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1 Introduction
First of all, we will restate some definitions of dependent structures.

Definition . A finite family of random variables {Xi,  ≤ i ≤ n} is called negatively asso-
ciated (NA) if for any disjoint subsets A and B of {, , . . . , n}, and any real coordinatewise
non-decreasing functions f on R

A and f on R
B,

Cov
(
f(Xi, i ∈ A), f(Xj, j ∈ B)

) ≤ , (.)

whenever this covariance exists. An infinite family of random variables {Xn, n ≥ } is NA
if every finite subfamily is NA.

For two nonempty disjoint sets S and T of real numbers, let σ (S) and σ (T) be the σ -fields
separately generated by {Xi, i ∈ S} and {Xi, i ∈ T}. Let dist(S, T) = min{|j – k|, j ∈ S, k ∈ T}.

Definition . A sequence of random variables {Xn, n ≥ } is called ρ̃ (or ρ∗)-mixing if

ρ̃(s) = sup
{
ρ(S, T) : S, T ⊂ N, dist(S, T) ≥ s

} →  as s → ∞, (.)

where

ρ(S, T) = sup

{ |EXY – EXEY |√
Var X · √Var Y

; X ∈ L
(
σ (S)

)
, Y ∈ L

(
σ (T)

)}
.
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Definition . A sequence of random variables {Xn, n ≥ } is said to be ANA if

ρ–(s) = sup
{
ρ–(S, T) : S, T ⊂ N, dist(S, T) ≥ s

} →  as s → ∞, (.)

where

ρ–(S, T) =  ∨ sup

{
Cov(f(Xi, i ∈ S), f(Xj, j ∈ T))

(Var f(Xi, i ∈ S))/(Var f(Xj, j ∈ T))/

}
,

where the supremum is taken over all coordinatewise non-decreasing functions f on R
S

and f on R
T .

An array of random variables {Xni,  ≤ i ≤ n, n ≥ } is called rowwise ANA random vari-
ables if for every n ≥ , {Xni,  ≤ i ≤ n} is a sequence of ANA random variables.

The concept of NA was introduced by Joag-Dev and Proschan [], the concept of ρ̃-
mixing was introduced by Bradley [], and the concept of ANA was introduced by Zhang
and Wang []. It is easily seen that ρ–(s) ≤ ρ̃(s), and a sequence of ANA random variables
is NA if and only if ρ–() = . Hence, sequences of ANA random variables are a family
of very wide scope, which contain NA random variable sequences and ρ̃-mixing random
variable sequences.

Since the notion of ANA random variables was introduced, many applications have been
found. We can refer the reader to [–], and so forth.

The concept of complete convergence was first given by Hsu and Robbins []. A se-
quence of random variables {Xn, n ≥ } is said to converge completely to a constant λ if for
all ε > ,

∞∑

n=

P
(|Xn – λ| > ε

)
< ∞.

In view of the Borel-Cantelli lemma, the above result implies that Xn → λ almost surely.
Therefore, the notion of complete convergence is a very important tool in establishing
almost sure convergence of summation of random variables.

Let {Xn, n ≥ } be a sequence of random variables and an > , bn > , q > . If for all ε ≥ ,

∞∑

n=

anE
(
b–

n |Xn| – ε
)q

+ < ∞,

then the above result was called the complete moment convergence by Chow [].
Let {Xni,  ≤ i ≤ n, n ≥ } be an array of rowwise NA random variables, and let {an, n ≥ }

be a sequence of positive real numbers with an ↑ ∞. Let {ψn(t), n ≥ } be a sequence of
positive, even functions such that

ψn(|t|)
|t| ↑ and

ψn(|t|)
|t|p ↓ as |t| ↑ (.)

for some nonnegative integer p. Introduce the following conditions:

EXni = ,  ≤ i ≤ n, n ≥ , (.)



