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Abstract
In this paper, we propose several new iterative algorithms to solve the split feasibility
problem in the Hilbert spaces. By virtue of new analytical techniques, we prove that
the iterative sequence generated by these iterative procedures converges to the
solution of the split feasibility problem which is the best close to a given point. In
particular, the minimum-norm solution can be found via our iteration method.
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1 Introduction
The split feasibility problem (SFP) was first introduced by Censor and Elfving [] in the
finite-dimensional space, which could be formulated as follows:

Finding x ∈ C, such that Ax ∈ Q, (.)

where C and Q are nonempty closed convex subset of Hilbert space H and H, respec-
tively. A : H → H is a bounded linear operator. The split feasibility problem (.) has
received much attention not only because it can be used to model the problem in signal
and image processing, but also it is strongly related to some general problems, such as
the convex feasibility problem [], the multiple-set split feasibility problem [], the split
equality problem [], the split common fixed point problem [], etc.

Throughout the paper, we always assume that the SFP (.) is consistent, and � denotes
the solution set of SFP (.), i.e.,

� = {x ∈ C : Ax ∈ Q} = C ∩ A–Q.

To solve the SFP (.), Byrne [, ] first introduced the so-called CQ algorithm as follows:

⎧
⎨

⎩

For any x ∈ H,

xn+ = PC
(
I – γ A∗(I – PQ)A

)
xn, n ≥ ,

(.)
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where  < γ < /ρ(A∗A), and where PC denotes the projection onto C, and ρ(A∗A) is the
spectral radius of the self-adjoint operator A∗A. In the CQ algorithm (.), the orthogonal
projections PC and PQ have to be calculated, however, it may be impossible or one may
need much time to compute in some cases. Yang [] proposed a relaxed CQ algorithm for
solving the SFP (.) in which the orthogonal projections PC and PQ are replaced by PCn

and PQn , respectively, that is, the orthogonal projections onto two half spaces Cn and Qn.
The relaxed CQ algorithm via the formula

⎧
⎨

⎩

For any x ∈ H,

xn+ = PCn

(
I – γ A∗(I – PQn )A

)
xn, n ≥ ,

(.)

where  < γ < /ρ(A∗A). The relaxed CQ algorithm is the use of halfspace-relaxation pro-
jection techniques due to Fukushina []. The half spaces Cn and Qn contain the closed
convex set C and Q, respectively. There is an explicit form of computing the orthogonal
projection onto the half spaces Cn and Qn. Both the CQ algorithm and the relaxed CQ
algorithm used a fixed step size and need to know the largest eigenvalues of the operator
A∗A. Qu and Xiu [] developed a modification of the relaxed CQ algorithm by adopting
the Armijo-like search method. There is no need to know the largest eigenvalue of the op-
erator A∗A in advance, and a sufficient decrease of the objective function is done at each
iteration. See for instance [–] and the references therein. Xu [] presented the follow-
ing averaged CQ algorithm and recall its convergence can be deduced from the averaged
nonexpansiveness in []:

⎧
⎨

⎩

For any x ∈ H,

xn+ = ( – αn)xn + αnPC
(
I – γ A∗(I – PQ)A

)
xn, n ≥ ,

(.)

where {αn} is a sequence in [, /( + γ L)] and satisfies the condition

∞∑

n=

αn

(


 + γ L
– αn

)

= +∞, L = ρ
(
A∗A

)
.

Since the CQ algorithm (.), the relaxed CQ algorithm (.) and the averaged CQ al-
gorithm (.) have only weak convergence in the infinite-dimensional space (except in the
finite-dimensional space). In order to obtain strong convergence, Xu [] proposed the
following algorithm which was inspired by the Halpern iteration method. Let u ∈ H, for
any x ∈ H, the sequence {xn} is given by

xn+ = αnu + ( – αn)PC
(
xn – γ A∗(I – PQ)Axn

)
, n ≥ , (.)

where  < γ < /ρ(A∗A), and the parameter {αn} ⊂ (, ) satisfy the conditions:
(C) limn→∞ αn = ,

∑∞
n= αn = +∞;

