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Abstract
In this paper, we introduce the binomial sequence spaces br,s0 and br,sc of nonabsolute
type which include the spaces c0 and c, respectively. Also, we prove that the spaces
br,s0 and br,sc are linearly isomorphic to the spaces c0 and c, in turn, and we investigate
some inclusion relations. Moreover, we obtain the Schauder bases of those spaces
and determine their α-, β-, and γ -duals. Finally, we characterize some matrix classes
related to those spaces.
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1 The basic definitions and notations
Let w be the set of all real (or complex) valued sequences. Then w becomes a vector space
under point-wise addition and scalar multiplication. A sequence space is a vector sub-
space of w. We use the notations of �∞, c, c, and �p for the spaces of all bounded, null,
convergent, and absolutely p-summable sequences, respectively, where  ≤ p < ∞.

A Banach sequence space is called a BK-space provided each of the maps pn : X −→ C

defined by pn(x) = xn is continuous for all n ∈ N []. By taking into account the definition
above, one can say that the sequence spaces �∞, c, and c are BK-spaces with their usual
sup-norm defined by ‖x‖∞ = supk∈N |xk| and �p is a BK-space with its �p-norm defined by

‖x‖�p =

( ∞∑
k=

|xk|p
) 

p

,

where p ∈ [,∞).
Let A = (ank) be an infinite matrix with complex entries and x ∈ w, then the A-transform

of x is defined by

(Ax)n =
∞∑

k=

ankxk (.)

and is assumed to be convergent for all n ∈N []. For brevity in the notation, we henceforth
prefer that the summation without limits runs from  to ∞.
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Let X and Y be two arbitrary sequence spaces and A = (ank) be an infinite matrix. Then
the domain of A is denoted by XA and defined by

XA =
{

x = (xk) ∈ w : Ax ∈ X
}

, (.)

which is also a sequence space and the class of all matrices A such that X ⊂ YA is denoted
by (X : Y ). Moreover, A = (ank) is called conservative if c ⊂ cA. Furthermore, A = (ank)
is called m-multiplicative, if limn→∞(Ax)n = m limn→∞ xn for all x ∈ c and the class of all
m-multiplicative matrices is denoted by (X : Y )m. Specially, A = (ank) is called regular, if
A = (ank) is -multiplicative.

The spaces of all bounded and convergent series are denoted by bs and cs and are defined
by aid of the matrix domain of the summation matrix S = (snk) such that bs = (�∞)S and
cs = cS , respectively, where S = (snk) is defined by

snk =

⎧⎨
⎩,  ≤ k ≤ n,

, k > n,

for all k, n ∈N. A matrix A = (ank) is said to be a triangle if ank =  for k > n and ann �=  for
all n, k ∈N. Furthermore, a triangle matrix uniquely has an inverse, which is also a triangle
matrix.

The theory of matrix transformations is of great importance in the summability which
was obtained by Cesàro, Borel, Riesz and others. Therefore, many authors have defined
new sequence spaces by using this theory. For example, (�∞)Nq and cNq in [], Xp and X∞
in [], c̃ and c̃ in [], ar

 and ar
c in []. Moreover, many authors have constructed new

sequence spaces by using especially the Euler matrix. For instance, er
 and er

c in [], er
p and

er∞ in [] and [], er
(�), er

c(�), and er∞(�) in [], er
(�(m)), er

c(�(m)) and er∞(�(m)) in [],
er

(B(m)), er
c(B(m)), and er∞(B(m)) in [], er

(�, p), er
c(�, p), and er∞(�, p) in [], er

(u, p) and
er

c(u, p) in [].
In this paper, we introduce the binomial sequence spaces br,s

 and br,s
c of nonabsolute

type which include the spaces c and c, respectively. Also, we prove that the spaces br,s
 and

br,s
c are linearly isomorphic to the spaces c and c, in turn and investigate some inclusion

relations. Moreover, we obtain the Schauder basis of those spaces and determine their α-,
β-, and γ -duals. Finally, we characterize some matrix classes related to those spaces.

2 The binomial sequence spaces of nonabsolute type
In this chapter, we introduce the binomial sequence spaces br,s

 and br,s
c of nonabsolute

type and prove that the spaces br,s
 and br,s

c are linearly isomorphic to the spaces c and c,
respectively. Moreover, we deal with an inclusion relation related to those spaces.

Let r, s ∈R and r + s �= . Then the binomial matrix Br,s = (br,s
nk) is defined by

br,s
nk =

⎧⎨
⎩


(s+r)n

(n
k
)
sn–krk ,  ≤ k ≤ n,

, k > n,

for all k, n ∈ N. For sr >  we have the following properties of the binomial matrix Br,s =
(br,s

nk):
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(i) supn∈N
∑n

k= | 
(s+r)n

(n
k
)
sn–krk| < ∞,

(ii) limn→∞ 
(s+r)n

(n
k
)
sn–krk = ,

(iii) limn→∞
∑n

k=


(s+r)n
(n

k
)
sn–krk = .

