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Abstract
LetW = λB + νBH be a mixed-fractional Brownian motion with Hurst index 0 < H < 1

2
and λ,ν �= 0. In this paper we study the quadratic covariation [f (W),W](H) defined by

[
f (W),W

](H)
t := lim

ε↓0
1

ν2ε2H

∫ t

0

{
f (Ws+ε) – f (Ws)

}
(Ws+ε –Ws)dηs

in probability, where f is a Borel function and ηs = λ2s + ν2s2H . For some suitable
function f we show that the quadratic covariation exists in L2(�) and the Itô formula

F(Wt) = F(0) +
∫ t

0
f (Ws)dWs +

1
2

[
f (W),W

](H)
t

holds for all absolutely continuous function F with F′ = f , where the integral is the
Skorohod integral with respect toW .
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Keywords: mixed fractional Brownian motion; Malliavin calculus; local time;
fractional Itô formula

1 Introduction
As is well known, in recent years, there has been considerable interest in studying frac-
tional Brownian motion (in short, fBm) due to its simple properties and some applications
in various scientific areas such as telecommunications, turbulence, image processing, and
finance. For some surveys on fBm we refer to Biagini et al. [], Hu [], Mishura [], Nour-
din [], Nualart [], Tudor [] and the references therein. On the other hand, in order to
make some better applications of fBm in finance, many authors have proposed to use the
mixed-fBm as stochastic models. For this purpose, we refer to Bender et al. [], Cherid-
ito [, ], El-Nouty [], He and Chen [], Mishura [], Shokrollahi and Kiliiman [],
Prakasa Rao [] and the references therein. The so-called mixed-fBm W with Hurst in-
dex H ∈ (, ) is a stationary Gaussian process with the following decomposition:

Wt = λBt + νBH
t , t ≥ ,
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where BH is a standard fBm with Hurst index H ∈ (, ), B is a standard Brownian motion
independent of BH and λ,ν ∈ R \ {}. It is important to note that Brownian motion B
in the mixed-fBm W can offset some irregularity of fBm such that the theoretical issues
for them became relatively easy and the application issues became also relatively favorable.
For example, the mixed-fBm is equivalent to a standard Brownian motion when 

 < H < .
Therefore, it seems interesting to study the mixed-fBm. In this paper, we consider the
quadratic variation of mixed-fBm W .

Recall that a fBm on R with Hurst index H ∈ (, ) is a Gaussian process BH = {BH
t , t ∈

[, T]} such that BH
 =  and

EBH
t = , E

[
BH

t BH
s
]

=


[
tH + sH – |t – s|H]

for all t, s ∈ [, T]. When H = /, BH coincides with the standard Brownian motion B,
and when H �= 

 it is neither a semi-martingale nor a Markov process. We know also that
the usual quadratic variation [BH , BH ] equals zero when H > 

 , and it does not exist when
H < 

 . However, we can easily see that

[W , W ]t =

⎧
⎪⎪⎨

⎪⎪⎩

λt, H > 
 ,

(λ + ν)t, H = 
 ,

+∞, H < 
 ,

for all t > . This simple result points out some irregularities of fBm cannot be offset by
Brownian motion when  < H < 

 . Motivated by the above fact, in this paper we consider
the substitution of quadratic variation when  < H < 

 . We shall introduce a substitution
of quadratic variation of W and study some related questions, and the idea follows from
Yan et al. []. For some continuous processes with infinite quadratic variation, Errami
and Russo [] and Russo and Vallois [] introduced the α-variation and n-covariation.

Definition . Let  < H <  and let f be a measurable function on R. Denote

Jε(f , t) :=


νε(H)∧

∫ t



{
f (Ws+ε) – f (Ws)

}
(Ws+ε – Ws) dηs (.)

for all t ∈ [, T] and ε > , where ηs = λs + νsH . The limit

[
f (W ), W

](H)
· := lim

ε↓
Jε(f , ·)

is called the fractional quadratic covariation of f (W ) and W , provided the limit, which
exists in probability.

Clearly, when H ≥ 
 the fractional quadratic covariation coincides with the usual

quadratic covariation. However, for the case  < H < 
 , the fractional quadratic covari-

ation is very different from the usual quadratic covariation. In the present paper our main
object is to introduce the existence of the fractional quadratic covariation and it is orga-
nized as follows. In Section  we present some preliminaries, and in particular we give
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some technical estimates associated with mixed-fBm. In Section , we prove the exis-
tence of the fractional quadratic covariation for  < H < 

 . To prove the existence of the
fractional quadratic covariation, we consider the decomposition


νε(H)∧

∫ t



{
f (Ws+ε) – f (Ws)

}
(Ws+ε – Ws) dηs

=


νε(H)∧

∫ t


f (Ws+ε)(Ws+ε – Ws) dηs –


νε(H)∧

∫ t


f (Ws)(Ws+ε – Ws) dηs (.)

and by estimating the two terms of the right hand side in (.), respectively, we construct
a Banach space H of measurable functions f on R such that

‖f ‖H =

√∫ T



dηs√
πηs

∫

R

∣∣f (x)
∣∣e– x

ηs dx < ∞.