Huang et al. Journal of Inequalities and Applications  (2016) 2016:303 Page 3 of 16

∞∑

n=

n∑

i=

Eψi(|Xni|)
ψi(an)

< ∞, (.)

∞∑

n=

( n∑

i=

E
( |Xni|

an

)r
)s

< ∞, (.)

where  < r ≤  and s > .
Gan and Chen [] showed the following complete convergence theorems for NA cases.

Theorem A Let {Xni,  ≤ i ≤ n, n ≥ } be an array of rowwise NA random variables, and
let {ψn(t), n ≥ } satisfy (.) for some integer  < p ≤ . Then (.) and (.) imply


an

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣
→  completely. (.)

Theorem B Let {Xni,  ≤ i ≤ n, n ≥ } be an array of rowwise NA random variables, and
let {ψn(t), n ≥ } satisfy (.) for some integer p > . Then (.), (.), and (.) imply (.).

Zhu [] obtained the corresponding result for ρ∗-mixing cases.

Theorem C Let {Xni,  ≤ i ≤ n, n ≥ } be an array of rowwise ρ∗- mixing random variables,
and let ψ(t) be a positive, even function satisfying (.) for some integer p ≥ . Then (.),
(.), and

∞∑

n=

( n∑

i=

E
(

Xni

an

)
)v/

< ∞ for v ≥ p, (.)

imply (.).

Inspired by the above obtained theorems, in this work, we will not only extend Theo-
rems A, B, and C to ANA random variables, but also one obtains some much stronger
conclusions under some more general conditions. The goal of this paper is to study com-
plete convergence, complete moment convergence, and mean convergence for arrays of
rowwise ANA random variables.

Throughout this paper, let I(A) be the indicator function of the set A. The symbol C
always stands for a generic positive constant, which may vary from one place to another,
and an = O(bn) stands for an ≤ Cbn.

2 Main results
Now, the main results are presented in this section. The proofs will be given in the next
section.

Theorem . Let N be a positive integer, M ≥  and  ≤ s < (/M)M/. Let {Xni,  ≤ i ≤
n, n ≥ } be an array of rowwise ANA random variables with ρ–(N) ≤ s in each row, and
let {an, n ≥ } be a sequence of positive real numbers with an ↑ ∞. Let {ψn(t), n ≥ } be a
sequence of positive, even functions such that

ψn(|t|)
|t|q ↑ and

ψn(|t|)
|t|p ↓ as |t| ↑ (.)

for some  ≤ q < p.
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() If  < p ≤ , then conditions (.) and (.) imply

∞∑

n=

P

(


an
max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

> ε

)

< ∞ for all ε > . (.)

() If p > , then conditions (.), (.), and (.) imply (.).

Theorem . Let N be a positive integer, M ≥  and  ≤ s < (/M)M/. Let {Xni,  ≤ i ≤
n, n ≥ } be an array of rowwise ANA random variables with ρ–(N) ≤ s in each row, and
let {an, n ≥ } be a sequence of positive real numbers with an ↑ ∞. Let {ψn(t), n ≥ } be a
sequence of positive, even functions satisfying (.) for some  ≤ q < p.

() If  < p ≤ , then conditions (.) and (.) imply

∞∑

n=

a–q
n E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

– εan

)q

+

< ∞ for all ε > . (.)

() If p > , then conditions (.), (.), and (.) imply (.).

Theorem . Let N be a positive integer, M ≥  and  ≤ s < (/M)M/. Let {Xni,  ≤ i ≤
n, n ≥ } be an array of rowwise ANA random variables with ρ–(N) ≤ s in each row, and
let {an, n ≥ } be a sequence of positive real numbers with an ↑ ∞. Let {ψn(t), n ≥ } be a
sequence of positive, even functions satisfying (.) for some  ≤ q < p.

() If  < p ≤ , then condition (.) and

n∑

i=

Eψi(Xni)
ψi(an)

→  as n → ∞ (.)

imply

lim
n→∞ E

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

)q

= . (.)