Therefore, the binomial matrix Br,s = (br,s
nk) is regular for sr > . Unless stated otherwise,

we assume that sr > .
Here, we would like to emphasize that if we take r + s = , we obtain the Euler matrix

Er = (er
nk). So the binomial matrix Br,s = (br,s

nk) generalizes the Euler matrix Er = (er
nk).

By considering the definition of the binomial matrix Br,s = (br,s
nk), we define the binomial

sequence spaces br,s
 and br,s

c as follows:

br,s
 =

{
x = (xk) ∈ w : lim

n→∞


(s + r)n

n∑
k=

(
n
k

)
sn–krkxk = 

}

and

br,s
c =

{
x = (xk) ∈ w : lim

n→∞


(s + r)n

n∑
k=

(
n
k

)
sn–krkxk exists

}
.

The sequence spaces br,s
 and br,s

c can be redefined by using the notion of (.) as follows:

br,s
 = (c)Br,s and br,s

c = cBr,s . (.)

It is clear that br,s
 ⊂ br,s

c . Let x = (xk) be an arbitrary sequence. Then the Br,s-transform of
x = (xk) is defined by

(
Br,sx

)
k = yk =


(s + r)k

k∑
j=

(
k
j

)
sk–jrjxj (.)

for all k ∈N.
Now, we want to start with the following theorem related to the theory of BK-spaces,

which is of great importance in the characterization of matrix transformations between
sequence spaces.

Theorem . The binomial sequence spaces br,s
 and br,s

c are BK-spaces with their sup-
norms defined by

‖x‖br,s


= ‖x‖br,s
c =

∥∥Br,sx
∥∥∞ = sup

n∈N

∣∣(Br,sx
)

n

∣∣.
Proof The sequence spaces c and c are BK-spaces according to their sup-norms. More-
over, the binomial matrix Br,s = (br,s

nk) is a triangle matrix and (.) holds. By combining
these three facts and Theorem .. of Wilansky [], we deduce that the binomial se-
quence spaces br,s

 and br,s
c are BK-spaces. This completes the proof. �

Let |x| = (|xk|) for all k ∈N. Because of ‖x‖br,s


�= ‖|x|‖br,s


and ‖x‖br,s
c �= ‖|x|‖br,s

c for at least
one sequence in the binomial sequence spaces br,s

 and br,s
c , br,s

 and br,s
c are sequence spaces

of nonabsolute type.
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Theorem . The binomial sequence spaces br,s
 and br,s

c are linearly isomorphic to the
sequence spaces c and c, respectively.

Proof Because a repetition of similar statements is redundant, the proof of the theorem
is given for only the space br,s

c . For this purpose, we should show the existence of a linear
bijection between the spaces br,s

c and c. Let us consider the transformation L defined by
L : br,s

c −→ c, L(x) = Br,sx. Then it is obvious that, for all x ∈ br,s
c , L(x) = Br,sx ∈ c. Moreover,

it is clear that L is a linear transformation and x =  whenever L(x) = . Because of this, L
is injective.

Let y = (yk) ∈ c be given. We define a sequence x = (xk) by

xk =

rk

k∑
j=

(
k
j

)
(–s)k–j(s + r)jyj

for all k ∈N. Then we obtain

(
Br,sx

)
n =


(s + r)n

n∑
k=

(
n
k

)
sn–krkxk

=


(s + r)n

n∑
k=

(
n
k

)
sn–k

k∑
j=

(
k
j

)
(–s)k–j(s + r)jyj

= yn

for all n ∈ N. So, Br,sx = y and since y ∈ c, we conclude that Br,sx ∈ c. Hence, we deduce
that x ∈ br,s

c and L(x) = y. On account of this L is surjective.
Moreover, we have for all x ∈ br,s

c

∥∥L(x)
∥∥∞ =

∥∥Br,sx
∥∥∞ = ‖x‖br,s

c .

So L is norm preserving. Consequently, L is a linear bijection. Then we obtain the fact that
the spaces br,s

c and c are linearly isomorphic, that is, br,s
c

∼= c. This completes the proof. �

Theorem . The inclusions er
 ⊂ br,s

 and er
c ⊂ br,s

c strictly hold, where er
 and er

c are Euler
sequence spaces of nonabsolute type.