(C) either
∑∞

n= |αn+ – αn| < +∞, or limn→∞(αn/αn+) = .
He proved that the sequence {xn} converges strongly to the projection of u onto the so-
lution set of the SFP (.). In particular, if u = , the iterative sequence (.) converges
strongly to the minimum-norm solution of the SFP. Recently, Lopez et al. [] proposed
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an iterative algorithm which can self-adaptive update the step size as follows:

xn+ = αnu + ( – αn)PC
(
xn – γn∇f (xn)

)
, n ≥ , (.)

where γn = ρnf (xn)
‖∇f (xn)‖ , f (x) and ∇f (x) are defined by (.) and (.), respectively. The param-

eters {αn} ⊂ (, ) and {ρn} satisfy the conditions
(i) limn→∞ αn = ,

∑∞
n= αn = +∞;

(ii)  < ρn < , infn≥ ρn( – ρn) ≥ .
They proved that the sequence {xn} (.) converges strongly to P�u. Yao et al. [] devel-
oped a self-adaptive iteration method to approximate the common solution of the split
feasibility problem and variational inequality problem. Based on the Tikhonov regulariza-
tion method, Xu [] proved the following iterative sequence converges strongly to the
minimum-norm solution of the SFP (.):

xn+ = PC
(
( – αnγn)xn – γnA∗(I – PQ)Axn

)
, n ≥ , (.)

where {αn} and {γn} satisfy the conditions:
(i)  < γn < αn

L+αn
, L = ρ(A∗A);

(ii) αn →  and γn →  as n → ∞;
(iii)

∑∞
n= αnγn = ∞;

(iv) (|γn+ – γn| + γn|αn+ – αn|)/(αn+γn+) → ∞ as n → ∞.
Yao et al. [] proved the strong convergence of (.) under some different control con-

ditions on the iterative parameters. Wang and Xu [] proposed a modified CQ algorithm
with the sequence {xn} is defined by the following:

xn+ = PC
(
( – αn)

(
I – γ A∗(I – PQ)A

)
xn

)
, n ≥ , (.)

where {αn} ⊂ (, ) such that (C)-(C). They introduced an approximation curve for the
SFP (.) and obtained the minimum-norm solution of the SFP as the strong limit of the ap-
proximation curve. Dang and Gao [] introduced an iterative algorithm which combined
the Krasnoselskij-Mann iterative algorithm and (.). The sequence {xn} is presented as
follows:

xn+ = ( – βn)xn + βnPC
[
( – αn)

(
xn – γ A∗(I – PQ)Axn

)]
, n ≥ , (.)

where γ ∈ (, /ρ(A∗A)) and {αn}, {βn} are the sequences in (, ) such that
(i) limn→∞ αn =  and

∑∞
n= αn = +∞;

(ii) limn→∞ |αn – αn+| = ;
(iii)  < lim infn→∞ βn ≤ lim supn→∞ βn < .

They proved the sequence {xn} strongly converges to the solution of SFP (.) with no need
for constructing an approximation curve in advance. It is observed that the condition (ii)
is redundant as it can be deduced by condition (i). To study the variable step size of γ ,
Wand and Xu [] proposed the following two iterative algorithms to solve the SFP (.).
Let u ∈ H , for any x ∈ H, define

xn+ = αnu + ( – αn)PC
(
xn – λnA∗(I – PQ)Axn

)
, n ≥ , (.)
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and

xn+ = PC
(
αnu + ( – αn)

(
xn – λnA∗(I – PQ)Axn

))
, n ≥ , (.)

where the sequences {λn} and {αn} satisfy the following conditions:
(i)  < a ≤ γn ≤ b < 

L , L = ρ(A∗A);
(ii)

∑∞
n= |λn+ – λn| < +∞;

(iii) limn→∞ αn = ,
∑∞

n= αn = +∞;
(iv) either

∑∞
n= |αn+ – αn| < +∞ or limn→∞ |αn+ – αn|/αn = .

They proved the sequence generated by (.) and (.) converge strongly to P�u. Further,
in [], Yao et al. proposed an iterative algorithm to solve the common solution of the split
feasibility problem and fixed point problem. They proved the strong convergence of the
proposed iterative algorithm. See also [–].

