent random
variables; Shen et al. [] obtained the conditional convergence for randomly weighted
sums of random variables based on conditional residual h-integrability. For randomly
weighted sums of martingales differences, Yang et al. [] and Yao and Lin [] obtained
some results of complete convergence and the moment of the maximum normed sums.
For the tail behavior and ruin theory of randomly weighted sums of random variables, we
can refer to Gao and Wang et al. [], Tang and Yuan [], Leng and Hu [], Yang et al.
[], Mao and Ng [] and the references therein.

For n ≥ , let Sn =
∑n

i= AniXi, where {Xi} is a ρ̃-mixing sequence and {Ani} are the
double-indexed randomly weights. Inspired by the papers above, we study the com-
plete moment convergence of the sums Sn of ρ̃-mixing sequences {Xi} which are double-
indexed randomly weighted and stochastically dominated by a random variable X. Under
the different moment conditions on X and weights, many complete moment convergence
results are obtained. Moreover, some simulations are given for illustration. For the de-
tails, please see our results and simulations in Section . Some lemmas are presented in
Section . Finally, the proofs of the main results are presented in Section . For a given ρ̃-
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mixing sequence of random variables {Xn, n ≥ }, denote the dependence coefficient ρ̃(k)
by ρ̃(X, k). In addition, for convenience, let C, C, C, . . . be some positive constants, which
are independent of n and may have different values in different expressions, x+ = max (x, )
and x– = max(–x, ).

2 Some lemmas
Lemma . (Utev and Peligrad []) Let  ≤ r < , p ≥ , and k be a positive integer. Assume
that {Xn, n ≥ } is a mean zero sequence of ρ̃-mixing random variables satisfying ρ̃(X, k) ≤
r. Let E|Xn|p < ∞ for all n ≥ . Then there exists a positive constant C not depending on n
such that

E

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

Xi

∣
∣
∣
∣
∣

p)

≤ C

{ n∑

i=

E|Xi|p +

( n∑

i=

Var(Xi)

)p/}

.

Lemma . (Thanh et al. []) Let  ≤ r <  and k be a positive integer. Let X = {Xn, n ≥ }
and Y = {Yn, n ≥ } be two sequences of ρ̃-mixing random variables satisfying ρ̃(X, k) ≤ r
and ρ̃(Y , k) ≤ r, respectively. Suppose that f : R×R → R is a Borel function. Assume that
X is independent of Y . Then the sequence f (X, Y ) = {f (Xn, Yn), n ≥ } is also a ρ̃-mixing
sequence of random variables satisfying ρ̃(f (X, Y ), k) ≤ r.

Lemma . (Sung []) Let {Xi,  ≤ i ≤ n} and {Yi,  ≤ i ≤ n} be the sequences of random
variables. Then, for any q > , ε > , and a > ,

E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

(Xi + Yi)

∣
∣
∣
∣
∣

– εa

)+

≤
(


εq +


q – 

)


aq– E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

Xi

∣
∣
∣
∣
∣

q)

+ E

(

max
≤k≤n

∣
∣
∣
∣
∣

k∑

i=

Yi

∣
∣
∣
∣
∣

)

.

Lemma . (Adler and Rosalsky [] and Adler et al. []) Let {Xn, n ≥ } be a sequence
of random variables, which is stochastically dominated by a random variable X, i.e.

sup
n≥

P
(|Xn| > x

) ≤ CP
(|X| > x

)
, ∀x ≥ .

Then, for any α >  and b > , the following two statements hold:

E
[|Xn|αI

(|Xn| ≤ b
)] ≤ C

{
E
[|X|αI

(|X| ≤ b
)]

+ bαP
(|X| > b

)}
,

E
[|Xn|αI

(|Xn| > b
)] ≤ CE

[|X|αI
(|X| > b

)]
.

Consequently, E[|Xn|α] ≤ CE|X|α for all n ≥ .