Proof If r + s = , we obtain Er = Br,s. So, the inclusion er
 ⊂ br,s

 holds. Assume that  < r < 
and s = . Now, we define a sequence x = (xk) such that xk = (– 

r )k for all k ∈ N. Then it is
obvious that x = ((– 

r )k) /∈ c and Erx = ((––r)k) /∈ c. On the other hand, Br,sx = (( 
+r )k) ∈

c. As a consequence, x = (xk) ∈ br,s
 \ er

.
This shows that the inclusion er

 ⊂ br,s
 strictly holds. Another part of the theorem can

be proved in a similar way. This completes the proof. �

Theorem . The inclusions c ⊂ br,s
 and c ⊂ br,s

c strictly hold. But the sequence spaces
br,s

 and �∞ do not include each other.

Proof If we consider regularity of the binomial matrix Br,s, we can easily conclude that
Br,sx ∈ c whenever x ∈ c. This means that x ∈ br,s

 for all x ∈ c, namely c ⊂ br,s
 . Now
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we define a sequence u = (uk) such that uk = (–)k for all k ∈ N. Then we obtain Br,sx =
(( s–r

s+r )k) ∈ c. As a consequence, u is in br,s
 but not in c. So, the inclusion c ⊂ br,s

 is strict.
By using a similar way, one can show that the inclusion c ⊂ br,s

c is strict.
To prove the second part of the theorem, we consider the sequences e = (, , , . . .) and

v = (vk) defined by vk = (– s
r )k for all k ∈ N, where | s

r | > . Then we obtain Br,se = e and
Br,sv = (, , , . . .). Hence, e is in �∞ but not in br,s

 and v is in br,s
 but not in �∞. This shows

that the sequence spaces br,s
 and �∞ overlap but these spaces do not include each other.

This completes the proof. �

Definition . (see []) An infinite matrix A = (ank) is called coregular, if A = (ank) is
conservative and χ (A) = limn→∞

∑
k ank –

∑
k limn→∞ ank �= .

By taking into account the regularity of the binomial matrix Br,s = (br,s
nk), we obtain

χ (Br,s) =  �= . So, the binomial matrix Br,s = (br,s
nk) is coregular.

Definition . (see []) Let A = (ank) be an infinite matrix with bounded columns. Then
A is defined to be of type M if tA =  implies t =  for every t ∈ �.

Definition . (see []) For a conservative triangle A = (ank), c ⊂ cA. Its closure c̄ in cA is
called the perfect part of cA. If c is dense, A = (ank) is called perfect.

Now we give the following two theorems, which are needed.

Theorem . (see []) A regular triangle A = (ank) is of type M if there exists a (zi) ∈ �∞
with zi �= zj (i �= j) and ‖(zi)‖∞ <  such that

∀i ∈N,∃(xki )k ∈ �∞, ∀n ∈ N : zn
i =

n∑
k=

ankxki .

Theorem . (see []) A coregular triangle is perfect if and only if it is of type M.

Theorem . Each regular binomial matrix Br,s = (br,s
nk) is perfect.

Proof We know that the regular binomial matrix Br,s = (br,s
nk) is coregular. So, for the proof,

we should show that Br,s = (br,s
nk) is of type M.

Let Dr,s = (dr,s
nk) be the inverse of Br,s = (br,s

nk). Then we have for every z ∈C

uk(z) =
k∑

v=

dr,s
kv zv =


rk

k∑
v=

(
k
v

)
(–s)k–v(s + r)vzv

=

rk

(
(s + r)z – s

)k .

One can easily verify that supk∈N sup{|uk(z)| : |(s + r)z – s| < |r|} ≤  and that

n∑
k=

br,s
nkuk(z) =

n∑
k=

br,s
nk

k∑
v=

dr,s
kv zv = zn
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for all z ∈ C. Therefore, if we choose a sequence (zi) with zi �= zj (i �= j), ‖(zi)‖∞ <  and
|(s + r)zi – s| < |r| (i ∈ N), then xki = uk(zi) (i, k ∈ N) fit Theorem .. Thus, the regular
binomial matrix Br,s = (br,s

nk) is perfect. This completes the proof. �

3 The Schauder basis and α-, β-, γ - and continuous duals
In this chapter, we construct the Schauder basis and designate the α-, β-, γ -, and contin-
uous duals of the binomial sequence spaces br,s

 and br,s
c .

Given a normed space (X,‖ · ‖X), a set {xk : xk ∈ X, k ∈ N} is called a Schauder basis for
X if for all x ∈ X there exist unique scalars λk , k ∈N, such that x =

∑
k λkxk ; i.e.,

∥∥∥∥∥x –
n∑

k=

λkxk

∥∥∥∥∥
X

−→ 

as n → ∞ [].