We show that the fractional quadratic covariation exists in L(�) for all t ∈ [, T] if f ∈ H.
In Section , we introduce an Itô formula including the fractional quadratic covariation
and give an integral with respect to local time of mixed-fBm.

2 Stochastic calculus for mixed-fBm
In this section, we briefly recall some basic results of mixed-fBm and give some basic
estimates.

2.1 Stochastic calculus for mixed-fBm
We refer to Alós et al. [], Nualart [] and the references therein for more details.
Throughout this paper we assume that  < H < 

 is arbitrary but fixed and we let Wt =
λBt + νBH

t ,  ≤ t ≤ T be a one-dimensional mixed-fBm with Hurst index H and λ,ν �= .
Then we have

RH (t, s) := EWtWs =


λ(t ∧ s) +



ν(tH + sH – |t – s|H)

(.)

for all t, s ≥ .
Denote by E the linear space generated by the indicator functions [,t], t ∈ [, T]. Let H

and H be the completions of the linear space E with respect to the inner products

〈[,s], [,t]〉H = RH (t, s)

and

〈[,s], [,t]〉H =


(
tH + sH – |t – s|H)

,

respectively. Then H = H ∩ L([, T]). For ϕ ∈ E , by linearity and [,t] → Ba,b
t for all

t ∈ [, T], we can define the map

ϕ �→ W (ϕ) :=
∫ T


ϕ(s) dW H

s = λ

∫ t


ϕ(s) dBs + ν

∫ t


ϕ(s) dBH

s .
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Then the map is an isometry from E to the Gaussian space generated by mixed-fBm W ,
and, moreover, it can be extended to H. The map

W (ϕ) =
∫ T


ϕ(s) dWs

is called the Wiener integral of ϕ ∈H with respect to the mixed-fBm W , and we have

E
∣∣
∣∣

∫ T


ϕ(s) dWs

∣∣
∣∣



= ‖ϕ‖
H.

Consider now the set SW of smooth functionals

F = f
(
W (ϕ), W (ϕ), . . . , W (ϕn)

)
, (.)

where the function f and all its derivatives are bounded (denoted by f ∈ C∞
b (Rn)) and

ϕi ∈H. As usual, we can define the Malliavin derivative (operator) DW and the divergence
operator (the Skorohod integral) δW with respect to the mixed-fBm W . For the functional
F of the form (.) we define

DW F =
n∑

j=

∂f
∂xj

(
W (ϕ), W (ϕ), . . . , W (ϕn)

)
ϕj,

and we can show that the operator DW is a closable operator from L(�) into L(�;H).
Denote by D

, the closure of SW with respect to the norm

‖F‖, :=
√

E|F| + E‖DW F‖
H.

The operator δW is the adjoint of derivative operator DW . A random variable u in L(�;H)
belongs to the domain Dom(δW ) of the divergence operator δW , if

E
∣
∣〈DW F , u〉H

∣
∣ ≤ cu‖F‖L(�)

for every F ∈ SW , and we have D
, ⊂ Dom(δW ). In this case, the operator δW (u) is deter-

mined by the so-called duality relationship

E
[
FδW (u)

]
= E〈DW F , u〉H (.)

for any u ∈ D
,. Moreover, we can localize the operators DW and δW via their domains.

That is, if {(�n, Fn), n = , , . . .} localizes F in D
,, then DW F is defined without ambiguity

by DW F = DW Fn on �n, n ≥ , and

�n ↑ �, F = Fn, n ≥ ,

almost surely. Similarly, if {(�n, un), n = , , . . .} localizes u, then the divergence δW (u) is
defined as a random variable determined by the conditions

δW (u) = δW
(
un)
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on �n for all n ≥ . We will also use the following notations:

δW (u) =
∫ T


us ds = λ

∫ t


us dBs + ν

∫ t


us dBH

s

and
∫ t


us dW H

s = δW (u[,t])

for all t ∈ [, T]. The following Itô formula holds (see Alós et al. []).

Theorem . Let F ∈ C(R) such that

max
{∣∣F(x)

∣∣,
∣∣F ′(x)

∣∣,
∣∣F ′′(x)

∣∣} ≤ κeβx
, (.)

where κ and β are positive constants with β < 
(λT+νTH ) . Then we have

F(Wt) = F() +
∫ t



d
dx

F(Ws) ds +



∫ t



d

dx F(Ws) dηs

for all t ∈ [, T], where ηs = λs + νsH .

Finally, from Theorem . in Geman and Horowitz [] we can easily see that the mixed-
fBm W with Hurst index H ∈ (, ) admits a bi-continuous local time LH such that

LH (x, t) =
∫ t


δ(Ws – x) ds.

Thus, we can define its weighted local time as follows:

LH (x, t) =
∫ t



(
λ + HνsH–)dLH (x, ds) =

∫ t


δ(Ws – x) dηs,

where δ is the Dirac delta function (for the local time of fractional Brownian motion, see,
for example, Coutin et al. [] and Hu et al. []).

2.2 Some basic estimates
In this subsection we will introduce some inequalities associated with mixed-fBm. For
convenience, in this paper we assume that C is a positive constant and its value may be
different in different positions, and, moreover, we use also the notation F � G to denote
the following relationship:

cF(x) ≤ G(x) ≤ cF(x)

for some positive constants c and c.