Motivated and inspired by the above work, we will continue to study the strong con-
vergence method to solve the SFP (.). We propose two iteration methods to do such a
job. Let u ∈ H, for any x ∈ H, the first iterative sequence {xn} is defined by the following
procedure:

xn+ = ( – αn)xn + αnPC
(
tnu + ( – tn)Unxn

)
, n ≥ , (.)

and the second iterative sequence {xn} is given as follows:

xn+ = ( – αn)xn + αn
(
tnu + ( – tn)PCUnxn

)
, n ≥ , (.)

where Un = I – γnA∗(I – PQ)A, {αn}, {tn} ⊂ (, ), and {γn} satisfy the condition

 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < /L, L = ρ

(
A∗A

)
. (.)

Under the assumptions on the parameters {αn} and {tn}, we prove that the iteration se-
quence {xn} generated by (.) and (.) converges strongly to the projection of u onto
the solution set of the SFP (.).

2 Preliminaries
In this section, we collect some important definitions and some useful lemmas which will
be used in the following section. Let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖ · ‖, respectively. We introduce the following notations.

(i) The set of all fixed point of T is denoted by Fix(T).
(ii) The symbol ⇀ for weak convergence and → for strong convergence, respectively.
The following definitions are well known.

Definition . Let C be a nonempty closed convex subset of H . T : C → C is called
(i) a nonexpansive mapping, if ‖Tx – Ty‖ ≤ ‖x – y‖, for all x, y ∈ C,

(ii) a firmly nonexpansive mapping, if ‖Tx – Ty‖ ≤ 〈x – y, Tx – Ty〉, for all x, y ∈ C,
(iii) an α-averaged nonexpansive mapping, if there exists a nonexpansive mapping S,

such that T = ( – α)I + αS, where α ∈ (, ) and I is the identity mapping.
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Recall that the orthogonal projection PCx from H onto a nonempty closed convex subset
C ⊂ H is defined by the following:

PCx = arg min
y∈C

‖x – y‖.

The orthogonal projection has the following well-known properties. For a given x ∈ H ,
(i) 〈x – PCx, z – PCx〉 ≤ , for all z ∈ C;

(ii) ‖PCx – PCy‖ ≤ 〈PCx – PCy, x – y〉, for all x, y ∈ H .

Remark . It is easy to see that the projection operator is a firmly nonexpansive map-
ping. The relation between projection operator, firm nonexpansiveness, averaged nonex-
pansiveness, and nonexpansiveness can be presented as follows.

Projecton operator ⇒ Firmly nonexpansive ⇒ Averaged nonexpansive

⇒ Nonexpansive.

The CQ algorithm (.) can be viewed from two different but equivalent ways: optimiza-
tion and fixed point. See, for example []. To solve the SFP (.) from the point of view
optimization. Define the proximity function

f (x) =


‖Ax – PQAx‖. (.)

Then the gradient of f (x) is

∇f (x) = A∗(Ax – PQAx). (.)

In addition, ∇f is Lipschitz continuous, with Lipschitz constant L = ρ(A∗A). The fixed
point method approach to solve the SFP (.) is based on the fact that the SFP (.) can be
formulated as a fixed point equation.

Lemma . ([, ]) Suppose the � �= ∅, let U = I –γ A∗(I –PQ)A,  < γ < /L, L = ρ(A∗A),
and T := PCU . Then

(i) U is an γ L
 -averaged nonexpansive mapping.

(ii) Fix(T) = Fix(PC) ∩ Fix(U) = �.

Remark . Define Un = I –γnA∗(I – PQ)A, Tn = PCUn, where the parameter {γn} satisfies
the condition (.), then the mappings Un is also an γnL

 -averaged nonexpansive mapping,
and Fix(Tn) = Fix(PC) ∩ Fix(Un) = �.

The nonexpansive mapping has the following important demiclosedness property.
Other important properties of nonexpansive mapping can be found in [–].

Lemma . Let T : C → C is a nonexpansive mapping with Fix(T) �= ∅. If xn ⇀ x and
(I – T)xn → , then x = Tx.