Theorem . Let μk = {Br,sx}k for all k ∈ N and l = limk→∞ μk . We define a sequence
g(k)(r, s) = {g(k)

n (r, s)}n∈N as follows:

g(k)
n (r, s) =

⎧⎨
⎩,  ≤ n < k,


rn

(n
k
)
(–s)n–k(s + r)k , n ≥ k,

for all fixed k ∈N. Then the following statements hold.
(a) The sequence {g(k)(r, s)}k∈N is a Schauder basis for the binomial sequence space br,s

 ,
and every x ∈ br,s

 has a unique representation of the form

x =
∑

k

μkg(k)(r, s).

(b) The set {e, g()(r, s), g()(r, s), . . .} is a Schauder basis for the binomial sequence space
br,s

c , and any x ∈ br,s
c has a unique representation of the form

x = le +
∑

k

[μk – l]g(k)(r, s).

Proof (a) Obviously we have

Br,sg(k)(r, s) = e(k) ∈ c, k ∈N,

where e(k) is a sequence with  in the kth place and zeros elsewhere. So, the inclusion
{g(k)(r, s)} ⊂ br,s

 holds.
Given a sequence x = (xk) ∈ br,s

 and m ∈N, we define

x[m] =
m∑

k=

μkg(k)(r, s).

Then, if we apply the binomial matrix Br,s = (br,s
nk) to x[m], we have

Br,sx[m] =
m∑

k=

μkBr,sg(k)(r, s) =
m∑

k=

(
Br,sx

)
ke(k)
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and

{
Br,s(x – x[m])}

n =

⎧⎨
⎩,  ≤ n ≤ m,

(Br,sx)n, n > m,

for all m, n ∈ N.
Now, let ε >  be arbitrarily given. Then we may choose a m ∈N such that

∣∣(Br,sx
)

m

∣∣ <
ε



for all m ≥ m. Therefore,

∥∥x – x[m]∥∥
br,s


= sup

n≥m

∣∣(Br,sx
)

n

∣∣ < sup
n≥m

∣∣(Br,sx
)

n

∣∣ ≤ ε


< ε

for all m ≥ m. This shows that

x =
∑

k

μkg(k)(r, s).

To complete the proof of part (a), we should show the uniqueness of this representation.
We assume that there exists a representation

x =
∑

k

λkg(k)(r, s).

Due to the transformation, L defined in the proof of Theorem . is continuous; we can
write

(
Br,sx

)
n =

∑
k

λk
{

Br,sg(k)(r, s)
}

n =
∑

k

λke(k)
n = λn

for all n ∈N, which contradicts the fact that (Br,sx)n = μn for all n ∈N. Hence, every x ∈ br,s


has a unique representation, as desired.
(b) We know that {g(k)(r, s)} ⊂ br,s

 and Br,se = e ∈ c. So, the inclusion {e, g(k)(r, s)} ⊂ br,s
c

trivially holds.
For a given arbitrary sequence x = (xk) ∈ br,s

c , we define a sequence y = (yk) such that
y = x – le, where l = limk→∞ μk . Then it is obvious that y = (yk) ∈ br,s

 . By considering the
part (a), one can say that y = (yk) has a unique representation. This implies that x = (xk)
has a unique representation, as desired in part (b). This completes the proof. �

By taking into account the results of Theorems . and ., we give the following result.

Corollary . The binomial sequence spaces br,s
 and br,s

c are separable.

Let X and Y be two arbitrary sequence spaces. The multiplier space of X and Y is sym-
bolized with M(X, Y ) and defined by

M(X, Y ) =
{

y = (yk) ∈ w : xy = (xkyk) ∈ Y for all x = (xk) ∈ X
}

.
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By considering the definition of M(X, Y ), the α-, β-, and γ -duals of a sequence space X
are defined by

Xα = M(X,�), Xβ = M(X, cs) and Xγ = M(X, bs),

respectively.
By X∗, we denote the space of all bounded linear functionals on X. X∗ is called the con-

tinuous dual of a normed space X.
Let us give some properties to use in the next lemma:

sup
K∈F

∑
n

∣∣∣∣∑
k∈K

ank

∣∣∣∣
p

< ∞, (.)

sup
n∈N

∑
k

|ank| < ∞, (.)

lim
n→∞ ank = αk for each k ∈N, (.)

lim
n→∞

∑
k

ank = α, (.)

where F is the collection of all finite subsets of N and  ≤ p < ∞.

Lemma . (see []) Let A = (ank) be an infinite matrix. Then the following statements
hold:

(i) A = (ank) ∈ (c : �) = (c : �) ⇔ (.) holds with p = ;
(ii) A = (ank) ∈ (c : c) ⇔ (.) and (.) hold;
(iii) A = (ank) ∈ (c : c) ⇔ (.), (.) and (.) hold;
(iv) A = (ank) ∈ (c : �∞) = (c : �∞) ⇔ (.) holds;
(v) A = (ank) ∈ (c : �p) ⇔ (.) holds with  ≤ p < ∞.