3 Main results and simulations
Theorem . Let α > /,  < p < ,  ≤ r < , and k be a positive integer. Assume that
{Xn, n ≥ } is a mean zero sequence of ρ̃-mixing random variables with ρ̃(X, k) ≤ r, which is
stochastically dominated by a random variable X with E|X|p < ∞. Let {Ani,  ≤ i ≤ n, n ≥ }
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be a triangular array of random variables. Suppose that, for all n ≥ , the sequence An =
{Ani,  ≤ i ≤ n} is independent of the sequence {Xn, n ≥ } and satisfies ρ̃(An, k) ≤ r and

n∑

i=

EA
ni = O(n). (.)

Then, for all ε > ,

∞∑

n=

nαp––αE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

– εnα

)+

< ∞ (.)

and so

∞∑

n=

nαp–P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

> εnα

)

< ∞. (.)

Theorem . Let α > /, p ≥ ,  ≤ r < , and k be a positive integer. Assume that
{Xn, n ≥ } is a mean zero sequence of ρ̃-mixing random variables with ρ̃(X, k) ≤ r, which is
stochastically dominated by a random variable X with E|X|p < ∞. Let {Ani,  ≤ i ≤ n, n ≥ }
be a triangular array of random variables. Suppose that, for all n ≥ , the sequence An =
{Ani,  ≤ i ≤ n} is independent of the sequence {Xn, n ≥ } and satisfies ρ̃(An, k) ≤ r and

n∑

i=

E|Ani|q = O(n), for some q >
(αp – )

α – 
. (.)

Then, for all ε > , (.) holds and so (.) also holds.

For the case  ≤ l < , we take p = l and α = /p in Theorem . and obtain following
result.

Theorem . Let  ≤ l < ,  ≤ r < , and k be a positive integer. Assume that {Xn, n ≥ }
is a mean zero sequence of ρ̃-mixing random variables with ρ̃(X, k) ≤ r, which is stochasti-
cally dominated by a random variable X with E|X|l < ∞. Let {Ani,  ≤ i ≤ n, n ≥ } be a tri-
angular array of random variables. Suppose that, for all n ≥ , the sequence An = {Ani,  ≤
i ≤ n} is independent of the sequence {Xn, n ≥ } and satisfies ρ̃(An, k) ≤ r and

n∑

i=

E|Ani|q = O(n), for some q >
l

 – l
. (.)

Then, for all ε > ,

∞∑

n=

n–/lE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

– εn/l

)+

< ∞ (.)

and

∞∑

n=

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

> εn/l

)

< ∞, (.)
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which implies the Marcinkiewicz-Zygmund-type strong law of large numbers

lim
n→∞


n/l

n∑

i=

AniXi = , a.s. (.)

When α ≥  and E|X| < ∞, we have the following result.

Theorem . Let α ≥ ,  ≤ r < , and k be a positive integer. Assume that {Xn, n ≥ } is a
sequence of ρ̃-mixing random variables with ρ̃(X, k) ≤ r, which is stochastically dominated
by a random variable X with E|X| < ∞. Suppose that EXn =  for all n ≥  if α = . Let
{Ani,  ≤ i ≤ n, n ≥ } be a triangular array of random variables. Suppose that, for all n ≥ ,
the sequence An = {Ani,  ≤ i ≤ n} is independent of the sequence {Xn, n ≥ } and satisfies
ρ̃(An, k) ≤ r and (.) holds. Then, for all ε > , we have

∞∑

n=

nα–P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

> εnα

)

< ∞. (.)

Remark . In Theorem . of Thanh et al. [], the authors obtained the complete
convergence results of (.) in Theorems . and ., and (.) and (.) in Theorem ..
But we also obtain the complete moment convergence results of (.) in Theorems .
and ., and (.) in Theorem .. Meanwhile, we have the complete convergence result
(.) in Theorem . under the first moment condition on X, so we extend the results
of Thanh et al. []. In addition, if Ani ≡ , then Wang et al. [] established (.) and
(.) for ϕ-mixing sequences (see Corollaries . and . of Wang et al. []). Similarly,
if Ani = ani are constant weights in (.) and (.), then Yang et al. [] obtained (.),
(.), and (.) for martingale differences (see Theorem  and Corollary  of Yang et al.
[]). Therefore, we extend the results of Wang et al. [] and Yang et al. [] to ρ̃-mixing
sequences which are double-indexed randomly weighted. Moreover, some simulations are
presented to illustrate (.).