We need the following technical lemmas to facilitate our proof. The lemma below was
used by many authors as the key tool in proving convergence theorems. See also [, ].
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Lemma . ([]) Let {xn} and {yn} be bounded sequences in a Banach space E and let
{βn} be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose xn+ =
βnyn + ( – βn)xn for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

We shall use the following recurrent inequality to obtain our strong convergence theo-
rems.

Lemma . ([]) Let {an} be a sequence of non-negative real sequences satisfying the fol-
lowing inequality:

an+ ≤ ( – γn)an + γnδn, n ≥ ,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
()

∑∞
n= γn = +∞;

() either lim supn→∞ δn ≤  or
∑∞

n= |γnδn| < +∞.
Then limn→∞ an = .

The following proposition presents some important equality and inequality properties
that hold in any Hilbert space. We refer to [] for other properties in a Hilbert space.

Proposition . Let H be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respec-
tively. Then

(i) ‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖,
(ii) ‖x + y‖ ≤ ‖x‖ + 〈x + y, y〉,

(iii)
∥
∥αx + ( – α)y

∥
∥ = α‖x‖ + ( – α)‖y‖ – α( – α)‖x – y‖,

∀x, y ∈ H and ∀α ∈ [, ].

3 Main results
In this section, we state and prove our main results. First, we prove the strong convergence
of the iterative sequence (.).

Theorem  Assume that the SFP (.) is consistent (i.e., the solution set � is nonempty).
Let the sequence {xn}∞n= be defined by (.), where the parameters {αn} and {tn} ⊂ (, )
satisfy the following conditions:

(i)  < lim infn→∞ αn ≤ lim supn→∞ αn < ;
(ii) limn→∞ tn = ,

∑∞
n= tn = +∞.

In addition the parameter {γn} satisfies limn→∞ |γn+ – γn| = . Then the sequence {xn}
converges strongly to the point of u onto the projection of �, i.e., xn → P�u.

Proof Let zn = PC(tnu + ( – tn)Unxn), then the iterative sequence (.) can be rewritten
as

xn+ = ( – αn)xn + αnzn. (.)
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Let p ∈ �. By Lemma ., we know that p ∈ C and p ∈ Fix(Un). Then we have

‖xn+ – p‖ =
∥
∥( – αn)(xn – p) + αn(zn – p)

∥
∥

≤ ( – αn)‖xn – p‖ + αn
∥
∥tnu + ( – tn)Unxn – p

∥
∥

= ( – αn)‖xn – p‖ + αn
∥
∥tn(u – p) + ( – tn)(Unxn – p)

∥
∥

≤ ( – αn)‖xn – p‖ + αntn‖u – p‖ + αn( – tn)‖xn – p‖
= ( – αntn)‖xn – p‖ + αntn‖u – p‖. (.)

By induction, it follows from (.) that

‖xn+ – p‖ ≤ max
{‖x – p‖,‖u – p‖},

which means that the sequence {xn} is bounded.
Next, we prove that ‖xn+ – xn‖ →  as n → ∞. Notice that zn = PC(tnu + ( – tn)Unxn)

and p ∈ Fix(Un), we have

‖zn – p‖ =
∥
∥PC

(
tnu + ( – tn)Unxn

)
– p

∥
∥

≤ ∥
∥tnu + ( – tn)Unxn – p

∥
∥

≤ tn‖u – p‖ + ( – tn)‖xn – p‖
≤ max

{‖xn – p‖,‖u – p‖}. (.)

Since the sequence {xn} is bounded, the sequence {zn} is also bounded. Again, from the
Lipschitz continuous of A∗(I – PQ)Axn and Unxn, there exists a constant M >  such
that

M > max
{

sup
n≥

∥
∥A∗(I – PQ)Axn

∥
∥, sup

n≥
‖xn‖, sup

n≥
‖Unxn‖

}
.