Theorem . The α-dual of the binomial sequence spaces br,s
 and br,s

c is

vr,s
 =

{
a = (ak) ∈ w : sup

K∈F

∑
n

∣∣∣∣∑
k∈K

(
n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣ < ∞
}

.

Proof Let us consider the sequence x = (xn) that is defined in the proof of Theorem ..
Then, for given a = (an) ∈ w, we obtain

anxn =
n∑

k=

(
n
k

)
(–s)n–kr–n(r + s)kanyk =

(
Ur,sy

)
n

for all n ∈N. By considering the equality above, we deduce that ax = (anxn) ∈ � whenever
x = (xk) ∈ br,s

 or br,s
c if and only if Ur,sy ∈ � whenever y = (yk) ∈ c or c. This shows that

a = (an) ∈ {br,s
 }α = {br,s

c }α if and only if Ur,s ∈ (c : �) = (c : �). If we combine this and
Lemma .(i), we obtain

a = (an) ∈ {
br,s


}α =

{
br,s

c
}α ⇔ sup

K∈F

∑
n

∣∣∣∣∑
k∈K

(
n
k

)
(–s)n–kr–n(r + s)kan

∣∣∣∣ < ∞.

Therefore, {br,s
 }α = {br,s

c }α = vr,s
 . This completes the proof. �
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Theorem . Define the sets vr,s
 , vr,s

 , and vr,s
 by

vr,s
 =

{
a = (ak) ∈ w : sup

n∈N

n∑
k=

∣∣∣∣∣
n∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

∣∣∣∣∣ < ∞
}

,

vr,s
 =

{
a = (ak) ∈ w :

∞∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj exists for each k ∈N

}
,

vr,s
 =

{
a = (ak) ∈ w : lim

n→∞

n∑
k=

n∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj exists

}
.

Then the following statements hold.
(I) {br,s

 }β = vr,s
 ∩ vr,s

 ,
(II) {br,s

c }β = vr,s
 ∩ vr,s

 ∩ vr,s
 ,

(III) {br,s
 }γ = {br,s

c }γ = vr,s
 .

Proof Let a = (an) ∈ w. If we bear in mind the sequence x = (xk) that is defined in proof of
Theorem ., we have

n∑
k=

akxk =
n∑

k=

[

rk

k∑
j=

(
k
j

)
(–s)k–j(r + s)jyj

]
ak

=
n∑

k=

[ n∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kaj

]
yk

=
(
Hr,sy

)
n

for all n ∈N, where the matrix Hr,s = (hr,s
nk) is defined by

hr,s
nk =

⎧⎨
⎩

∑n
j=k

( j
k
)
(–s)j–kr–j(r + s)kaj,  ≤ k ≤ n,

, k > n,

for all k, n ∈N. Then:
(I) ax = (akxk) ∈ cs whenever x = (xk) ∈ br,s

 if and only if Hr,sy ∈ c whenever y = (yk) ∈
c. This shows that a = (ak) ∈ {br,s

 }β if and only if Hr,s ∈ (c : c). If we combine this and
Lemma .(ii), we conclude that

sup
n∈N

n∑
k=

∣∣hr,s
nk

∣∣ < ∞, (.)

lim
n→∞ hr,s

nk exists for each k ∈N. (.)

These results show that {br,s
 }β = vr,s

 ∩ vr,s
 .

(II) In a similar way, we obtain a = (ak) ∈ {br,s
c }β if and only if Hr,s ∈ (c : c). If we combine

this and Lemma .(iii), we deduce that (.), (.) hold and

lim
n→∞

n∑
k=

hr,s
nk exists, (.)

which shows that {br,s
c }β = vr,s

 ∩ vr,s
 ∩ vr,s

 .
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(III) ax = (akxk) ∈ bs whenever x = (xk) ∈ br,s
 or br,s

c if and only if Hr,sy ∈ �∞ whenever
y = (yk) ∈ c or c. This means that a = (ak) ∈ {br,s

 }γ = {br,s
c }γ if and only if Hr,s ∈ (c : �∞) =

(c : �∞). By combining this and Lemma .(iv), we deduce that (.) holds. Hence, {br,s
 }γ =

{br,s
c }γ = vr,s

 . This completes the proof. �

Theorem . {br,s
 }∗ and {br,s

c }∗ are equivalent to �.