Lemma . For all s ≥ r >  and  < H <  we have

ηrηs – μ � r(H)∧(s – r)(H)∧, (.)

where μ = E(WrW H
s ) and ηs = λs + νsH .
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Proof Clearly, we have

ηrηs – μ =
(
λs + νsH)(

λr + νrH)
–

(
λr +



ν(sH + rH – (s – r)H)

)

= λr(s – r) + λνrH (s – r) + λνr(s – r)H

+ ν
(

sH rH –



(
sH + rH – (s – r)H)

)

for all s ≥ r >  and  < H < . Thus, (.) follows from the estimates:

sHrH –



(
sH + rH – (s – r)H) � rH (s – r)H

for all s > r ≥ . But this is introduced in Yan et al. [] and the lemma follows. �

Lemma . Let  < H < 
 . For all  < r ≤ s ≤ T we have

ηs – μ � (s – r)H (.)

and

 ≤ ηr – μ �
(

r
s

)H

(s – r)H . (.)

Proof For (.) we have

ηs – μ = λs + νsH – λr –


ν(sH + rH – (s – r)H)

= λ(s – r) + ν
(

sH –


(
sH + rH – (s – r)H))

= λ(s – r) +


ν(sH – rH)

+


ν(s – r)H � (s – r)(H)∧.

For (.) we also have

ηr – μ = λr + νrH –
(

λr +


ν(sH + rH – (s – r)H)

)

=


ν((s – r)H – sH + rH)

=


νsH(

( – x)H –
(
 – xH))

with x = r
s . Thus, (.) follows from the estimates

( – x)H –
(
 – xH) � xH ( – x)H (.)

for all  ≤ x ≤ . But (.) can be introduced by the convergence

lim
x↓

( – x)H – ( – xH )
xH ( – x)H = , lim

x↑

( – x)H – ( – xH )
xH ( – x)H = ,
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and the continuity of the functions

x �→ ( – x)H – ( – xH )
xH ( – x)H , x �→ xH ( – x)H

( – xH ) – ( – x)H ,

with x ∈ [, ]. This completes the proof. �

Lemma . Let  < r′ < s′ < r < s and  < H < 
 . We have

∣
∣E

[
(Ws – Wr)(Ws′ – Wr′ )

]∣∣ ≤ C
(s – r)(–α)H+α(s′ – r′)(–α)H+α

(r – s′)α(–H) (.)

for all α ∈ [, ].

Proof Clearly, we have

E
[
(Ws – Wr)(Ws′ – Wr′ )

]
= νE

[(
BH

s – BH
r
)(

BH
s′ – BH

r′
)]

by the independence. Thus, the lemma follows from Yan et al. []. �

Lemma . For t > s > r >  and  < H < 
 we have

∣
∣E

[
Wt(Wt – Ws)

]∣∣ ≤ ν(t – s)H ,
∣∣E

[
Wt(Ws – Wr)

]∣∣ ≤ ν(s – r)H ,
∣∣E

[
Wr(Wt – Ws)

]∣∣ ≤ ν(t – s)H .

Proof The lemma is a simple exercise. �

Let ϕ(x, y) denote the density function of (Ws, Wr). That is,

ϕ(x, y) =


πρ
exp

{
–


ρ

(
ηrx – μxy + ηsy)

}
,

where μ = E(WsWr) and ρ = ηrηs – μ.

Lemma . Let  < H < 
 and let f ∈ C(R) have compact support. Then the estimates

∣∣E
[
f ′(Ws)f ′(Wr)

]∣∣ ≤
√

ηrηs

ρ E
[
f (Ws)f (Wr)

]

and
∣
∣E

[
f ′′(Ws)f (Wr)

]∣∣ ≤ ηr

ρ E
[
f (Ws)f (Wr)

]

hold for all  < r < s ≤ T .

Proof This a simple exercise. In fact, we have

E
[
f ′(Ws)f ′(Wr)

]
=

∫

R
f (x)f (y)

∂

∂x∂y
ϕ(x, y) dx dy

=
∫

R
f (x)f (y)

{

ρ (ηsy – μx)(ηrx – μy) +

μ

ρ

}
ϕ(x, y) dx dy
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by integration by parts. On the other hand, an elementary calculation can show that

∫

R
f (y)

(
x –

μ

ηr
y
)

ϕ(x, y) dx dy

=
ρ

ηr

∫

R

f (y)
√

πηr
e– y

ηr dy =
ρ

ηr
E
[∣∣f (Wr)

∣
∣]

and


ρ

∫

R

∣
∣f (x)f (y)(ηsy – μx)(ηrx – μy)

∣
∣ϕ(x, y) dx dy

≤
√

ηrηs

ρ

(
E
[∣∣f (Ws)

∣
∣]E

[∣∣f (Wr)
∣
∣])/

for all s > r > . This completes the first estimate and similarly, one can also obtain the
second estimate. �

3 Existence of the fractional quadratic covariation
In this section, we study the existence of the fractional quadratic covariation. Recall that

Jε(f , t) =


νεH

∫ t



{
f (Ws+ε) – f (Ws)

}
(Ws+ε – Ws) dηs

for ε >  and t ≥ , and

[
f (W ), W

](H)
t = lim

ε↓
Jε(f , t), (.)

provided the limit exists in probability, where ηt = λt + νtH .
In order to prove the main theorem we need some preliminaries.