Simulation . On the one hand, with all n ≥ , define Xn =
∑p

i= cien–i for some positive
integer p and positive constants ci, i = , , , . . . , p, {εi} are independent random variables.
So {Xn} is a m-dependent sequence, which is also a ρ̃-mixing sequence. For example with
n ≥ , let

Xn = .en + .en– + .en– + .en– + .en–, (.)

where {ei} are i.i.d. random variables such as e ∼ N(,σ ) with σ  >  or e ∼ U(–a, a)
with a > . On the other hand, there are two cases of assumptions on {Ani,  ≤ i ≤ n, n ≥ }:

() For all n ≥ , let {Ani,  ≤ i ≤ n} be i.i.d. random variables satisfying A ∼ t(m) with
m > , which are also independent of {ei}.
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Figure 1 The Box plots for normal distribution
and t distribution.

Figure 2 The Box plots for normal distribution
and t distribution.

() For all n ≥ , let An, An, . . . , Ann are independent of {ei} and (An, An, . . . , Ann) ∼
Nn(,�), where  is the zero vector,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

 ρ ρ  · · ·    
ρ  ρ ρ · · ·    
ρ ρ  ρ · · ·    
 ρ ρ  · · ·    
...

...
...

...
...

...
...

...
    · · ·  ρ ρ 
    · · · ρ  ρ ρ

    · · · ρ ρ  ρ

    · · ·  ρ ρ 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

n×n

,

and – < ρ < .

Using MATLAB software, we make the Box plots to illustrate


n/l

n∑

i=

AniXi → , n → ∞. (.)

For l = ., the distributions e ∼ N(, ), A ∼ t(), A ∼ t(), and sample size n =
, , . . . , ,, we repeat the experiments , times and obtain the Box plots such
as in Figures  and . In Figures  and , the label of the y-axis is the value of (.) and
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Figure 3 The Box plots for uniform distribution
and multivariate normal distribution.

Figure 4 The Box plots for uniform distribution
and multivariate normal distribution.

the label of the x-axis is the sample size n, by repeating the experiments , times. By
Figures  and , for the cases of l = ., e ∼ N(, ), A ∼ t(), and A ∼ t(), it can
be found that the medians are close to  and their variation ranges become smaller as
the sample size n increases. Comparing Figure  with , the variation range of Figure  is
smaller than that of Figure , which can be explained by the variance of t() being smaller
than that of t().

Similarly, for l = ., l = ., e ∼ U(–, ), A ∼ Nn(,�) with ρ = –. and A ∼
Nn(,�) with ρ = ., we establish the Figures  and . By Figures  and , it is also seen
that the medians are close to  and their variation range becomes smaller as the sample
size n increases.

4 The proofs of main results

Proof of Theorem . For all n ≥ , let Xni = XiI(|Xi| ≤ nα), X̃ni = XiI(|Xi| > nα),  ≤ i ≤ n.
Obviously, for  ≤ i ≤ n, AniXi decomposes as

AniXi = AniXni + AniX̃ni

=
[
AniXni – E(AniXni)

]
+ E(AniXni) + AniX̃ni. (.)

Then, by (.) and Lemma . with a = nα and q = , we have
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∞∑

n=

nαp––αE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

– εnα

)+

≤ C

∞∑

n=

nαp––αE

(

max
≤j≤n

( j∑

i=

[
AniXni – E(AniXni)

]
))

+
∞∑

n=

nαp––αE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniX̃ni

∣
∣
∣
∣
∣

)

+
∞∑

n=

nαp––α

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

E(AniXni)

∣
∣
∣
∣
∣

)

:= I + I + I. (.)

By (.) and Hölder’s inequality, it is easy to establish that

n∑

i=

E|Ani| = O(n). (.)