Proof To avoid a repetition of similar statements, the proof of the theorem is given for
only the binomial sequence space br,s

c . For the proof, the existence of a linear surjective
norm preserving mapping L : {br,s

c }∗ −→ � should be shown.
Suppose that f ∈ {br,s

c }∗. Now from Theorem .(b) we know that {e, g()(r, s), g()(r, s), . . .}
is a basis for br,s

c , and each x ∈ br,s
c has a unique representation of the form

x = le +
∑

k

[μk – l]g(k)(r, s).

By the linearity and continuity of f , we get

f (x) = lf (e) +
∑

k

[μk – l]f
(
g(k)(r, s)

)
(.)

for all x ∈ br,s
c . Now define a sequence x = (xk) ∈ br,s

c such that ‖x‖br,s
c =  as follows:

xk =

⎧⎨
⎩


rk

∑k
j=

(k
j
)
(–s)k–j(r + s)jsgnf (g(j)(r, s)),  ≤ k ≤ n,


rk

∑n
j=

(k
j
)
(–s)k–j(r + s)jsgnf (g(j)(r, s)), k > n,

for all k, n ∈N. Hence,

∣∣f (x)
∣∣ =

n∑
k=

∣∣f (g(k)(r, s)
)∣∣ ≤ ‖f ‖ (.)

since |f (x)| ≤ ‖f ‖ · ‖x‖ on br,s
c . It follows from (.) that

∑
k

∣∣f (g(k)(r, s)
)∣∣ = sup

n∈N

n∑
k=

∣∣f (g(k)(r, s)
)∣∣ ≤ ‖f ‖.

Now we write (.) as

f (x) = al +
∑

k

akμk ,

where

a = f (e) –
∑

k

f
(
g(k)(r, s)

)
, ak = f

(
g(k)(r, s)

)

and the series
∑

k f (g(k)(r, s)) is absolutely convergent.
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By taking into account | limk→∞(Br,sx)k| ≤ ‖x‖br,s
c = , we get

∣∣f (x)
∣∣ ≤ ‖x‖br,s

c

(
|a| +

∑
k

|ak|
)

whence

∥∥f (x)
∥∥ ≤ |a| +

∑
k

|ak| (.)

and |f (x)| ≤ ‖f ‖, so we define for all n ≥ ,

xk =

⎧⎨
⎩


rk

∑k
j=

(k
j
)
(–s)k–j(r + s)jsgnaj,  ≤ k ≤ n,


rk

∑n
j=

(k
j
)
(–s)k–j(r + s)jsgnaj + 

rk
∑k

j=n+
(k

j
)
(–s)k–j(r + s)jsgna, k > n.

Then x ∈ br,s
c ,‖x‖br,s

c = , limk→∞(Br,sx)k = sgna and so

∣∣f (x)
∣∣ =

∣∣∣∣∣|a| +
n∑

k=

|ak| + sgna
∞∑

k=n+

ak

∣∣∣∣∣ ≤ ‖f ‖.

We know that limn→∞
∑∞

k=n+ ak =  whenever a = (ak) ∈ �. Then, if we pass to the limit
as n → ∞ in the last inequality, we have

|a| +
∑

k

|ak| ≤ ‖f ‖. (.)

By combining (.) and (.), we conclude that

‖f ‖ = |a| +
∑

k

|ak|,

which is the norm on �.
Let us define a transformation L such that L : {br,s

c }∗ −→ �, L(f ) = (a, a, a, . . .). Then we
have

∥∥L(f )
∥∥ = |a| + |a| + |a| + · · · = ‖f ‖

‖L(f )‖ being the � norm. Therefore, L is norm preserving. It is obvious that L is surjective
and linear. This completes the proof. �

4 Some matrix classes related to the binomial sequence spaces
In this chapter, we characterize some matrix classes related to the binomial sequence
spaces br,s

 and br,s
c . Now, we start with two lemmas which are required in the proof of

the *theorems.

Lemma . (see []) Each matrix map between BK-spaces is continuous.

Lemma . (see []) Let X, Y be any two sequence spaces, A be an infinite matrix and B
be a triangle matrix. Then A ∈ (X : YB) if and only if BA ∈ (X : Y ).
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For brevity of notations, here and in the following, we prefer to use

tr,s
nk =

n∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kanj

for all n, k ∈N.

Theorem . Let A = (ank) be an infinite matrix with complex entries. Then the following
statements hold.

(I) A ∈ (br,s
c : �p) if and only if

sup
K∈F

∑
n

∣∣∣∣∑
k∈K

tr,s
nk

∣∣∣∣
p

< ∞, (.)

tr,s
nk exists for all k, n ∈N, (.)∑

k

tr,s
nk converges for all n ∈ N, (.)

sup
m∈N

m∑
k=

∣∣∣∣∣
m∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kanj

∣∣∣∣∣ < ∞, n ∈N, (.)

where  ≤ p < ∞.
(II) A ∈ (br,s

c : �∞) if and only if (.) and (.) hold, and

sup
n∈N

∑
k

∣∣tr,s
nk

∣∣ < ∞. (.)