Lemma . (Gradinaru and Nourdin []) Let g be a continuous function on R satisfying
the condition

∣
∣g(x) – g(y)

∣
∣ ≤ C

(
 + x + y)β |x – y|α , ∀x, y ∈R (.)

for some β > ,  < α ≤  and let X be a Hölder continuous paths process with index γ ∈
(, ). Suppose that V is a bounded variation continuous process such that

∥∥Xg
ε (t) – Vt

∥∥
L = O

(
εα

)
(ε → ) (.)

for some α >  and all t ≥ , where

Xg
ε (t) =

∫ t


g
(

Xs+ε – Xs

εγ

)
dVs

for t ≥ , ε > , then limε→ Xg
ε (t) = Vt a.s., for any t ≥ , and

lim
ε→

∫ t


Ysg

(
Xs+ε – Xs

εγ

)
dVs −→

∫ t


Ys dVs a.s., (.)



Gao et al. Journal of Inequalities and Applications  (2016) 2016:310 Page 9 of 20

uniformly in t on each compact interval for any continuous stochastic process {Yt : t ≥ },
provided g is non-negative.

As an immediate consequence of the above lemma, one can get the next corollary.

Corollary . Let f ∈ C(R). We have

[
f (W ), W

](H)
t =

∫ t


f ′(Ws) dηs, (.)

and, in particular, we have

[W , W ](H)
t = ηt

for all t ≥ , where ηt = λt + νtH .

Proof Denote

Z(ε, t) =


νεH

∫ t


(Ws+ε – Ws) dηs

for all  < ε < t. By Lemma . it is enough to prove the next convergence

E
(
Z(ε, t) – ηt

) = O
(
εβ

)
(ε → ) (.)

for some β > . In fact, if the convergence (.) holds, we then have

Jε(f , t) =


νεH

∫ t



{
f (Ws+ε) – f (Ws)

}
(Ws+ε – Ws) dηs

∼ 
νεH

∫ t


f ′(Ws)(Ws+ε – Ws) dηs −→

∫ t


f ′(Ws) dηs

almost surely, as ε tends to zero, by taking Ys = f ′(Ws). This gives (.).
Now, let us prove the convergence (.). Denote

Gε(s, r) = E
(
(Ws+ε – Ws) – νεH)(

(Wr+ε – Wr) – νεH)

= E
[
(Ws+ε – Ws)(Wr+ε – Wr)]

– νεH E(Ws+ε – Ws) – νεH E(Wr+ε – Wr) + νεH

for all s, r >  and ε > . Notice that

E
[
(Wr+ε – Wr)] = λε + νεH

and

E
[
(Ws+ε – Ws)(Wr+ε – Wr)] = E

[
(Ws+ε – Ws)]E

[
(Wr+ε – Wr)]

+ 
(
E
[
(Ws+ε – Ws)(Wr+ε – Wr)

])

=
(
λε + νεH) + 

(
E
[
(Ws+ε – Ws)(Wr+ε – Wr)

])



Gao et al. Journal of Inequalities and Applications  (2016) 2016:310 Page 10 of 20

for all s, r, ε > . We get

Gε(s, r) = λε + 
(
E
[
(Ws+ε – Ws)(Wr+ε – Wr)

])

for all s, r >  and ε >  and

E
(
Z(ε, t) – ηt

)

=


νεH

∫ t



∫ t


E
(
(Ws+ε – Ws) – νεH)(

(Wr+ε – Wr) – νεH)
dηs dηr

=


νεH

∫ t



∫ t


Gε(s, r) dηs dηr

=
λ

ν (ηt)ε–H +


νεH

∫ t



∫ t


E
(
E
[
(Ws+ε – Ws)(Wr+ε – Wr)

]) dηs dηr

= O
(
εβ

)
(ε → )

by the inequality (.), which gives the convergence (.) and the corollary follows. �

Now, we assume that f /∈ C(R) and discuss the existence of the fractional quadratic co-
variation [f (W ), W ](H) when  < H < 

 . Consider the set

H =
{

f : Borel functions on R such that ‖f ‖
H

:=
∫ T



∫

R

∣∣f (x)
∣∣e– x

ηs
dx dηs√

πηs
< ∞

}
.

Lemma . For  < H < 
 , the set H is a Banach space L(R,μ(dx)) with

μ(dx) = dx
∫ T


e– x

ηs
dηs√
πηs

,

and the set E of elementary functions on R is dense in H.

Our main theorem is expounded as follows.

Theorem . Let  < H < 
 and f ∈ H. Then the fractional quadratic covariation

[f (W ), W ](H) exists in L(�) and

E
∣∣[f (W ), W

](H)
t

∣∣ ≤ C‖f ‖
H

(.)

for all t ∈ [, T].