() If p > , then conditions (.), (.), and

n∑

i=

E|Xni|I(|Xni| ≤ an)
a

n
→  as n → ∞ (.)

imply (.).

Remark . Since NA random variables and ρ̃- mixing random variables are two special
cases of ANA random variables, Theorem . is an extension and improvement of The-
orems A and B for NA random variables, Theorem C for ρ̃-mixing random variables. In
addition, in this work, we consider the case  ≤ q < p, which has a wider scope than the
case q =  in Gan and Chen [] and Zhu [].
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Remark . Under the conditions of Theorem ., one has

∞ >
∞∑

n=

a–q
n E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

– εan

)q

+

=
∞∑

n=

a–q
n

∫ ∞


P

(

max
≤j≤n

∣∣∣
∣∣

j∑

i=

Xni

∣∣∣
∣∣

– εan > t/q

)

dt

≥ C
∞∑

n=

a–q
n

∫ εqaq
n


P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> anε + t/q

)

dt

≥ C
∞∑

n=

a–q
n

∫ εqaq
n


P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

> anε + anε

)

dt

≥ Cεq
∞∑

n=

P

(

max
≤j≤n

∣∣
∣∣∣

j∑

i=

Xni

∣∣
∣∣∣

> εan

)

for all ε > . (.)

Hence, from (.), one can clearly know that the complete moment convergence im-
plies the complete convergence. Compared with the corresponding results of Gan and
Chen [] and Zhu [], it is worth pointing out that Theorem . is much stronger and
conditions are more general and much weaker.

3 Proofs
To prove the main results, the following lemmas are needed.

Lemma . (Wang and Lu []) Let {Xn, n ≥ } be a sequence of ANA random variables,
and let {fn, n ≥ } be a sequence of real functions all of which are monotone non-decreasing
(or all monotone non-increasing), then {fn(Xn), n ≥ } is still a sequence of ANA random
variables.

Lemma . (Wang and Lu []) For a positive integer N ≥ , real numbers M ≥  and  ≤
s < ( 

M )M/, let {Xn, n ≥ } be a sequence of ANA random variables with ρ–(N) ≤ s, EXn = 
and E|Xn|M < ∞ for every n ≥ . Then there exists a positive constant C = C(M, N, s) such
that

E

(

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

Xi

∣
∣∣∣
∣

M)

≤ C

( n∑

i=

E|Xi|M +

( n∑

i=

EX
i

)M/)

. (.)

In particular, for M = ,

E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xi

∣∣
∣∣
∣

)

≤ C
n∑

i=

EX
i .

Proof of Theorem . For any  ≤ i ≤ n, n ≥ , define

Yni = –anI(Xni < –an) + XniI
(|Xni| ≤ an

)
+ anI(Xni > an),

Zni = Xni – Yni = (Xni + an)I(Xni < –an) + (Xni – an)I(Xni > an).



Huang et al. Journal of Inequalities and Applications  (2016) 2016:303 Page 6 of 16

It is easy to check that, for all ε > ,

P

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> ε

)

≤ P

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Yni

∣
∣∣
∣∣

> ε

)

+ P
(

max
≤i≤n

|Xni| > an

)

= P

(


an
max
≤j≤n

∣∣
∣∣
∣

j∑

i=

(Yni – EYni)

∣∣
∣∣
∣

> ε –


an
max
≤j≤n

∣∣
∣∣
∣

j∑

i=

EYni

∣∣
∣∣
∣

)

+ P
(

max
≤i≤n

|Xni| > an

)
. (.)

First of all, we will show that


an

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

EYni

∣∣
∣∣
∣
→  as n → ∞. (.)

