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Abstract
Let G be a simple connected graph and S2(G) be the sum of the two largest Laplacian
eigenvalues of G. In this paper, we determine the bicyclic graph with maximum S2(G)
among all bicyclic graphs of order n, which confirms the conjecture of Guan et al.
(J. Inequal. Appl. 2014:242, 2014) for the case of bicyclic graphs.
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1 Introduction
Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G) = {v, v, . . . , vn}.
The numbers of its vertices and edges are denoted by n(G) and m(G) (or n and m for
short). For a vertex v ∈ V (G), let N(v) be the set of all neighbors of v in G. The degree of
v, denoted by d(v), is the cardinality of |N(v)|, that is, d(v) = |N(v)|. A vertex with degree
one is called pendant vertex. Particularly, denote by �(G) (or � for short) the maximum
degree of G. The matrix L(G) = D(G) – A(G) is called Laplacian matrix of G, where A(G)
is the adjacency matrix of G and D(G) = diag(d(v), d(v), . . . , d(vn)) is the diagonal matrix
of vertex degrees of G. We use the notation In for the identity matrix of order n and de-
note by φ(G, x) = det(xIn – L(G)) the Laplacian characteristic polynomial of G. It is well
known that L(G) is positive semidefinite and so its eigenvalue are nonnegative real num-
ber. The eigenvalues of L(G) are called the Laplacian eigenvalues of G and are denoted by
μ(G) ≥ μ(G) ≥ · · · ≥ μn(G) (or μ ≥ μ ≥ · · · ≥ μn for short), which are always enumer-
ated in non-increasing order and repeated according to their multiplicity. It is well known
that

∑i=n
i= μi = m(G). Note that each row sum of L(G) is  and, therefore, μn(G) = .

Fiedler [] showed that the second smallest eigenvalue μn–(G) of L(G) is  if and only
if G is disconnected. Thus the second smallest eigenvalue of L(G) is popularly known as
the algebraic connectivity of G. The largest eigenvalue μ(G) of L(G) is usually called the
Laplacian spectral radius of the graph G. The investigation of Laplacian spectra of graphs
is an interesting topic on which much literature focused in the last two decades (see [–]).

Let Sk(G) =
∑i=k

i= μi(G) be the sum of the k largest Laplacian eigenvalues of G. Hamers
in [] mentions that Brouwer conjectured that Sk(G) ≤ m(G)+

(k+


)
for k = , , . . . , n. This

conjecture is interesting and still open. Up to now, little progress on it has been made (see
[, –]). When k = , Haemers et al. [] proved the conjecture by showing S(G) ≤
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Figure 1 Gn,n and Gn+1,n .

m(G) +  for any graph G. Especially when G is a tree, Fritscher et al. [] improve this
bound by showing S(T) ≤ m(T) +  – 

n(T) , which indicates that Haemers’ bound is always
not attainable for trees. Therefore, it is interesting to determine which tree has maximum
value of S(T) among all trees of order n. Let Sk

a,b be the tree of order n obtained from
two stars Sa+, Sb+ by joining a path of length k between their central vertices. Guan et al.
[] proved that S(T) ≤ S(T 

� n–
 �,� n–

 �) for any tree of order n ≥  and the equality holds
if and only if T ∼= T 

� n–
 �,� n–

 �. Note that μ(G) ≤ n(G) for any graph G of order n. When
n(G) < m(G) + , it follows that S(G) ≤ n(G) < m(G) + , which means that Haemers’
bound is not attainable. When n(G) ≥ m(G) + , Guan et al. [] showed that S(Gm,n) =
m(Gm,n)+, where Gm,n is a graph with n vertices and m edges which has m–n+ triangles
with a common edge and n – m –  pendant edges incident with one end vertex of the
common edge (illustrated in Figure  are Gn,n and Gn+,n). This indicates that Haemers’
bound is always sharp for connected graphs (n ≤ m ≤ n – ). The following conjecture
on the uniqueness of the extremal graph is also presented in [].

Conjecture . ([]) Among all connected graphs with n vertices and m edges (n ≤ m ≤
n – ), Gm,n is the unique graph with maximal value of S(G), that is, S(Gm,n) = m(Gm,n) +
.

Zheng et al. [] determined the uicyclic graph with maximum S(G) among all uicyclic
graphs of order n, which confirms Conjecture . for m = n.

Theorem . ([]) For any unicyclic graph G of order n, S(G) ≤ m(G) +  with equality
if and only if G ∼= Gn,n.

In this paper, we prove that Conjecture . holds for m = n + . The main result is as
follows.

Theorem . For any bicyclic graph G of order n, S(G) ≤ m(G) +  with equality if and
only if G ∼= Gn+,n.

In Section  of this paper, we give some well known lemmas which are useful in the proof
of Theorem .. In Section , we will give the proof of Theorem ..

2 Preliminaries
We first present some well-known results on μ(G).

Lemma . ([]) Let G be a connected graph of order n, then μ(G) ≤ n(G) with equality
if and only if the complement of G is disconnected.
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Lemma . ([]) Let G be a connected graph of order n, di = d(vi) and mi =
∑

vj∈N(vi) dj/di.
Then

μ(G) ≤ max
{

di + mi | vi ∈ V (G)
}

.