Proof Given a sequence x = (xk) ∈ br,s
c , we suppose that the conditions (.)-(.) hold.

Then, by taking into account Theorem .(II), we conclude that {ank}k∈N ∈ {br,s
c }β for all

n ∈ N. Thus, the A-transform of x exists. Let us consider a matrix Ur,s = (ur,s
nk) defined by

ur,s
nk = tr,s

nk for all n, k ∈ N. Since Ur,s = (ur,s
nk) satisfies Lemma .(v), we deduce that Ur,s =

(ur,s
nk) ∈ (c : �p).
Now, we consider the following equality:

m∑
k=

ankxk =
m∑

k=

m∑
j=k

(
j
k

)
(–s)j–kr–j(r + s)kanjyk (.)

for all n, m ∈ N. If we take the limit (.) side by side as m → ∞, we obtain

∑
k

ankxk =
∑

k

tr,s
nkyk . (.)

By taking the �p-norm (.) side by side, we have

‖Ax‖�p =
∥∥Ur,sy

∥∥
�p

< ∞.

Therefore Ax ∈ �p and so A ∈ (br,s
c : �p).
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Conversely, suppose that A ∈ (br,s
c : �p). It is known that br,s

c and �p are BK-spaces. If we
combine this fact and Lemma ., we deduce that there is a constant M >  such that

‖Ax‖�p ≤ M‖x‖br,s
c (.)

for all x ∈ br,s
c .

Now, we define a sequence x = (xk) such that x =
∑

k∈K g(k)(r, s) for all fixed k ∈N, where
g(k)(r, s) = {g(k)

n (r, s)}n∈N and K ∈F . Since inequality (.) holds for all x ∈ br,s
c , we have

‖Ax‖�p =
(∑

n

∣∣∣∣∑
k∈K

tr,s
nk

∣∣∣∣
p) 

p
≤ M‖x‖br,s

c = M.

Therefore (.) holds.
According to the assumption, A can be applied to the binomial sequence space br,s

c . So,
it is trivial that the conditions (.)-(.) hold. This completes the proof of part (I).

If we take Lemma .(iv) instead of Lemma .(v), then part (II) can be proved in a
similar way. �

Theorem . Let A = (ank) be an infinite matrix with complex entries. Then, A ∈ (br,s
c : c)

if and only if (.), (.), and (.) hold, and

lim
n→∞ tr,s

nk = αk for all k ∈ N, (.)

lim
n→∞

∑
k

tr,s
nk = α. (.)

Proof Suppose that A satisfies the conditions (.), (.), (.), (.), and (.). Given an
arbitrary sequence x = (xk) ∈ br,s

c with limk→∞ xk = l, then Ax exists. Since Br,s = (br,s
nk) is

regular and y = (yk) is connected with the sequence x = (xk) by equation (.), we obtain
y = (yk) ∈ c such that limk→∞ yk = l.

By considering the conditions (.) and (.), we have

k∑
j=

|αj| ≤ sup
n∈N

∑
j

∣∣tr,s
nj

∣∣ < ∞

for all k ∈N. This shows us that (αk) ∈ �. Bearing in mind the condition (.), we have

∑
k

ankxk =
∑

k

tr,s
nk(yk – l) + l

∑
k

tr,s
nk , n ∈N. (.)

By taking into account the conditions (.), (.), and (.), if we take the limit (.)
side by side as n → ∞, we write

lim
n→∞(Ax)n =

∑
k

αk(yk – l) + lα, (.)

which means that A ∈ (br,s
c : c).
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On the contrary, suppose that A ∈ (br,s
c : c). It is well known that every convergent se-

quence is also bounded, namely c ⊂ �∞. By combining this fact and Theorem .(II), we
deduce that the necessity of the conditions (.), (.), and (.) holds. Since Ax exists
and belongs to c for all x ∈ br,s

c , if we take g(k)(r, s) = {g(k)
n (r, s)}n∈N instead of an arbitrary

sequence x = (xk), we deduce that Ag(k)(r, s) = {tr,s
nk}n∈N ∈ c for all k ∈ N. This shows us that

the necessity of (.) holds.
Moreover, if we take x = e in (.), we obtain Ax = {∑k tr,s

nk}n∈N ∈ c. The last result is the
necessity of (.). This completes the proof. �

Corollary . Let A = (ank) be an infinite matrix with complex entries. Then A ∈ (br,s
c : c)m

if and only if the conditions (.), (.), and (.) hold, and the conditions (.) and (.)
hold with αk =  for all k ∈N and α = m, in turn.