For  ≤ i ≤ n, n ≥ , EXni = , then EYni = –EZni. If Xni > an,  < Zni = Xni – an < Xni. If
Xni < –an, Xni < Zni = Xni + an ≤ . So, |Zni| ≤ |Xni|I(|Xni| > an). Then from conditions (.)
and (.), one has


an

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

EYni

∣
∣∣∣
∣

=


an
max
≤j≤n

∣
∣∣∣
∣

j∑

i=

EZni

∣
∣∣∣
∣

≤ 
an

n∑

i=

E|Zni|

≤ C
n∑

i=

E|Xni|I(|Xni| > an)
an

≤ C
n∑

i=

Eψi(Xni)
ψi(an)

→  as n → ∞. (.)

Hence, for n large enough,

P

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> ε

)

≤ P

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

(Yni – EYni)

∣
∣∣
∣∣

>
ε



)

+ P
(

max
≤i≤n

|Xni| > an

)
.

To prove (.), it suffices to show that

I �
∞∑

n=

P

(


an
max
≤j≤n

∣
∣∣
∣∣

j∑

i=

(Yni – EYni)

∣
∣∣
∣∣

>
ε



)

< ∞, (.)

I �
∞∑

n=

P
(

max
≤i≤n

|Xni| > an

)
< ∞. (.)

By Lemma ., it obviously follows that {Yni – EYni,  ≤ i ≤ n, n ≥ } is still an array of
rowwise ANA random variables with zero mean. For I, note that |Yni| ≤ an.
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() If  ≤ q < p ≤ , by the Markov inequality, Lemma . (for M = ), (.), and (.), one
has

I ≤ C
∞∑

n=


a

n
E

(

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

(Yni – EYni)

∣
∣∣∣
∣

)

≤ C
∞∑

n=


a

n

n∑

i=

E|Yni – EYni|

≤ C
∞∑

n=


a

n

n∑

i=

EY 
ni

≤ C
∞∑

n=

n∑

i=

E|Yni|p
ap

n

≤ C
∞∑

n=

n∑

i=

Eψi(|Yni|)
ψi(an)

≤ C
∞∑

n=

n∑

i=

Eψi(|Xni|)
ψi(an)

< ∞. (.)

() If  ≤ q < p and p > , by the Markov inequality, Lemma . (for M > p > ), (.),
(.), and (.), one also has

I ≤ C
∞∑

n=


aM

n
E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

(Yni – EYni)

∣∣
∣∣
∣

M)

≤ C
∞∑

n=


aM

n

( n∑

i=

E|Yni – EYni|M +

( n∑

i=

E|Yni – EYni|
)M/)

≤ C
∞∑

n=

n∑

i=

E|Yni|M
aM

n
+ C

∞∑

n=

( n∑

i=

E|Yni|
a

n

)M/

≤ C
∞∑

n=

n∑

i=

Eψi(|Yni|)
ψi(an)

+ C
∞∑

n=

( n∑

i=

E|Yni|
a

n

)M/

≤ C
∞∑

n=

n∑

i=

Eψi(|Xni|)
ψi(an)

+ C
∞∑

n=

( n∑

i=

E|Xni|
a

n

)M/

< ∞. (.)

Note that |Zni| ≤ |Xni|I(|Xni| > an). By a standard argument, one has

I ≤ C
∞∑

n=

n∑

i=

P
(|Xni| > an

)

= C
∞∑

n=

n∑

i=

EI
(|Xni| > an

)

≤ C
∞∑

n=

n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

≤ C
∞∑

n=

n∑

i=

Eψi(|Xni|)
ψi(an)

< ∞. (.)
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The proof of Theorem . is completed. �

Proof of Theorem . For all ε >  and any t ≥ , since

∞∑

n=

a–q
n E

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

– εan

)q

+

=
∞∑

n=

a–q
n

∫ ∞


P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

– εan > t/q

)

dt

=
∞∑

n=

a–q
n

∫ aq
n


P

(

max
≤j≤n

∣∣
∣∣∣

j∑

i=

Xni

∣∣
∣∣∣

> εan + t/q

)

dt

+
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> εan + t/q

)

dt

≤
∞∑

n=

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

> εan

)

+
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣∣
∣∣∣

j∑

i=

Xni

∣∣
∣∣∣

> t/q

)

dt

� J + J. (.)