Lemma . ([]) Let G be a connected graph with n ≥  vertices and m edges. Then

μ(G) < max

{


(G), m –
n – 



}

+ .

Let M be a real symmetric matrix of order n. Then all eigenvalues of M are real and can
be denoted by λ(M) ≥ λ(M) ≥ · · · ≥ λn(M) in non-increasing order. The following result
in matrix theory plays a key role in our proofs.

Lemma . ([]) Let A and B be two real symmetric matrices of order n. Then, for any
 ≤ k ≤ n,

k∑

i=

λi(A + B) ≤
k∑

i=

λi(A) +
k∑

i=

λi(B).

The next lemma follows from Lemma . immediately.

Lemma . Suppose G, . . . , Gr are edge disjoint graphs. Then, for any k,

Sk(G ∪ · · · ∪ Gr) ≤
r∑

i=

Sk(Gi).

The following lemma can be found in [] and is known as the interlacing theorem of
Laplacian eigenvalues.

Lemma . ([]) Let G be a graph of order n and G′ be the graph obtained from G by
deleting an edge of G. Then the Laplacian eigenvalues of G and G′ interlace, that is,

μ(G) ≥ μ
(
G′) ≥ μ(G) ≥ · · · ≥ μn–

(
G′) ≥ μn(G) ≥ μn

(
G′) = .

Lemma . ([]) Let A be a real symmetric matrix of order n with eigenvalues λ ≥ λ ≥
· · · ≥ λn and B be a principal submatrix of A of order m with eigenvalues λ′

 ≥ λ′
 ≥ · · · ≥

λ′
m. Then the eigenvalues of B interlace the eigenvalues of A, that is, λi ≥ λ′

i ≥ λn–m+i, for
i = , . . . , m. Specially, for v ∈ V (G), let Lv(G) be the principal submatrix of L(G) formed
by deleting the row and column corresponding to vertex v. Then the eigenvalues of Lv(G)
interlace the eigenvalues of L(G).

The multiplicities of an eigenvalue λ for L(G) is denoted by mG(λ). For a graph G of
order n, it is well known that mG() = n – r(In – L(G)), where r(In – L(G)) is the rank of
In – L(G).
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Figure 2 Graphs G′ and G.

Lemma . Let v be a pendant vertex of graph G with n vertices and G′ be the graph
obtained from G by adding a new vertex v′ which has a unique neighbor u, where u is the
neighbor of v. (See Figure .) Then

mG′ () = mG() + .

Proof Let L(G) and L(G′) be the Laplacian matrix of G and G′, respectively. It is not diffi-
cult to check that r(In – L(G)) = r(In+ – L(G′)). Thus the result follows from the facts that
mG() = n – r(In – L(G)) and mG′ () = (n + ) – r(In+ – L(G′)). �

Let Pn and Cn be the path and cycle of order n, respectively. A connected graph with
n vertices and n +  edges is called a bicyclic graph. Let Bn be the set of bicyclic graphs
of order n. There are two basic bicyclic graphs: ∞-graph and θ -graph. More concisely,
an ∞-graph, denoted by ∞(p, q, l)-graph, is obtained from two vertex-disjoint cycles Cp

and Cq by connecting one vertex of Cp and one vertex of Cq with a path Pl+ of length
l, where q ≥ p ≥  and l ≥  (in the case of l = , we identify the above two vertices).
A θ -graph, denoted by θ (p, q, l), is a union of three internally disjoint paths Pp, Pq, Pl of
length p – , q – , l – , respectively with common end vertices, where l ≥ q ≥ p ≥  and at
most one of them is . Observe that any bicyclic graph G is obtained from a basic bicyclic
graph ∞(p, q, l) or θ (p, q, l) by attaching trees to some of its vertices. For any bicyclic graph
G, we call its basic bicyclic graph ∞(p, q, l) or θ (p, q, l) the kernel of G. For a vertex v
of the kernel of G, if there is a tree Tv attached to it, we denote by e(v) the maximum
distance between v and any vertex of Tv (that is, e(v) = max{d(u, v) | u ∈ V (Tv)}); if there
is no tree attached to it, we define e(v) = . Let B∞

n (p, q, l) and Bθ
n(p, q, l) be the sets of

bicyclic graphs of order n with ∞(p, q, l) and θ (p, q, l) as their kernel, respectively. Clearly,
Bn = B∞

n (p, q, l) ∪ Bθ
n(p, q, l). Let S be a multiset of some nonnegative integers, denote by

‖S‖ the number of nonzero elements in S, that is, ‖S‖ = |{a ∈ S | a ≥ }|, where elements
are counted according to their multiplicity.

Lemma . Let G be the union of some disjoint graphs G, G, . . . , Gr , where Gi (i ∈
{, . . . , r}) is a tree or an unicyclic graph of order ni which is not isomorphic to Gni ,ni (Gn,n is
the unicyclic graph shown in Figure ). Then S(G) < m(G) + .