From the nonexpansivity of the projection operator PC , we have

‖zn+ – zn‖ =
∥
∥PC

(
tn+u + ( – tn+)Un+xn+

)
– PC

(
tnu + ( – tn)Unxn

)∥
∥

≤ ∥
∥tn+u + ( – tn+)Un+xn+ –

(
tnu + ( – tn)Unxn

)∥
∥

≤ |tn+ – tn|‖u‖ +
∥
∥( – tn+)Un+xn+ – ( – tn)Unxn

∥
∥

≤ |tn+ – tn|‖u‖ +
∥
∥( – tn+)Un+xn+ – ( – tn+)Un+xn

∥
∥

+
∥
∥( – tn+)Un+xn – ( – tn)Un+xn

∥
∥

+
∥
∥( – tn)Un+xn – ( – tn)Unxn

∥
∥

≤ |tn+ – tn|‖u‖ + ( – tn+)‖xn+ – xn‖
+ |tn+ – tn|M + ( – tn)‖Un+xn – Unxn‖

≤ |tn+ – tn|‖u‖ + ( – tn+)‖xn+ – xn‖
+ |tn+ – tn|M + ( – tn)|γn+ – γn|M, (.)
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which implies that

‖zn+ – zn‖ – ‖xn+ – xn‖
≤ |tn+ – tn|‖u‖ + |tn+ – tn|M + ( – tn)|γn+ – γn|M.

By the assumptions of (i) and (ii), we have

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

One concludes from Lemma . that

lim
n→∞‖xn – zn‖ = .

Therefore,

lim
n→∞‖xn+ – xn‖ = lim

n→∞αn‖xn – zn‖ = .

Next, we make the following estimation:

∥
∥xn – PC(Unxn)

∥
∥

≤ ‖xn – xn+‖ +
∥
∥xn+ – PC(Unxn)

∥
∥

≤ ‖xn – xn+‖ +
∥
∥( – αn)xn + αnPC

(
tnu + ( – tn)Unxn

)
– PC(Unxn)

∥
∥

≤ ‖xn – xn+‖ + ( – αn)
∥
∥xn – PC(Unxn)

∥
∥

+ αn
∥
∥tnu + ( – tnUnxn) – Unxn

∥
∥

≤ ‖xn – xn+‖ + ( – αn)
∥
∥xn – PC(Unxn)

∥
∥ + αntn‖u – Unxn‖. (.)

It turns out that

∥
∥xn – PC(Un)xn

∥
∥ ≤ 

αn
‖xn – xn+‖ + tn‖u – Unxn‖. (.)

We show that lim supn→∞〈Unxn – q, u – q〉 ≤ , where q = P�u. It is easy to see that

〈Unxn – q, u – q〉 = 〈Unxn – xn, u – q〉 + 〈xn – q, u – q〉
≤ ‖Unxn – xn‖‖u – q‖ + 〈xn – q, u – q〉. (.)

For any p ∈ �, we have

‖xn+ – p‖ =
∥
∥( – αn)xn + αnPC

(
tnu + ( – tn)Unxn

)
– p

∥
∥

≤ ( – αn)‖xn – p‖ + αn
∥
∥PC

(
tnu + ( – tn)Unxn

)
– p

∥
∥

≤ ( – αn)‖xn – p‖ + αn
(
tn‖u – p‖ + ( – tn)‖Unxn – p‖). (.)
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By Lemma ., we know that Un is averaged nonexpansive, that is, Un = ( – βn)I + βnVn,
where βn = γnL

 . Then

‖Unxn – p‖ =
∥
∥( – βn)(xn – p) + βn(Vnxn – p)

∥
∥

= ( – βn)‖xn – p‖ + βn‖Vnxn – p‖ – βn( – βn)‖xn – Vnxn‖

≤ ‖xn – p‖ – βn( – βn)‖xn – Vnxn‖. (.)

Substituting (.) into (.), we obtain

‖xn+ – p‖ ≤ ( – αn)‖xn – p‖ + αn‖xn – p‖

– αnβn( – βn)‖xn – Vnxn‖ + αntn‖u – p‖

= ‖xn – p‖ – αnβn( – βn)‖xn – Vnxn‖ + αntn‖u – p‖. (.)

Therefore,

αnβn( – βn)‖xn – Vnxn‖ ≤ ‖xn – p‖ – ‖xn+ – p‖ + αntn‖u – p‖

≤ (‖xn – p‖ – ‖xn+ – p‖)(‖xn – p‖ + ‖xn+ – p‖)

+ αntn‖u – p‖

≤ ‖xn – xn+‖
(
M + ‖p‖) + αntn‖u – p‖. (.)