To show that the theorem holds we consider the following integrals:

Jε(, f , t) :=


νεH

∫ t


f (Ws+ε)(Ws+ε – Ws) dηs

and

Jε(, f , t) := –


νεH

∫ t


f (Ws)(Ws+ε – Ws) dηs
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for ε >  and t ∈ [, T]. Then we have

Jε(f , t) =


νεH

∫ t



{
f (Ws+ε) – f (Ws)

}
(Ws+ε – Ws) dηs

= Jε(, f , t) – Jε(, f , t) (.)

for ε > . For simplicity we let T =  and it is enough to show that the next statements
hold:

(a) for all f ∈H, t ∈ [, ] and k = , , we have

E
∣
∣Jε(k, f , t)

∣
∣ ≤ C‖f ‖

H
; (.)

(b) for all f ∈H, t ∈ [, ] and k = , , {Jε(k, f , t), ε > } is a Cauchy sequence in L(�).

Proof of Statement (a) Given f ∈ H. We have

E
∣∣Jε(, f , t)

∣∣

=


νεH

∫ t



∫ t


E
[
f (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr)

]
dηs dηr

for all ε >  and t ≥ . We need to estimate

�ε(s, r) :=
[
f (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr)

]

for all ε >  and s, r > . By approximating we may assume that f ∈ C∞
 (R) and denote

�ε(s, r, ) := E
[
f (Ws)f (Wr)

]
E
[
(Wr+ε – Wr)(Ws+ε – Ws)

]
,

�ε(s, r, ) := E
[
f ′(Ws)f ′(Wr)

]
E
[
Ws(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]
,

�ε(s, r, ) := E
[
f ′′(Ws)f (Wr)

]
E
[
Ws(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]
,

�ε(s, r, ) := E
[
f ′(Ws)f ′(Wr)

]
E
[
Wr(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]
,

�ε(s, r, ) := E
[
f (Ws)f ′′(Wr)

]
E
[
Wr(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]
,

for all ε >  and s, r > . It follows that

�ε(s, r) = E
[
f (Ws)f (Wr)(Ws+ε – Ws)δW ([r,r+ε])

]

= E
[
f (Ws)f (Wr)

]
E
[
(Wr+ε – Wr)(Ws+ε – Ws)

]

+ E
[
f ′(Ws)f (Wr)(Ws+ε – Ws)

]
E
[
Ws(Wr+ε – Wr)

]

+ E
[
f (Ws)f ′(Wr)(Ws+ε – Ws)

]
E
[
Wr(Wr+ε – Wr)

]

=
∑

j=

�ε(s, r, j)

by (.), which gives

E
∣
∣Jε(, f , t)

∣
∣ =

∑

j=


νεH

∫ t



∫ s


�ε(s, r, j) dηs dηr .
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For the first term �ε(s, r, ) we have

∣
∣E

[
(Wr+ε – Wr)(Ws+ε – Ws)

]∣∣ ≤ ε{<s–r<ε} + ν εH

(s – r)H {s–r>}

for s > r >  by Lemma . and Cauchy’s inequality. Moreover, by the fact

E
[
f (Wr)

]
=

∫

R

f (x)
√

πηr
e– x

ηr dx

≤
√

ηs√
ηr

∫

R

f (x)
√

πηs
e– x

ηs dx =
√

ηs√
ηr

E
[
f (Ws)

]
(.)

with s ≥ r > , we have also

E
∣∣f (Ws)f (Wr)

∣∣ ≤
√

E
[
f (Ws)

]
E
[
f (Wr)

]

≤ E
[
f (Ws)

]


√
ηs

ηr
(.)

for all s ≥ r > . It follows that

∣
∣�ε(s, r, )

∣
∣ ≤

(
ε{<s–r<ε} +

εH

(s – r)H {s–r>}
)

E
[
f (Ws)

]


√
ηs

ηr

for all s ≥ r >  and


εH

∫ t



∫ s



∣
∣�ε(s, r, )

∣
∣dηs dηr

=

ε

∫ ε



∫ s



∣
∣�ε(s, r, )

∣
∣dηs dηr

+

ε

∫ t

ε

∫ s–ε



∣∣�ε(s, r, )
∣∣dηs dηr +


ε

∫ t

ε

∫ s

s–ε

∣∣�ε(s, r, )
∣∣dηs dηr ≤ C‖f ‖

H

for all ε >  and  ≤ t ≤ .
Now for the second term �ε(s, r, ). By Lemma ., Lemma ., and the fact (.) we

have

∣
∣�ε(s, r, )

∣
∣ =

∣
∣E

[
Ws(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]
E
[
f ′(Ws)f ′(Wr)

]∣∣

≤ CεH
√

ηrηs

ρ

(
E
[∣∣f (Ws)

∣
∣]E

[∣∣f (Wr)
∣
∣])/,

which implies that


εH

∫ t



∫ s



∣
∣�ε(s, r, )

∣
∣dηs dηr ≤ C‖f ‖

H

for all  < ε ≤  by (.) and Lemma ..
Similarly, we can also obtain the estimates


εH

∣∣
∣∣

∫ t



∫ s


�ε(s, r, j) dηs dηr

∣∣
∣∣ ≤ C‖f ‖

H
, j = , , ,
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for all  < ε ≤  and t ∈ [, ]. Thus, we have obtained the estimate (.) for k = . In the
same way one can give (.) for k = . �

Proof of Statement (b) We need to prove

Bk(ε, ε) := E
∣∣Jε (k, f , t) – Jε (k, f , t)

∣∣ −→ , (.)