Proof By Theorem . and the fact S(T) < m(T)+ for any tree, we have S(Gi) < m(Gi)+
for i ∈ {, . . . , r}. If μ and μ of G attain the same component, say Gi ( ≤ i ≤ r), then
S(G) = S(Gi ) < m(Gi ) +  ≤ m(G) + . Otherwise, μ and μ of G attain two differ-
ent components, without loss of generality, we assume that μ and μ attain G and
G, respectively, that is, μ = μ(G) and μ = μ(G). Then S(G) = μ(G) + μ(G) ≤
n(G) + n(G) ≤ (m(G) + ) + (m(G) + ) ≤ m(G) +  < m(G) + . �

For any subgraph H of G, let G – H be the graph obtained from G by deleting all edges
from H .
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Lemma . Let G be a simple graph with at least  vertex-disjoint P (or  vertex-disjoint
P) such that G – P =

⋃
Gi (or G – P =

⋃
Gi), where Gi is a tree or an unicyclic graph

of order ni which is not isomorphic to Gni ,ni (Gn,n is the unicyclic graph shown in Figure ).
Then S(G) < m(G) + .

Proof By direct calculation, we have S(P) = m(P) =  and S(P) = m(P) = . Using
Lemmas . and ., we have S(G) ≤ S(G – P) + S(P) < (m(G – P) + ) + m(P) =
m(G) +  (or S(G) ≤ S(G – P) + S(P) < (m(G – P) + ) + m(P) = m(G) + ), this
completes the proof. �

3 Proof of Theorem 1.3
First of all, using the facts that S(G) ≤ m(G) +  for any graph G and that Bn = B∞

n (p, q, l)∪
Bθ

n(p, q, l), we give the main idea of the proof.
. For each class, we show that S(G) < m(G) +  for the majority of graphs of B∞

n (p, q, l)
or Bθ

n(p, q, l) by Lemma ..
. For the remaining graphs in B∞

n (p, q, l) or Bθ
n(p, q, l) (except for Gn+,n), we prove that

S(G) < m(G) +  by discussing case by case.
. We show that S(Gn+,n) = m(Gn+,n) + , that is, the condition that equality holds.
Next, we discuss according to the following two subsections.

3.1 Bicyclic graphs in B∞
n (p, q, l)

In this subsection, we prove that S(G) < m(G) +  for G ∈ B∞
n (p, q, l).

Lemma . Let G ∈ B∞
n (p, q, l). If (p, q, l) satisfies one of the following conditions:

() l ≥ ,
() (p, q, l) = (p, q, ) and q ≥ p ≥ ,
() (p, q, l) = (, q, ) and q ≥ ,

then S(G) < m(G) + .

Proof Direct calculation shows that S(Cp ∪ Cq) ≤ m(Cp ∪ Cq), where q ≥ p ≥ . For ()
l ≥ , using Lemmas . and ., we have S(G) ≤ S(G – Cp – Cq) + S(Cp ∪ Cq) < (m(G –
Cp –Cq)+)+m(Cp ∪Cq) = m(G)+, since each component of G –Cp –Cq is tree. For both
() and (), it is not difficult to check that G has  vertex-disjoint P (or  vertex-disjoint
P) such that each component of G – P (or G – P) is a tree. Thus the result follows
from Lemma .. �

By Lemma ., it suffices to consider the following two cases: G ∈ B∞
n (, , ) and G ∈

B∞
n (, , ).

Lemma . For G ∈ B∞
n (, , ), we have S(G) < m(G) + .

Proof For G ∈ B∞
n (, , ), its kernel is ∞(, , ), denoted by G

 for short shown in Fig-
ure . Let V (G

 ) = {v, . . . , v}. If there exists a vertex vi ∈ V (G
 ) such that e(vi) ≥ , then

G has  vertex-disjoint P such that each component of G – P is a tree and the result
follows from Lemma .. Thus it suffices to consider the case that G is isomorphic to G

shown in Figure .
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Figure 3 Some bicyclic graphs with ∞(3, 4, 0) as their kernel.

When ‖{n, n, . . . , n}‖ ≥ , if G is not isomorphic to G
 shown in Figure , then G

has  vertex-disjoint P (or  vertex-disjoint P) such that each component of G – P

(or G – P) is a tree or a unicyclic graph of order ni which is not isomorphic to Gni ,ni .
Thus the result follows from Lemma .. If G is isomorphic to G

, then we have mG() ≥
n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other night eigenvalues of G.
Then we have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct

calculations, we have λ + λ + λ ≥ μ(G
 ) + μ(G

 ) + μ(G
 ) = . + . + . > ,

since G
 contains G

 shown in Figure  as a subgraph. Therefore S(G) = λ + λ < n +  =
m(G) + .

If ‖{n, n, . . . , n}‖ = , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other eight eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G).

When n = , G contains a subgraph isomorphic to Gi
 (i ∈ {, , }) shown in Figure .

By Lemma . and direct calculations, we have λ +λ +λ ≥ μ(Gi
) +μ(Gi

) +μ(Gi
) > 

for i ∈ {, , }. Therefore S(G) = λ + λ < n +  = m(G) + .
When n ≥ , it can be checked that mG() ≥ n –  by direct calculation and Lemma ..

Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other seven eigenvalues of G. Then we have λ +
λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct calculations, we

have λ +λ ≥ μ(G
 ) +μ(G

 ) = , since G contains G
 as a subgraph. Therefore S(G) =

λ + λ < n +  = m(G) + .
If ‖{n, n, . . . , n}‖ = , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥

λ > λ =  be the other seven eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). By Lemma . and direct calculation, we have λ + λ ≥ μ(G

 ) +
μ(G

 ) = , since G contains G
 as a subgraph. Therefore S(G) = λ +λ < n+ = m(G)+.

If ‖{n, n, . . . , n}‖ = , then G is isomorphic to G
 . Direct calculation shows that S(G) <

m(G) + .
The proof is completed. �

Lemma . For G ∈ B∞
n (, , ), we have S(G) < m(G) + .

Proof For G ∈ B∞
n (, , ), its kernel is ∞(, , ), denoted by G

 for short shown in Fig-
ure . Let V (G

) = {v, . . . , v}. If there exists a vertex vi ∈ V (G
) such that e(vi) ≥ , then it

suffices to consider the case that G is isomorphic to G
 or G

 shown in Figure , otherwise
G has  vertex-disjoint P such that each component of G – P is a tree and the result
follows from Lemma ..

When G is isomorphic to Gi
 (i ∈ {, }), we have mG() ≥ n –  by Lemma .. Let λ ≥

λ ≥ · · · ≥ λ > λ =  be the other seven eigenvalues of G. Then we have λ +λ + · · ·+λ =
n + , since

∑i=n
i= μi = m(G). By Lemma . and direct calculations we have λ + λ + λ ≥
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Figure 4 Some bicyclic graphs with ∞(3, 3, 0) as their kernel.

μ(Hi
) + μ(Hi

) + μ(Hi
) > , where Hi

 (i ∈ {, }) is a subgraph of Gi
 shown in Figure .

Therefore S(G) = λ + λ < n +  = m(G) + .
Now, it suffices to consider the case that G is isomorphic to G shown in Figure .
When ‖{n, n, . . . , n}‖ ≥ , if G is isomorphic to G

 shown in Figure , then G has
 vertex-disjoint P (or  vertex-disjoint P) such that each component of G – P (or
G – P) is a tree and the result follows from Lemma .. If G is isomorphic to G

, we
have mG() ≥ n –  by direct calculation and Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be
the other seven eigenvalues of G. We have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G).

By Lemma . and direct calculations we have λ +λ ≥ μ(H
 )+μ(H

 ) = .+. > ,
where H

 is a subgraph of G shown in Figure . Therefore S(G) = λ +λ < n+ = m(G)+.
When ‖{n, n, . . . , n}‖ = , it suffices to consider the case that G is isomorphic to Gi



(i ∈ {, , }) shown in Figure . When G is isomorphic to G
 , we have mG() ≥ n – 

by direct calculation and Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other six
eigenvalues of G. We have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma .

and direct calculations we have λ + λ ≥ μ(H
 ) + μ(H

 ) = . + . > , where H


shown in Figure  is a subgraph of G. Therefore S(G) = λ + λ < n +  = m(G) + . When
G is isomorphic to Gi

 (i ∈ {, }), we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other seven eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). By Lemma . and direct calculations we have λ + λ ≥ μ(Hi

) +
μ(Hi

) > , where Hi
 shown in Figure  is a subgraph of Gi

. Therefore S(G) = λ + λ <
n +  = m(G) + .

If ‖{n, n, . . . , n}‖ = , then it suffices to consider the case that G is isomorphic to G
 or

G
 shown in Figure . When G is isomorphic to G

, we have mG() ≥ n –  by Lemma ..
Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other six eigenvalues of G. We have λ + λ + · · · +
λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct calculations we have λ +

λ ≥ μ(H
 ) + μ(H

 ) = . + . > , where H
 shown in Figure  is a subgraph of G

.
Therefore S(G) = λ +λ < n+ = m(G)+. When G is isomorphic to G

, by an elementary
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calculation, we have φ(G
,λ) = λ(λ – )n–(λ – )(λ – n). It follows that S(G

) = n +  <
m + .

If ‖{n, n, . . . , n}‖ = , then G is isomorphic to G
 . Direct calculation shows that S(G) <

m(G) + . �

We safely come to the following result by the above discussion.

Theorem . For G ∈ B∞
n (p, q, l), where q ≥ p ≥  and l ≥ , we have S(G) < m(G) + .

3.2 Bicyclic graphs in Bθ
n (p, q, l)

In this subsection, we prove that S(G) ≤ m(G) +  for G ∈ Bθ
n(p, q, l) and equality holds

if and only if G ∼= Gn+,n. We begin with the following lemma, which follows from
Lemma . immediately.

Lemma . For G ∈ Bθ
n(p, q, l), if (p, q, l) satisfies one of the following conditions:

()  ≤ p ≤ q ≤ l,
() (p, q, l) = (, q, l) and  ≤ q ≤ l,
() (p, q, l) = (, , l) and  ≤ l,

then S(G) < m(G) + .