By Theorem ., one has J < ∞. To prove (.), one needs only to show that J < ∞. For
any  ≤ i ≤ n, n ≥ , define

Yni = –t/qI
(
Xni < –t/q) + XniI

(|Xni| ≤ t/q) + t/qI
(
Xni > t/q),

Zni = Xni – Yni =
(
Xni + t/q)I

(
Xni < –t/q) +

(
Xni – t/q)I

(
Xni > t/q).

It is easy to check that, for all ε > ,

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> t/q

)

≤ P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Yni

∣
∣∣
∣∣

> t/q

)

+ P

( n⋃

i=

(|Xni| > t/q)
)

≤ P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Yni

∣∣
∣∣
∣

> t/q

)

+
n∑

i=

P
(|Xni| > t/q). (.)

Hence,

J =
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣∣
∣∣∣

j∑

i=

Xni

∣∣
∣∣∣

> t/q

)

dt

≤
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

P
(|Xni| > t/q)dt

+
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Yni

∣
∣∣
∣∣

> t/q

)

dt

� J + J. (.)
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For J, by conditions (.) and (.), one has

J =
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

P
(|Xni| > t/q)dt

≤
∞∑

n=

a–q
n

n∑

i=

∫ ∞


P
(|Xni|I

(|Xni| > an
)

> t/q)dt

≤
∞∑

n=

a–q
n

n∑

i=

E|Xni|qI
(|Xni| > an

)

≤
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

< ∞. (.)

For J, we will first show that

max
t≥aq

n


t/q max

≤j≤n

∣∣
∣∣
∣

j∑

i=

EYni

∣∣
∣∣
∣
→  as n → ∞. (.)

Similar to the proof of (.), by conditions (.), (.), and (.), one has

max
t≥aq

n


t/q max

≤j≤n

∣∣
∣∣
∣

j∑

i=

EYni

∣∣
∣∣
∣

= max
t≥aq

n


t/q max

≤j≤n

∣∣
∣∣
∣

j∑

i=

EZni

∣∣
∣∣
∣

≤ C max
t≥aq

n


t/q

n∑

i=

E|Zni|

≤ C max
t≥aq

n


t/q

n∑

i=

E|Xni|I
(|Xni| > t/q)

≤ C
n∑

i=

E|Xni|I(|Xni| > an)
an

≤ C
n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

≤ C
n∑

i=

Eψi(Xni)
ψi(an)

→  as n → ∞. (.)

Hence, while n is sufficiently large, for t ≥ aq
n,

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

EYni

∣
∣∣
∣∣
≤ t/q


,

which implies

P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Yni

∣
∣∣
∣∣

> t/q

)

≤ P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

(Yni – EYni)

∣
∣∣
∣∣

>
t/q



)

. (.)

For J < ∞, we will consider the following two cases. Let dn = [an] + .
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() If  ≤ q < p ≤ , by (.), the cr inequality and Lemma ., one has

J ≤
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

(Yni – EYni)

∣
∣∣∣
∣

>
t/q



)

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–/q
n∑

i=

E(Yni – EYni) dt

≤ C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

aq
n

EY 
nit

–/q dt

= C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

aq
n

EX
niI

(|Xni| ≤ dn
)
t–/q dt

+ C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

aq
n

EX
niI

(
dn < |Xni| ≤ t/q)t–/q dt

+ C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

aq
n

P
(|Xni| > t/q)dt

� J + J + J. (.)