for all and t ≥  and k = , , as ε, ε ↓ . Recall that

�ε(s, r) = E
[
f (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr)

]
,

and denote

�ε,ε (s, r) = E
[
f (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr)

]

for all ε, ε, ε >  and s, r ≥ . Then we have

B(ε, ε) =


εH


∫ t



∫ t


Ef (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr) dηr dηs

–


εH
 εH



∫ t



∫ t


Ef (Ws)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr) dηr dηs

+


εH


∫ t



∫ t


Ef (Wr)f (Wr)(Ws+ε – Ws)(Wr+ε – Wr) dηr dηs

=


εH
 εH



∫ t



∫ t



{
�ε (s, r)εH

 – �ε,ε (s, r)εH


}
dηr dηs

+


εH
 εH



∫ t



∫ t



{
�ε (s, r)εH

 – �ε,ε (s, r)εH


}
dηr dηs

for all ε, ε >  and t ≥ . Thus, to show that {Jε(, f , t), ε > } is a Cauchy sequence in
L(�) we need to prove

lim
εi ,εj→


εH

i εH
j

∫ t



∫ t



{
�εi (s, r)εH

j – �ε,ε (s, r)εH
i

}
dηr dηs =  (.)

for all i, j ∈ {, } and i �= j. Without loss of generality one may assume that ε > ε and by
approximating we may also assume that f ∈ C∞

 (R). Denote

Qj(, s, r, ε) := εH
j E

[
(Wr+ε – Wr)(Ws+ε – Ws)

]

– εH E
[
(Ws+ε – Ws)(Wr+ε – Wr)

]
,

Qj(, s, r, ε) := εH
j E

[
Wr(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]

– εH E
[
BH

r
(
BH

r+ε – BH
r
)]

E
[
Wr(Ws+ε – Ws)

]
,

Qj(, s, r, ε) := εH
j E

[
Ws(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]

– εH E
[
Ws(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]
,

Qj(, s, r, ε) := εH
j E

[
Wr(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]
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– εH E
[
Wr(Wr+ε – Wr)

]
E
[
Ws(Ws+ε – Ws)

]
,

Qj(, s, r, ε) := εH
j E

[
Ws(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]

– εH E
[
Ws(Wr+ε – Wr)

]
E
[
Wr(Ws+ε – Ws)

]
,

for j ∈ {, } and ε, ε, ε, s, r > . From the proof of Statement (a) it follows that

�ε,ε (s, r) = E
[
f (Ws)f (Wr)

]
E
[
(Wr+ε – Wr)(Ws+ε – Ws)

]

+ E
[
f ′(Ws)f ′(Wr)

]
E
[
Wr(Ws+ε – Ws)

]
E
[
Ws(Wr+ε – Wr)

]

+ E
[
f ′′(Ws)f

(
BH

r
)]

E
[
Ws(Ws+ε – Ws)

]
E
[
Ws(Wr+ε – Wr)

]

+ E
[
f ′(Ws)f ′(Wr)

]
E
[
Ws(Ws+ε – Ws)

]
E
[
Wr(Wr+ε – Wr)

]

+ E
[
f (Ws)f ′′(Wr)

]
E
[
Wr(Ws+ε – Ws)

]
E
[
Wr(Wr+ε – Wr)

]

and

εH
j �εi (s, r) – εH

i �ε,ε (s, r)

= E
[
f (Ws)f (Wr)

]
Qj(, s, r, εi)

+ E
[
f (Ws)f ′′(Wr)

]
Qj(, s, r, εi) + E

[
f ′′(Ws)f (Wr)

]
Qj(, s, r, εi)

+ E
[
f ′(Ws)f ′(Wr)

](
Qj(, s, r, εi) + Qj(, s, r, εi)

)

with i �= j and i, j ∈ {, }. Now, let us prove the convergence (.) in three steps. We only
need to show that (.) holds with j =  and i =  by symmetry.

Step I. The convergence

lim
ε,ε→


εH

 εH


∫ t



∫ t


E
[
f (Ws)f (Wr)

]
Q(, s, r, ε) dηr dηs =  (.)

holds. Clearly, by Cauchy’s inequality we have

∣∣E
[
(Ws+εi – Ws)(Wr+εj – Wr)

]∣∣ ≤
√

E
[
(Ws+εi – Ws)E(Wr+εj – Wr)

]

≤ (
λε–H

i + ν)(λε–H
j + ν)εH

i εH
j ≤ C

εH+θ
i εH

j

|s – r|H+θ

for  < |s – r| < εi ∧ εj ≤  and  < θ <  – H , where i, j ∈ {, }. It follows from (.) with
α = H+θ

–H that

∣
∣E

[
(Ws+ε – Ws)(Wr+ε – Wr)

]∣∣ ≤ CεH+θ


|s – r|H+θ

and

∣
∣E

[
(Ws+ε – Ws)(Wr+ε – Wr)

]∣∣ ≤ CεH+θ
 εH


|s – r|H+θ
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for all |s – r| >  and  < θ <  – H , which gives


εH

 εH


∣∣Q(, s, r, ε)
∣∣ ≤ Cεθ


|s – r|H+θ

−→  (ε, ε → )

for all r, s >  and  < θ <  – H .
On the other hand, from the above proof we have also


εH

 εH


∣∣Q(, s, r, ε)
∣∣ ≤ 

εH


∣∣E
[
(Ws+ε – Ws)(Wr+ε – Wr)

]∣∣

+


εH
 εH



∣
∣E

[
(Ws+ε – Ws)(Wr+ε – Wr)

]∣∣

≤ C
|s – r|H

for all |s – r| >  and ε, ε > , and

∫ t



∫ t




|s – r|H

∣
∣E

[
f (Ws)f (Wr)

]∣∣dηr dηs ≤ C‖f ‖
H

for any  < ε, ε < . Thus, Lebesgue’s dominated convergence theorem implies that the
convergence (.) holds.