By Lemma ., it suffices to consider the following three cases: () G ∈ Bθ
n(, , ), ()

G ∈ Bθ
n(, , ), and () G ∈ Bθ

n(, q, l), where l ≥ q ≥ .
First, we consider the case G ∈ Bθ

n(, , ).

Lemma . For G ∈ Bθ
n(, , ), we have S(G) < m(G) + .

Proof For G ∈ Bθ
n(, , ), its kernel is θ (, , ), denoted by G

 for short shown in Figure .
Let V (G

) = {v, . . . , v}. If there exists a vertex vi of G
 such that e(vi) ≥ , then G has 

vertex-disjoint P such that each component of G – P is a tree and the result follows
from Lemma .. Thus it suffices to consider the case that G is isomorphic to G shown
in Figure . For n(G) ≤ , it is easy to check that S(G) < m(G) +  by a direct calculation.
Thus we assume that n(G) ≥  in the following.

If ‖{n, n, . . . , n}‖ ≥ , then G has  vertex-disjoint P (or  vertex-disjoint P) such that
each component of G – P (or G – P) is a tree and the result follows from Lemma ..

If ‖{n, n, . . . , n}‖ ≤ , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other eight eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). When G is not isomorphic to G

 shown in Figure , it contains a

Figure 5 Some bicyclic graphs with θ (3, 3, 4) as their kernel.
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subgraph which is isomorphic to Gi
 (i ∈ {, , }) shown in Figure . By Lemma . and

direct calculations, we have λ + λ + λ ≥ λ(Gi
) + λ(Gi

) + λ(Gi
) >  for i ∈ {, , }.

Therefore S(G) = λ +λ < n+ = m(G)+. When G is isomorphic to G
, we have mG() ≥

n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other seven eigenvalues of G.
Then we have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct

calculations, we have λ + λ + λ ≥ μ(G
) + μ(G

) + μ(G
) = . + . + . > ,

since G contains G
 as a subgraph. Therefore S(G) = λ + λ < n +  = m(G) + .

The proof is completed. �

Second, we consider the case G ∈ Bθ
n(, , ).

Lemma . For G ∈ Bθ
n(, , ), we have S(G) < m(G) + .

Proof For G ∈ Bθ
n(, , ), its kernel is θ (, , ), denoted by G

 for short shown in Figure .
Let V (G

) = {v, . . . , v}. If there exists a vertex vi ∈ V (G
) such that e(vi) ≥ , then by

Lemma ., it suffices to consider the case that G is isomorphic to G
 or G

 shown in
Figure .

When G is isomorphic to G
, we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥

λ > λ =  be the other seven eigenvalues of G. Then we have λ +λ + · · ·+λ = n+, since
∑i=n

i= μi = m(G). By Lemma . and direct calculation, we have λ + λ + λ ≥ μ(H
) +

μ(H
) + μ(H

) = . + . + . > , where H
 shown in Figure  is a subgraph of G

.
Therefore S(G) = λ + λ < n +  = m(G) + .

When G is isomorphic to G
, we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥

λ > λ =  be the other nine eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). If n ≥  and n ≥ , then G

 contains H
 shown in Figure  as

a subgraph. By Lemma . and direct calculations, we have λ + λ + λ + λ ≥ μ(H
) +

μ(H
) + μ(H

) + μ(H
) = . + . + . + . > . Therefore S(G) = λ + λ <

n +  = m(G) + . If n =  or n = , then we have mG() ≥ n –  by Lemma .. Let
λ ≥ λ ≥ · · · ≥ λ > λ =  be the other eight eigenvalues of G. Then we have λ + λ +
· · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct calculation, we have

Figure 6 Some bicyclic graphs with θ (3, 3, 3) as their kernel.
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λ + λ + λ ≥ μ(H
) + μ(H

) + μ(H
) = . + . + . > , where H

 shown in
Figure  is a subgraph of G

. Therefore S(G) = λ + λ < n +  = m(G) + .
Now, we consider the case that G is isomorphic to G shown in Figure .
First, we consider the case that ‖{n, n, . . . , n}‖ ≥ . If G is not isomorphic to G

 shown
in Figure , then G has  vertex-disjoint P (or  vertex-disjoint P) such that each compo-
nent of G–P (or G–P) is a tree and the result follows from Lemma .. When G is iso-
morphic to G

, we have mG() ≥ n– by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the
other eight eigenvalues of G. Then we have λ +λ + · · ·+λ = n+, since

∑i=n
i= μi = m(G).

By Lemma . and direct calculation, we have λ + λ + λ ≥ μ(H
 ) + μ(H

 ) + μ(H
 ) >

. + . + . > , where H
 shown in Figure  is a subgraph of G

. Therefore
S(G) = λ + λ < n +  = m(G) + .