Lemma . (see []) Let A = (ank) be an infinite matrix with complex entries. Then A ∈
(br,s∞ : c) if and only if (.) and (.) hold, and

lim
n→∞

∑
k

∣∣tr,s
nk

∣∣ =
∑

k

∣∣∣ lim
n→∞ tr,s

nk

∣∣∣, (.)

lim
m→∞

∑
k

∣∣∣∣∣
m∑

j=k

(
j
k

)
(–s)j–kr–j(r + s)kanj

∣∣∣∣∣ =
∑

k

∣∣tr,s
nk

∣∣, n ∈N. (.)

Theorem . (br,s
c : c)m ∩ (br,s∞ : c) = ∅.

Proof We suppose that (br,s
c : c)m ∩ (br,s∞ : c) �= ∅. Then there is at least a matrix A = (ank)

such that the conditions of Corollary . and Lemma . hold for A = (ank). If we consider
the conditions (.) and (.), we conclude that

lim
n→∞

∑
k

∣∣tr,s
nk

∣∣ = .

This result contradicts the condition (.). So, the classes (br,s
c : c)m and (br,s∞ : c) are dis-

joint. This last step completes the proof of the theorem. �

Now, by using Lemma ., we can give some more results.

Corollary . Given an infinite matrix A = (ank) with complex entries, we define a matrix
Eu,v = (eu,v

nk ) as follows:

eu,v
nk =


(u + v)n

n∑
j=

(
n
j

)
vn–jujajk

for all n, k ∈ N, where u, v ∈ R and uv > . Then the necessary and sufficient conditions in
order that A belongs to any of the classes (br,s

c : bu,v∞ ), (br,s
c : bu,v

p ), (br,s
c : bu,v

c ) and (br,s
c : bu,v

c )m

are obtained by taking Eu,v = (eu,v
nk ) instead of A = (ank) in the required ones in Theorems

., . and Corollary ., where bu,v
p and bu,v∞ are defined in [].
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Corollary . Given an infinite matrix A = (ank) with complex entries, we define a matrix
C = (cnk) as follows:

cnk =


n + 

n∑
j=

ajk

for all n, k ∈ N. Then the necessary and sufficient conditions in order that A belongs to any
of the classes (br,s

c : X∞), (br,s
c : Xp), (br,s

c : c̃), and (br,s
c : c̃)m are obtained by taking C = (cnk)

instead of A = (ank) in the required ones in Theorems ., . and Corollary ., where Xp,
X∞, and c̃ are defined in [] and [], respectively.

Corollary . Given an infinite matrix A = (ank) with complex entries, we define two
matrices C = (cnk) and E = (enk) as follows:

cnk = ank – an+,k and enk = ank – an–,k

for all n, k ∈N. Then the necessary and sufficient conditions in order that A belongs to any of
the classes (br,s

c : �∞(�)), (br,s
c : c(�)), (br,s

c : �p(�)), and (br,s
c : c(�))m are obtained by taking

C = (cnk) or E = (enk) instead of A = (ank) in the required ones in Theorems ., . and
Corollary ., where �∞(�) and c(�) are defined in [] and �p(�) is defined in [].

Corollary . Given an infinite matrix A = (ank) with complex entries, we define a matrix
E = (enk) as follows:

enk =


n + 

n∑
j=

(
 + tj)ajk

for all n, k ∈ N, where  < t < . Then the necessary and sufficient conditions in order that A
belongs to any of the classes (br,s

c : at∞), (br,s
c : at

p), (br,s
c : at

c), and (br,s
c : at

c)m are obtained by
taking E = (enk) instead of A = (ank) in the required ones in Theorems ., . and Corol-
lary ., where at∞, at

p, and at
c are defined in [] and [], respectively.

Corollary . Given an infinite matrix A = (ank) with complex entries, we define a matrix
E = (enk) as follows:

enk =
n∑

j=

ajk

for all n, k ∈ N. Then the necessary and sufficient conditions in order that A belongs to any
of the classes (br,s

c : bs), (br,s
c : cs), and (br,s

c : cs)m are obtained by taking E = (enk) instead of
A = (ank) in the required ones in Theorems ., . and Corollary ..

5 Conclusion
By considering the definition of the binomial matrix Br,s = (br,s

nk), we deduce that Br,s = (br,s
nk)

reduces in the case r + s =  to the Er = (er
nk), which is called the method of Euler means of

order r. So, our results obtained from the matrix domain of the binomial matrix Br,s = (br,s
nk)

are more general and more extensive than the results on the matrix domain of the Euler
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means of order r. Moreover, the binomial matrix Br,s = (br,s
nk) is not a special case of the

weighed mean matrices. So, this paper filled up a gap in the existent literature.
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