Step II. The convergence

lim
ε,ε→


εH

 εH


∫ t



∫ t


E
[
f (Ws)f ′′(Wr)

]
Q(, s, r, ε) dηr dηs =  (.)

holds. By Lemma ., we have


εH

 εH


∣
∣Q(, s, r, ε)

∣
∣ ≤ 

and
∫ t



∫ t



∣
∣E

[
f (Ws)f ′′(Wr)

]∣∣dηr dηs ≤ C‖f ‖
H

for ε, ε > . On the other hand, by Lemma . and the fact

bγ – aγ ≤ bγ –θ (b – a)θ (.)

with b > a >  and  ≥ θ ≥ γ ≥ , we have


εH

 εH


∣
∣Q(, s, r, ε)

∣
∣ =


εH

 εH


∣
∣E

[
Wr(Ws+ε – Ws)

]∣∣

× ∣
∣εH

 E
[
Wr(Wr+ε – Wr)

]
– εH

 E
[
Wr(Wr+ε – Wr)

]∣∣

=


εH
 εH



∣
∣E

[
Wr(Ws+ε – Ws)

]∣∣

× C
∣
∣εH


(
(r + ε)H – rH)

– εH


(
(r + ε)H – rH)∣∣

≤ CrH–θ εθ–H
 −→  (ε, ε → ) (.)
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for all H < θ ≤  and r > . Thus, the convergence (.) follows from the Lebesgue dom-
inated convergence theorem. Similarly, we can introduce the convergence

lim
ε,ε→


εH

 εH


∫ t



∫ t


E
[
f ′′(Ws)f (Wr)

]
Q(, s, r, ε) dηr dηs = . (.)

Step III. The convergence

lim
ε,ε→


εH

 εH


∫ t



∫ t



(
Q(, s, r, ε) + Q(, s, r, ε)

)
E
[
f ′(Ws)f ′(Wr)

]
dηr dηs =  (.)

holds. From Step II we have


εH

 εH


∣∣Q(, s, r, ε)
∣∣ ≤ 

εH
 εH



∣∣E
[
Ws(Ws+ε – Ws)

]∣∣

× ∣
∣εH

 E
[
Wr(Wr+ε – Wr)

]
– εH

 E
[
Wr(Wr+ε – Wr)

]∣∣

≤ CrH–θ εθ–H
 −→  (ε, ε → )

and


εH

 εH


∣∣Q(, s, r, ε)
∣∣ =


εH

 εH


∣∣E
[
Wr(Ws+ε – Ws)

]∣∣

× ∣
∣εH

 E
[
Ws(Wr+ε – Wr)

]
– εH

 E
[
Ws(Wr+ε – Wr)

]∣∣

≤ (
rH–θ + |s – r|H–θ

)
εθ–H −→ 

for all H < θ ≤  and |s – r| > , as ε, ε → . On the other hand, we also have


εH

 εH


∫ t



∫ t



∣∣E
[
f ′(Ws)f ′(Wr)

]∣∣∣∣Q(, s, r, ε) + Q(, s, r, ε)
∣∣dηr dηs

≤ 
∫ t



∫ t



∣
∣E

[
f ′(Ws)f ′(Wr)

]∣∣dηr dηs ≤ C‖f ‖
H

for all ε, ε > . Thus, Lebesgue dominated convergence theorem implies that the conver-
gence (.) holds.

Consequently, we have found the desired convergence (.) for k = . In the same way
one can also introduce the convergence (.), which with k =  holds, and Statement (b)
follows. �

4 Itô’s formula
In this section we introduce an Itô formula and study the integral

∫

R

f (x)LH(dx, t), (.)

where f is a Borel function and

LH (x, t) =
∫ t


δ(Ws – x) dηs
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is the weighted local time of mixed-fBm W . By using the result given in Section , we
can immediately get an extension of Itô formula stated as follows, which is an analog of
Föllmer-Protter-Shiryayev’s equation (some more work can be found in Eisenbaum [],
Föllmer et al. [], Moret-Nualart [], Russo-Vallois [, ], and the references therein).

Theorem . Let  < H < 
 and let f ∈ H be left continuous with right limits. If F is an

absolutely continuous function such that the derivative F ′ = f , then the Itô formula

F(W ) = F() + λ

∫ t


f (Ws) dBs + ν

∫ t


f (Ws) dBH

s +


[
f (W ), W

](H)
t (.)

holds for all t ≥ .