When ‖{n, n, . . . , n}‖ = , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other seven eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). Then by Lemma . and direct calculations, we have λ + λ ≥

μ(Hi
) + μ(Hi

) ≥  (i ∈ {, }), where Hi
 (i ∈ {, }) shown in Figure  is a subgraph of

G. Therefore S(G) = λ + λ < n +  = m(G) + .
When ‖{n, n, . . . , n}‖ = , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥

λ > λ =  be the other six eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). By Lemma . and direct calculation, we have λ + λ ≥ μ(G

) +
μ(G

) = . + . = , since G contains G
 as a subgraph. Therefore S(G) = λ + λ <

n +  = m(G) + , as required.
When ‖{n, n, . . . , n}‖ = , G is isomorphic to G

. Direct calculation shows that S(G) <
m(G) + .

From the above discussion, we complete the proof. �

Finally, we consider the case G ∈ Bθ
n(, q, l), where l ≥ q ≥ .

Lemma . If G ∈ Bθ
n(, q, l) with l ≥ q ≥ , then S(G) < m(G) + .

Proof If q ≥ , it is obviously that G has  vertex-disjoint P such that G – P is a forest
and the result follows immediately from Lemma .. When q =  and l ≥ , the result
follows immediately from Lemma ., since G has  vertex-disjoint P such that G – P

is a forest. Thus it suffices to consider the case that G ∈ Bθ
n(, , ).

For G ∈ Bθ
n(, , ), its kernel is θ (, , ), denoted by G

 for short shown in Figure .
Let V (G

) = {v, . . . , v}. If there exists a vertex vi ∈ V (G
) such that e(vi) ≥ , then G has

 vertex-disjoint P such that each component of G – P is a tree and the result follows
from Lemma .. Now, it suffices to consider the case that G is isomorphic to G shown
in Figure .

When ‖{n, n, . . . , n}‖ ≥ , G has  vertex-disjoint P (or  vertex-disjoint P) such that
each component of G – P (or G – P) is a tree and the result follows from Lemma ..

When  ≤ ‖{n, n, . . . , n}‖ ≤ , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥
· · · ≥ λ > λ =  be the other eight eigenvalues of G. Then we have λ + λ + · · · + λ =
n + , since

∑i=n
i= μi = m(G). If G is not isomorphic to G

 shown in Figure , then G
contains a subgraph which is isomorphic to G

 shown in Figure . By Lemma . and
direct calculation, we have λ + λ + λ ≥ μ(G

) + μ(G
) + μ(G

) = . + . + . >
. Therefore S(G) = λ + λ < n +  = m(G) + . When G is isomorphic to G

, we have
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Figure 7 Some bicyclic graphs with θ (2, 4, 4) as their kernel.

Figure 8 Some bicyclic graphs with θ (2, 3, 5) as their kernel.

mG() = n –  by direct calculation and Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the
other six eigenvalues of G. Then we have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G).

By Lemma . and direct calculation, we have λ +λ ≥ μ(G
) +μ(G

) = . + . > ,
since G

 contains G
 as a subgraph. Therefore S(G) = λ + λ < n +  = m(G) + .

When ‖{n, n, . . . , n}‖ = , G is isomorphic to G
 . Direct calculation shows that S(G) <

m(G) + .
The proof is completed. �

Lemma .
If G ∈ Bθ

n(, , l) with l ≥ , then S(G) < m(G) + .

Proof When l ≥ , it is obviously that G has  vertex-disjoint P such that G – P is a
forest and the result follows immediately from Lemma .. Thus it suffices to consider
the case that G ∈ Bθ

n(, , ). For n(G) ≤ , it is easy to check that S(G) < m(G) +  by a
direct calculation. Thus we assume that n(G) ≥  in the following.

For G ∈ Bθ
n(, , ), its kernel is θ (, , ), denoted by G

 for short shown in Figure .
Let V (G

) = {v, . . . , v}. If there exists a vertex vi of G
 such that e(vi) ≥ , then G has 

vertex-disjoint P such that G – P is a forest and the result follows from Lemma ..
Now, we can assume that G is isomorphic to G shown in Figure .

If ‖{n, n, . . . , n}‖ ≥ , then G has  vertex-disjoint P (or  vertex-disjoint P) such that
each component of G – P (or G – P) is a tree and the result follows from Lemma ..

If ‖{n, n, . . . , n}‖ ≤ , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other eight eigenvalues of G. We have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). Note that G contains a subgraph which is isomorphic to Gi


(i ∈ {, , , , }) shown in Figure . By Lemma . and direct calculations, we have
λ + λ + λ ≥ μ(Gi

) + μ(Gi
) + μ(Gi

) >  (i ∈ {, , , , }). Therefore S(G) = λ + λ <
n +  = m(G) + .

The proof is completed. �
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Figure 9 Some bicyclic graphs with θ (2, 3, 4) as their kernel.

Lemma . For G ∈ Bθ
n(, , ), we have S(G) < m(G) + .

Proof For G ∈ Bθ
n(, , ), its kernel is θ (, , ), denoted by G

 for short shown in Figure .
Let V (G

) = {v, . . . , v}.
If there exists a vertex vi such that e(vi) ≥ , then by Lemma ., it suffices to consider

the cases that G is isomorphic to Gi
 (i ∈ {, , }) shown in Figure .