For J, by  ≤ q < p ≤  and (.), one has

J = C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

aq
n

EX
niI

(|Xni| ≤ dn
)
t–/q dt

≤ C
∞∑

n=

n∑

i=

EX
niI(|Xni| ≤ dn)

a
n

= C
∞∑

n=

n∑

i=

EX
niI(|Xni| ≤ an)

a
n

+ C
∞∑

n=

n∑

i=

EX
niI(an < |Xni| ≤ dn)

a
n

≤ C
∞∑

n=

n∑

i=

E|Xni|pI(|Xni| ≤ an)
ap

n

+ C
∞∑

n=

n∑

i=

(
an + 

an

) E|Xni|I(|Xni| ≤ dn)
d

n

≤ C
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

+ C
∞∑

n=

n∑

i=

E|Xni|pI(|Xni| ≤ dn)
dp

n

≤ C
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

+ C
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(dn)

≤ C
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

< ∞. (.)

For J, since

∞∑

n=

n∑

i=

a–q
n

∫ dq
n

aq
n

EX
niI

(
dn < |Xni| ≤ t/q)t–/q dt = ,
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which implies

J = C
∞∑

n=

n∑

i=

a–q
n

∫ ∞

dq
n

EX
niI

(
dn < |Xni| ≤ t/q)t–/q dt.

Let t = xq, by (.), (.), and  ≤ q < , one has

J = C
∞∑

n=

n∑

i=

a–q
n q

∫ ∞

dn

EX
niI

(
dn < |Xni| ≤ x

)
xq– dx

= C
∞∑

n=

n∑

i=

a–q
n

∞∑

m=dn

∫ m+

m
EX

niI
(
dn < |Xni| ≤ x

)
xq– dx

≤ C
∞∑

n=

n∑

i=

a–q
n

∞∑

m=dn

EX
niI

(
dn < |Xni| ≤ m + 

)
mq–

≤ C
∞∑

n=

n∑

i=

a–q
n

∞∑

m=dn

mq–
m∑

j=dn

EX
niI

(
j < |Xni| ≤ j + 

)

≤ C
∞∑

n=

n∑

i=

a–q
n

∞∑

j=dn

EX
niI

(
j < |Xni| ≤ j + 

) ∞∑

m=j

mq–

≤ C
∞∑

n=

n∑

i=

a–q
n

∞∑

j=dn

jq–EX
niI

(
j < |Xni| ≤ j + 

)

≤ C
∞∑

n=

n∑

i=

a–q
n E|Xni|qI

(|Xni| > dn
)

≤ C
∞∑

n=

n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

≤ C
∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

< ∞. (.)

For J, by an argument similar to that in the proof of J < ∞, one can prove J < ∞.
Therefore, one can obtain J < ∞ for  ≤ q < p ≤ .

() If  ≤ q < p and p > , by (.), the Markov inequality, Lemma ., and the cr in-
equality, one has

J ≤
∞∑

n=

a–q
n

∫ ∞

aq
n

P

(

max
≤j≤n

∣∣
∣∣∣

j∑

i=

(Yni – EYni)

∣∣
∣∣∣

>
t/q



)

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/qE

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

(Yni – EYni)

∣∣
∣∣
∣

)p

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

E|Yni|p+

( n∑

i=

EY 
ni

)p/)

dt

≤ C
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

E|Yni|pt–p/q dt + C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EY 
ni

)p/

dt

� K + K. (.)
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For K, one has

K = C
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

E|Xni|pt–p/qI
(|Xni| ≤ dn

)
dt

+ C
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

E|Xni|pt–p/qI
(
dn < |Xni| ≤ t/q)dt

+ C
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

P
(|Xni| > t/q)dt

� K + K + K. (.)

By an argument similar to that in the proofs of J and J (replacing the exponent 
by p), one easily has K < ∞ and K < ∞. Similarly, from the proof of J < ∞, one can
obtain K < ∞.