Since for all n ≥ , {Ani,  ≤ i ≤ n} is independent of the sequence {Xn, n ≥ }, then by
Markov’s inequality, (.), Lemma ., E|X|p < ∞, and p > , we obtain

I ≤
∞∑

n=

nαp––α

n∑

i=

E|Ani|E|Xi|I
(|Xi| > nα

)

≤ C

∞∑

n=

nαp––αE
[|X|I(|X| > nα

)]

= C

∞∑

n=

nαp––α

∞∑

m=n
E
[|X|I(m < |X|/α ≤ m + 

)]

= C

∞∑

m=

E
[|X|I(m < |X|/α ≤ m + 

)] m∑

n=

nα(p–)–

≤ C

∞∑

m=

mαp–αE
[|X|I(m < |X|/α ≤ m + 

)] ≤ CE|X|p < ∞. (.)

By the independence and EXi = , we have E(AniXi) = EAniEXi = , which implies

E(AniXni) = EAniE(Xi – X̃ni) = –EAniE
(
XiI

(|Xi| > nα
))

,  ≤ i ≤ n.

Therefore, by Lemma . and the proof of (.), it follows that

I =
∞∑

n=

nαp––α

∣
∣
∣
∣
∣

n∑

i=

[
–EAniE

(
XiI

(|Xi| > nα
))]

∣
∣
∣
∣
∣

≤
∞∑

n=

nαp––α

n∑

i=

E|Ani|E
[|Xi|I

(|Xi| > nα
)] ≤ CE|X|p < ∞. (.)

By Lemma ., we find that AX = {[AniXni –E(AniXni)],  ≤ i ≤ n} is also a mean sequence of
ρ̃-mixing random variables with ρ̃(AX, k) ≤ r. Then, by Lemma . with p = , Lemma .,
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and (.), we establish that

I ≤ C

∞∑

n=

nαp––α

n∑

i=

E(AniXni) = C

∞∑

n=

nαp––α

n∑

i=

EA
niEX

ni

≤ C

∞∑

n=

nαp––αE
[|X|I

(|X| ≤ nα
)]

+ C

∞∑

n=

nαp–P
(|X| > nα

)

:= CI + CI. (.)

By p < ,α > / and E|X|p < ∞, it can be checked that

I =
∞∑

n=

nαp––α

n∑

i=

E
[
XI

(
(i – )α < |X| ≤ iα

)]

=
∞∑

i=

E
[
XI

(
(i – )α < |X| ≤ iα

)] ∞∑

n=i

nα(p–)–

≤ C

∞∑

i=

E
[|X|p|X|–pI

(
(i – )α < |X| ≤ iα

)]
iαp–α

≤ CE|X|p < ∞. (.)

In addition, by the proof of (.), we have

I ≤
∞∑

n=

nαp––αE
[|X|I(|X| > nα

)] ≤ CE|X|p < ∞. (.)

Consequently, combining (.) with (.)-(.), we get (.) immediately. Moreover, by
Remark . of Sung [], (.) also holds true. �

Proof of Theorem . We use the same notation as in the proof of Theorem .. Obvi-
ously, by p ≥ , it is easy to see that q > (αp – )/(α – ) ≥ . Consequently, by Hölder’s
inequality and (.), it follows that

n∑

i=

E|Ani| = O(n) and
n∑

i=

EA
ni = O(n). (.)

From (.), (.), (.), and (.), we have I < ∞ and I < ∞. So we have to prove I < ∞
under the conditions of Theorem .. Since q > , by an argument similar to the proof of
(.), by Lemma ., we have

I ≤ C

∞∑

n=

nαp––qα

n∑

i=

E
∣
∣AniXni – E(AniXni)

∣
∣q

+ C

∞∑

n=

nαp––qα

( n∑

i=

E
[
AniXni – E(AniXni)

]
)q/

:= CI + CI. (.)
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For p ≥ , E|X|p < ∞ implies EX < ∞. Thus, by (.) and Lemma ., we have

I ≤ C

∞∑

n=

nαp––qα

( n∑

i=

EA
niEX

)q/

≤ C

∞∑

n=

nαp––qα+q/ < ∞, (.)

by the fact q > (αp – )/(α – ). Moreover, by Lemma . and (.),

I ≤ C

∞∑

n=

nαp––qαE
[|X|qI

(|X| ≤ nα
)]

+ C

∞∑

n=

nαp–P
(|X| > nα

)

≤ C

∞∑

n=

nαp––qαE
[|X|qI

(|X| ≤ nα
)]

+ C

∞∑

n=

nαp––αE
[|X|I(|X| > nα

)]

:= CI + CI. (.)