When G is isomorphic to Gi
 (i ∈ {, , }) shown in Figure , we have mG() ≥ n –  by

Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other seven eigenvalues of G. We have
λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct calculations,

we have λ + λ + λ ≥ μ(Hi
) + μ(Hi

) + μ(Hi
) > , where Hi

 shown in Figure  is a
subgraph of Gi

. Therefore S(G) = λ + λ < n +  = m(G) + .
Now, it suffices to consider the case that G is isomorphic to G shown in Figure . For

n(G) ≤ , it is easy to check that S(G) < m(G) +  by a direct calculation. In the following,
we assume that n(G) ≥ .

If ‖{n, n, . . . , n}‖ ≥ , then G has  vertex-disjoint P (or  vertex-disjoint P) such that
each component of G – P (or G – P) is a tree and the result follows from Lemma ..

If ‖{n, n, . . . , n}‖ = , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other seven eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). If G is not isomorphic to G

 shown in Figure , then it contains a
subgraph isomorphic to Hi

 (i ∈ {, . . . , }) shown in Figure . By Lemma . and direct
calculations, we have λ + λ ≥ μ(Gi

) + μ(Gi
) >  (i ∈ {, . . . , }). Therefore S(G) =

λ + λ < n +  = m(G) + . When G is isomorphic to G
 , we have mG() ≥ n –  by direct

calculation and Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other six eigenvalues
of G. Then we have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and

direct calculations, we have λ + λ ≥ μ(H
 ) + μ(H

 ) > , where H
 shown in Figure 

is a subgraph of G
 . Therefore S(G) = λ + λ < n +  = m(G) + .

If ‖{n, n, . . . , n}‖ = , then we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other six eigenvalues of G. Then we have λ + λ + · · · + λ = n + ,
since

∑i=n
i= μi = m(G). By Lemma . and direct calculations, we have λ + λ ≥ μ(Hi

) +
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Figure 10 Some bicyclic graphs with θ (2, 3, 3) as their kernel.

μ(Hi
) >  (i ∈ {, , }), where Hi

 shown in Figure  is a subgraph of G. Therefore
S(G) = λ + λ < n +  = m(G) + .

The proof is completed. �

Lemma . Let G ∈ Bθ
n(, , ) and G shown in Figure  be the kernel of G. If there exists

a vertex vi of G such that e(vi) ≥ , then S(G) < m(G) + .

Proof By Lemma ., it suffices to consider the case that G is isomorphic to Gi (i ∈
{, , }) shown in Figure .

When G is isomorphic Gi (i ∈ {, , }), we have mG() ≥ n –  by Lemma .. Let λ ≥
λ ≥ · · · ≥ λ > λ =  be the other eight eigenvalues of Gi. We have λ + λ + · · · + λ =
n+, since

∑i=n
i= μi = m(G). By Lemma . and direct calculations, we have λ +λ +λ ≥

μ(G′
i) +μ(G′

i) +μ(G′
i) > , where G′

i shown in Figure  is the subgraph of Gi. Therefore
S(G) = λ + λ < n +  = m(G) + .

The proof is completed. �

Lemma . Let G ∈ Bθ
n(, , ) and G shown in Figure  be the kernel of G. If

maxi=
i= e(vi) = , then S(G) < m(G) + , where vi is the vertices of G.

Proof By Lemma ., it suffices to consider the case that G is isomorphic to G or G

shown in Figure . Here, we only prove the case that G is isomorphic to G. For the case
G is isomorphic to G, we can discuss similarly.

When ‖{n, n, n, n}‖ ≥ , G has  vertex-disjoint P (or  vertex-disjoint P) such that
each component of G – P (or G – P) is a tree and the result follows from Lemma ..

When ‖{n, n, n, n}‖ ≤ , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥
λ > λ =  be the other seven eigenvalues of G. We have λ + λ + · · · + λ = n + , since
∑i=n

i= μi = m(G). By Lemma . and direct calculations, we have λ + λ ≥ μ(G′
) +

μ(G′
) = . + . = , where G′

 shown in Figure  is a subgraph of G. Thus
S(G) < m(G) + . �

Lemma . Let G be the bicyclic graph of order n shown in Figure , where a ≥ b ≥ 
and a + b +  = n. Then S(G) < m(G) + .

Proof For n(G) ≤ , it is easy to check that S(G) < m(G) +  by a direct calculation.
In following, we assume that n(G) ≥ .

If b ≥ , then G contains G′
 shown in Figure  as a subgraph. Note that mG () ≥

n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other seven eigenvalues of
G. We have λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). By Lemma . and direct

calculations, we have λ + λ ≥ μ(G′
) + μ(G′

) = . + . > . Therefore S(G) =
λ + λ < n +  = m(G) + .
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Figure 11 Some bicyclic graphs with θ (2, 3, 3) as their kernel.

Figure 12 Some bicyclic graphs with θ (2, 3, 3) as their kernel.

If b = , then we have λ(G) < 
 +  = n –  by Lemma . and λ(G) < λ(Lv (G)) =
. by Lemma . and direct calculation. It follows that S(G) < n +  = m(G) + .

If b = , then we have λ(G) < 
 +  = n –  by Lemma . and λ(G) < λ(Lv (G)) =
. by Lemma . and direct calculation. It follows that S(G) < n +  = m(G) + .