For K, since p > , one has

K = C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EY 
ni

)p/

dt

≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EX
niI

(|Xni| ≤ an
)
)p/

dt

+ C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EX
niI

(
an < |Xni| ≤ t/q)

)p/

dt

+ C
∞∑

n=

a–q
n

∫ ∞

aq
n

( n∑

i=

P
(|Xni| > t/q)

)p/

dt

� K + K + K. (.)

For K, by p > q, p > , and (.), one has

K = C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EX
niI

(|Xni| ≤ an
)
)p/

dt

≤ C
∞∑

n=

( n∑

i=

EX
niI(|Xni| ≤ an)

a
n

)p/

< ∞. (.)

For K, we will consider the following two cases:
() When  ≤ q ≤  and p > . By (.) and (.), one has

K = C
∞∑

n=

a–q
n

∫ ∞

aq
n

t–p/q

( n∑

i=

EX
niI

(
an < |Xni| ≤ t/q)

)p/

dt

= C
∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–/q
n∑

i=

EX
niI

(
an < |Xni| ≤ t/q)

)p/

dt
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≤ C
∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–
n∑

i=

E|Xni|qI
(
an < |Xni| ≤ t/q)

)p/

dt

≤ C
∞∑

n=

a–q
n

( n∑

i=

E|Xni|qI
(|Xni| > an

)
)p/ ∫ ∞

aq
n

t–p/ dt

≤ C
∞∑

n=

( n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

)p/

≤ C

( ∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

)p/

< ∞. (.)

() When  < q < p. By (.) and (.) again, one can have

K = C
∞∑

n=

a–q
n

∫ ∞

aq
n

(

t–/q
n∑

i=

EX
niI

(
an < |Xni| ≤ t/q)

)p/

dt

≤ C
∞∑

n=

a–q
n

( n∑

i=

E|Xni|I
(|Xni| > an

)
)p/ ∫ ∞

aq
n

t–p/q dt

≤ C
∞∑

n=

( n∑

i=

E|Xni|I(|Xni| > an)
a

n

)p/

≤ C
∞∑

n=

( n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

)p/

≤ C

( ∞∑

n=

n∑

i=

Eψi(Xni)
ψi(an)

)p/

< ∞. (.)

For K, by (.), it follows that ψi(|t|) ↑ as |t| ↑. By (.), one has

sup
t≥aq

n

n∑

i=

P
(|Xni| > t/q) ≤

n∑

i=

P
(|Xni| > an

) ≤
n∑

i=

Eψi(|Xni|)
ψi(an)

→  as n → ∞.

Hence, while n is sufficiently large, for t ≥ aq
n, one can have

n∑

i=

P
(|Xni| > t/q) < .

By (.), it follows that

K = C
∞∑

n=

a–q
n

∫ ∞

aq
n

( n∑

i=

P
(|Xni| > t/q)

)p/

dt

≤ C
∞∑

n=

a–q
n

n∑

i=

∫ ∞

aq
n

P
(|Xni| > t/q)dt

≤ C
∞∑

n=

n∑

i=

Eψi(|Xni|)
ψi(an)

< ∞. (.)
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The proof of Theorem . is completed. �

Proof of Theorem . Following the notations in the proof of Theorem ., we will first
prove (.) for the case of  < p ≤ . By (.), for all ε > , one has

E

(


an
max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

)q

=


aq
n

∫ ∞


P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Xni

∣∣
∣∣
∣

> t/q

)

dt

=


aq
n

∫ εaq
n


P

(

max
≤j≤n

∣
∣∣
∣∣

j∑

i=

Xni

∣
∣∣
∣∣

> t/q

)

dt

+


aq
n

∫ ∞

εaq
n

P

(

max
≤j≤n

∣
∣∣∣
∣

j∑

i=

Xni

∣
∣∣∣
∣

> t/q

)

dt

≤ ε +


aq
n

∫ ∞

εaq
n

P

(

max
≤j≤n

∣∣
∣∣
∣

j∑

i=

Yni

∣∣
∣∣
∣

> t/q

)

dt

+


aq
n

∫ ∞

εaq
n

n∑

i=

P
(|Xni| > t/q)dt

� ε + L + L. (.)