By p ≥  and α > /, it follows that (αp – )/(α – ) – p ≥ , which yields q > p. So, by
E|X|p < ∞,

I =
∞∑

n=

nαp––qα

n∑

i=

E
[|X|qI

(
(i – )α < |X| ≤ iα

)]

=
∞∑

i=

E
[|X|qI

(
(i – )α < |X| ≤ iα

)] ∞∑

n=i

nα(p–q)–

≤ C

∞∑

i=

E
[|X|p|X|q–pI

(
(i – )α < |X| ≤ iα

)]
iαp–qα

≤ CE|X|p < ∞. (.)

It follows from (.) that

I =
∞∑

n=

nαp––αE
[|X|I(|X| > nα

)] ≤ CE|X|p < ∞. (.)

Consequently, by (.) and (.)-(.), we obtain I < ∞. So we have (.). Similarly,
combining Remark . of Sung [] with (.), we obtain (.). �

Proof of Theorem . On the one hand, by p = l, α = /p, we have αp = . On the other
hand, by the fact  ≤ l < , we have that (.) is the same as (.). Then, as an application
of Theorem ., we obtain (.) immediately. Moreover, by (.) with αp = , we establish
(.). Finally, by the Borel-Cantelli lemma, (.) holds true. �

Proof of Theorem . It is easy to see that

P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXi

∣
∣
∣
∣
∣

> εnα

)

≤
n∑

i=

P
(|Xi| > nα

)
+ P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

AniXni

∣
∣
∣
∣
∣

> εnα

)

, (.)
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where Xni = XiI(|Xi| ≤ nα). If α > , then by Lemma ., E|X| < ∞, and (.), we obtain


nα

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

E(AniXni)

∣
∣
∣
∣
∣

=


nα
max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

[
EAniEI

(|Xi| ≤ nα
)]

∣
∣
∣
∣
∣

≤ C

nα

n∑

i=

E|Ani|
{

E
[|X|I(|X| ≤ nα

)]
+ nαE

[
I
(|X| > nα

)]}

≤ Cn–αE|X| → , as n → ∞. (.)

If α = , then by EXi = ,  ≤ i ≤ n, Lemma ., and E|X| < ∞, we obtain


nα

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

E[AniXni]

∣
∣
∣
∣
∣

=

n

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

[
–E(Ani)E

(
XiI

(|Xi| > n
))]

∣
∣
∣
∣

≤ C

n

n∑

i=

E|Ani|E
[|X|I(|X| > n

)]

≤ CE
[|X|I(|X| > n

)] → , as n → ∞. (.)

Moreover,

∞∑

n=

nα–
n∑

i=

P
(|Xi| > nα

) ≤ C

∞∑

n=

nα–P
(|X| > nα

) ≤ CE|X| < ∞. (.)

So, by (.)-(.), to prove (.), it suffices to show that

I∗ :=
∞∑

n=

nα–P

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

[
AniXni – E(AniXni)

]
∣
∣
∣
∣
∣

>
εnα



)

< ∞.

Obviously, by Markov’s inequality and the proofs of (.), (.), and (.), we establish
that

I∗ ≤ 
ε

∞∑

n=

n––αE

(

max
≤j≤n

∣
∣
∣
∣
∣

j∑

i=

[
AniXni – E(AniXni)

]
∣
∣
∣
∣
∣

)

≤ C

∞∑

n=

n––αE
[
XI

(|X| ≤ nα
)]

+ C

∞∑

n=

nα–P
(|X| > nα

) ≤ CE|X| < ∞.

Hence, the proof of the theorem is concluded. �
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