If b = , then we have λ(G) < (n – ) + n+
n– by Lemma . and λ(G) < λ(Lv (G)) =

. < . by Lemma . and direct calculation. Therefore S(G) < n –  + n+
n– + . <

n +  = m(G) + .
If b = , then we have λ(G) < (n – ) + n+

n– by Lemma . and λ(G) < λ(Lv (G)) =
. < . by Lemma . and direct calculation. Thus S(G) < n –  + n+

n– + . < n +  =
m(G) + . �

Lemma . Let G be the bicyclic graph of order n shown in Figure , where a ≥ b ≥ 
and a + b +  = n. Then S(G) < m + .

Proof By some elementary calculations, we have φ(G, x) = x(x – )(x – )g(x), where
g(x) = x – (n + )x + (n + ab + )x – (n + ab + )x + n. Let x ≥ x ≥ x ≥ x be the
roots of g(x) = . Then

x + x + x + x = n + , (.)

xx + xx + xx + xx + xx + xx = n + ab + , (.)

xxx + xxx + xxx + xxx = n + ab + . (.)

If

x + x = n +  (.)
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then, by (.), we have

x + x = . (.)

From (.)-(.) follows that

xx + xx = n + ab + , (.)

(n + )xx + xx = n + ab + . (.)

By (.) and (.), we have

xx = . (.)

Combining (.) and (.), we have

x = x = . (.)

Then g() = –ab = , which implies that b = . Therefore, b ≥  implies that S(G) <
m(G) + . �

Lemma . Let G be the bicyclic graph of order n shown in Figure , where a ≥ b ≥ ,
c ≥ d ≥  and a + b + c + d +  = n. Then S(G) ≤ m +  with equality if and only if a = n – 
and b = c = d =  (that is, G ∼= Gn+,n).

Proof For n(G) ≤ , it is easy to check that S(G) ≤ m(G) +  with equality if and only if
G ∼= Gn+,n by a direct calculation. In the following, we assume that n(G) ≥ .

When ‖{a, b, c, d}‖ = , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ >
λ =  be the other eight eigenvalues of G. Then we have λ + λ + · · · + λ = n + , since
∑i=n

i= μi = m(G).
If c ≥ , then G contains H shown in Figure  as a subgraph. By Lemma . and

direct calculations, we have λ + λ ≥ μ(H) + μ(H) = . + . > . If c = d = 
and b ≥ , then G contains H shown in Figure  as a subgraph. By Lemma . and
direct calculations, we have λ + λ ≥ μ(H) + μ(H) = . + . > . Therefore
S(G) = λ + λ < n +  = m(G) + . Now, we can assume that b = c = d = . Under

Figure 13 Some bicyclic graphs with θ (2, 3, 3) as their kernel.
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the assumption, G is isomorphic to H shown in Figure . We have λ(H) < n –  by
Lemma . and λ(H) < λ(Lv (H)) = . by Lemma . and direct calculation. There-
fore, S(G) < (n – ) + . < n +  = m(G) + .

When ‖{a, b, c, d}‖ = , we have mG() ≥ n –  by Lemma .. Let λ ≥ λ ≥ · · · ≥ λ >
λ =  be the other seven eigenvalues of G. Then we have λ + λ + · · · + λ = n + , since
∑i=n

i= μi = m(G). If G is isomorphic to G, then S(G) < m(G) +  by Lemma .. Other-
wise it contains a subgraph isomorphic to Hi (i ∈ {, , , }) shown in Figure . Then we
have λ + λ ≥ λ(Hi) + λi(Hi) >  (i ∈ {, , , }) by Lemma . and direct calculations.
Therefore S(G) = λ + λ < n +  = m(G) + .

When ‖{a, b, c, d}‖ = , G is isomorphic to G shown in Figure  or Hi (i ∈ {, })
shown in Figure . For G is isomorphic to G, we have S(G) < m(G) +  by
Lemma .. For G is isomorphic to H (or H), we have mG() ≥ n –  by Lemma ..
Let λ ≥ λ ≥ · · · ≥ λ > λ =  be the other six eigenvalues of H (or H). We have
λ + λ + · · · + λ = n + , since

∑i=n
i= μi = m(G). Note that H contains H as a sub-

graph (H contains H or H as a subgraph), where Hi (i = , , ) shown in Figure .
By Lemma . and direct calculations, we have λ + λ ≥ μ(Hi) + μ(Hi) >  (i = , , ).
Therefore S(G) = λ + λ < n +  = m(G) + , as required. When ‖{a, b, c, d}‖ = , G is
isomorphic to H or Gn+,n. We have λ(H) < n by Lemma . and λ(H) =  by di-
rect calculations. It follows that S(H) < n + . For Gn+,n, a direct calculation shows that
S(Gn+,n) = m + . �

From the discussion above, we safely come to the following result.

Theorem . For G ∈ Bθ
n(p, q, l), where l ≥ q ≥ p ≥  and at most one of them is , we

have S(G) ≤ m(G) +  and the equality holds if and only if G ∼= Gn+,n.

Theorem . follows immediately from Theorems . and ..
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