Without loss of generality, one may assume  < ε < . For L, by the Markov inequality,
(.), and (.), one has

L ≤
n∑

i=


aq

n

∫ ∞

εaq
n

P
(|Xni|I

(
εaq

n < |Xni| ≤ an
)

> t/q)dt

+
n∑

i=


aq

n

∫ ∞

εaq
n

P
(|Xni|I

(|Xni| > an
)

> t/q)dt

≤
n∑

i=


aq

n
E|Xni|pI

(
εaq

n < |Xni| ≤ an
)∫ ∞

εaq
n

t–p/q dt

+
n∑

i=


aq

n

∫ ∞


P
(|Xni|I

(|Xni| > an
)

> t/q)dt

≤ Cε
– p

q

n∑

i=

E|Xni|pI(|Xni| ≤ an)
ap

n
+

n∑

i=


aq

n
E|Xni|qI

(|Xni| > an
)

≤ C
n∑

i=

Eψi(Xni)
ψi(an)

→  as n → ∞. (.)

Similar to the proof of (.), by conditions (.), (.), and (.), one has

max
t≥εaq

n


t/q max

≤j≤n

∣
∣∣
∣∣

j∑

i=

EYni

∣
∣∣
∣∣

= max
t≥εaq

n


t/q max

≤j≤n

∣
∣∣
∣∣

j∑

i=

EZni

∣
∣∣
∣∣

≤ C max
t≥εaq

n


t/q

n∑

i=

E|Zni|
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≤ C max
t≥aq

n


t/q

n∑

i=

E|Xni|I
(|Xni| > t/q)

≤ Cε–/q
n∑

i=

E|Xni|qI(|Xni| > an)
aq

n

+ Cε–p/q
n∑

i=

E|Xni|pI(ε/qan < |Xni| ≤ an)
ap

n

≤ C
(
ε–/q + ε–p/q)

n∑

i=

Eψi(Xni)
ψi(an)

→  as n → ∞. (.)

Hence, while n is sufficiently large, (.) holds uniformly for t ≥ εaq
n.

For L, let dn = [an]+, by (.), the Markov inequality, Lemma ., and the cr inequality,
one has

L ≤ C
n∑

i=


aq

n

∫ ∞

εaq
n

t–/qE(Yni – EYni) dt

≤ C
n∑

i=


aq

n

∫ ∞

εaq
n

t–/qEY 
ni dt

= C
n∑

i=


aq

n

∫ ∞

εaq
n

t–/qEX
niI

(|Xni| ≤ dn
)

dt

+ C
n∑

i=


aq

n

∫ ∞

εaq
n

t–/qEX
niI

(
dn < |Xni| ≤ t/q)dt

+ C
n∑

i=


aq

n

∫ ∞

εaq
n

P
(|Xni| > t/q)dt

� L + L + L. (.)

By (.), one has L → . For L, by an argument similar to that in the proof of J < ∞
and (.), one can obtain

L = C
n∑

i=


aq

n

∫ ∞

εaq
n

t–/qEX
niI

(|Xni| ≤ dn
)

dt ≤ C
n∑

i=

Eψi(|Xni|)
ψi(an)

→  as n → ∞.

For L,

n∑

i=


aq

n

∫ dq
n

εaq
n

t–/qEX
niI

(
dn < |Xni| ≤ t/q)dt = ,

which implies

L = C
n∑

i=


aq

n

∫ ∞

dq
n

t–/qEX
niI

(
dn < |Xni| ≤ t/q)dt.

Similarly, by an argument similar to the proof of J < ∞ and (.), one also has L → 
as n → ∞.
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The proof of (.) for the case of p >  is similar to that of  ≤ q < p and p >  in Theo-
rem ., so we omit the details. The proof of Theorem . is completed. �
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