Proof When f ∈ C(R), this is an Itô formula since

[
f (W ), W

](H)
t =

∫ t


f ′(Ws) dηs

= λ
∫ t


f ′(Ws) ds + νH

∫ t


f ′(Ws)sH– ds

by Corollary ..
When f /∈ C(R), by a localization argument we may assume that the function f is uni-

formly bounded. Let now F ′ = f ∈H be uniformly bounded and left continuous, and define
the function ζ on R by

ζ (x) :=

⎧
⎨

⎩
ce


(x–)– , x ∈ (, ),

, otherwise,
(.)

where c is a normalizing constant such that
∫
R

ζ (x) dx = . Consider the sequence of func-
tions

Fn(x) := n
∫

R

F(x – y)ζ (ny) dy, n = , , . . . ,

with x ∈R. Then Fn ∈ C∞(R),

F ′
n(x) := n

∫

R

f (x – y)ζ (ny) dy, n = , , . . . ,

with x ∈R and the Itô formula

Fn
(
W H

t
)

= Fn() + λ

∫ t


F ′

n(Ws) dBs + ν

∫ t


F ′

n(Ws) dBH
s +




∫ t


F ′′

n (Ws) dηs (.)

holds for all n = , , . . . . Moreover, Lebesgue’s dominated convergence theorem implies
that

lim
n→∞ Fn(x) = F(x), lim

n→∞ F ′
n(x) = f (x)
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for each x, and {F ′
n} ⊂H, limn→∞ F ′

n = f in H. It follows that

∫ t


F ′′

n (Ws) dηs =
[
F ′

n(W ), W
](H)

t −→ [
f (W ), W

](H)
t

and

F ′
n(Wt) −→ f (Wt)

in L(�), as n tends to infinity, which gives

∫ t


F ′

n(Ws) dWs = Fn(Wt) – Fn() –


[
F ′

n(W ), W
](H)

t

−→ F(Wt) – F() –


[
f (W ), W

](H)
t

in L(�), as n tends to infinity. This completes the proof. �

At the end of this paper, we use the Itô formula above to obtain the integral (.) and
give the related Bouleau-Yor identity. Such an identity wais first studied by Bouleau and
Yor [], who characterized the relationship between the quadratic covariation of Brow-
nian motion and the integral with respect to the local time of Brownian motion. Let B
be a standard Brownian motion and let LB(x, t) be the local time of B. Then Bouleau and
Yor [] showed that the identity

[
f (B), B

]
t = –

∫

R

f (x)LB(dx, t)

holds for all locally square integrable functions f . The identity is called the Bouleau-Yor
identity. For more work we refer to Eisenbaum [, ], Föllmer et al. [], Feng and
Zhao [], Peskir [], Rogers and Walsh [], Yan et al. [, , ] and the references
therein. Let F(x) = (x – a)+ – (x – b)+. Then F is absolutely continuous with F ′ = (a,b], and
Itô’s formula (.) implies that

[
(a,b](W ), W

](H)
t = F(Wt) – F() – 

∫ t


(a,b](Ws) dWs

= LH (a, t) – LH (b, t)

holds for all t ≥ . Thus, from the linear property of fractional quadratic covariation one
deduces the following result.

Lemma . For any f =
∑

j βj(aj–,aj] ∈ E , the integral
∫

R

f (x)LH(dx, t) :=
∑

j

βj
[
LH (aj, t) – LH (aj–, t)

]
(.)

exists and
∫

R

f (x)LH(dx, t) = –
[
f (W ), W

](H)
t (.)

for all t ≥ .
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Since E is dense in H, we can extend the definition (.) to the elements of H by setting

∫

R

f (x)LH(dx, t) := lim
n→∞

∫

R

fn(x)LH(dx, t) (.)

in L for f ∈ H provided limn→∞ fn = f in H, where fn ∈ E for all n ≥ . We can show that
the limit does not depend on the choice of the sequences {f�,n} and the following theorem
holds.

Theorem . (Bouleau-Yor identity) Let  < H < 
 and f ∈ H. Then the integral (.) is

well defined and

[
f (W ), W

](H)
t = –

∫

R

f (x)LH(dx, t)

holds for all t ≥ .

Corollary . (Tanaka formula) Let  < H < 
 . For any x ∈ R we have

(Wt – a)+ = (–a)+ +
∫ t


{Ws>a} dWs +



LH (a, t),

(Wt – a)– = (–a)– –
∫ t


{Ws<a} dWs +



LH (a, t),

|Wt – a| = |x| +
∫ t


sign(Ws – a) dWs + LH(a, t).

Proof Let F(x) = (x – a)+. Then

F(x) =
∫ x

–∞
(a,∞)(y) dy,

Itô’s formula (.), and the above theorem imply that

LH (a, t) =
[
(a,+∞)(W ), W

](H)
t

= (Wt – a)+ – (–a)+ – 
∫ t


{Ws>a} dWs

for all t ∈ [, T], which gives the first identity. In the same way one can obtain the second
identity and the corollary follows. �

5 Results, discussion, and conclusions
Since the quadratic variation of a mixed-fractional Brownian motion does not exist when
 < H < 

 , we need to find a substitution tool. In this paper, we give a new substitution tool,
and by using some precise estimations and inequalities we show that this substitution tool
is well defined, and, moreover, we also discuss some related questions. It is important to
note that the method used here is also applicative to many similar processes.
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