Then

βn( – βn)‖xn – Vnxn‖ ≤ ‖xn – xn+‖
αn


(
M + ‖p‖) + tn‖u – p‖

and

lim
n→∞‖Unxn – xn‖ = lim

n→∞βn‖xn – Vnxn‖ = . (.)

We can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈xn – q, u – q〉 = lim
j→∞〈xnj – q, u – q〉.

Since {xnj} is bounded, there exists a subsequence of {xnj} which converges weakly to a
point x. Without loss of generality, we may assume that xnj ⇀ x. Since {γn} is bounded, we
may assume γnj → γ . Let U = I – γ A∗(I – PQ)A, we have

∥
∥xnj – PC(Uxnj )

∥
∥ ≤ ∥

∥xnj – PC(Unj xnj )
∥
∥ +

∥
∥PC(Unj xnj ) – PC(Uxnj )

∥
∥

≤ ∥
∥xnj – PC(Unj xnj )

∥
∥ + ‖Unj xnj – Uxnj‖

≤ ∥
∥xnj – PC(Unj xnj )

∥
∥ + |γnj – γ |M

→ , as j → ∞. (.)
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Since PCU is nonexpansive, from the demiclosed Lemma ., we know that x ∈ Fix(PCU),
that is, x ∈ �. It follows from the properties of projection operator that

lim sup
n→∞

〈xn – q, u – q〉 = 〈x – q, u – q〉 ≤ . (.)

Taking the limsup on both sides of (.), and together with (.) and (.), we get

lim sup
n→∞

〈Unxn – q, u – q〉 ≤ . (.)

Finally, we prove that xn → q, where q = P�u. By (.) and Proposition ., we have

‖xn+ – q‖ =
∥
∥( – αn)(xn – q) + αn

(
PC

(
tnu + ( – tn)Unxn

)
– q

)∥
∥

≤ ( – αn)‖xn – q‖ + αn
∥
∥PC

(
tnu + ( – tn)Unxn

)
– q

∥
∥

≤ ( – αn)‖xn – q‖ + αn
∥
∥tn(u – q) + ( – tn)(Unxn – q)

∥
∥

= ( – αn)‖xn – q‖ + αntn( – tn)〈u – q, Unxn – q〉
+ αnt

n‖u – q‖ + αn( – tn)‖Unxn – q‖

≤ ( – αntn)‖xn – q‖ + αntn( – tn)〈u – q, Unxn – q〉
+ αnt

n‖u – q‖. (.)

Let γn = αntn and δn = ( – tn)〈u – q, Unxn – q〉 + tn‖u – q‖. Notice the condition that
limn→∞ tn =  and the inequality (.), we have

∑∞
n= γn = +∞ and lim supn→∞ δn ≤ . By

Lemma ., we obtain ‖xn – q‖ → . �

We have proved the strong convergence of iterative method (.). Next, we are ready to
prove the corresponding convergence theorem as regards the iterative algorithm of (.).

Theorem  Assume that the SFP (.) is consistent (i.e., the solution set � is nonempty).
Let the iterative sequence {xn} is defined by (.), where the iterative parameters {αn}, {tn}
and {γn} satisfy the same conditions as in Theorem . Then the sequence {xn} converges
strongly to the point of u onto the projection of �, i.e., xn → P�u.

Proof The principal proof of Theorem  is similar to Theorem . However, the derivation
is slightly different. We give the detailed proofs as follows. Let zn = tnu + ( – tn)PCUnxn,
then the iterative sequence (.) can be formulated as follows:

xn+ = ( – αn)xn + αnzn. (.)

For simplicity, we separate the proof into four steps.
Step . We prove that the sequence {xn} is bounded. In fact, let p ∈ �. By Lemma ., we

know that p ∈ C and p ∈ Fix(Un). We have from (.)

‖xn+ – p‖ =
∥
∥( – αn)(xn – p) + αn(zn – p)

∥
∥

≤ ( – αn)‖xn – p‖ + αn
∥
∥tnu + ( – tn)PCUnxn – p

∥
∥



Tang and Liu Journal of Inequalities and Applications  (2016) 2016:284 Page 11 of 14

≤ ( – αn)‖xn – p‖ + αntn‖u – p‖ + αn( – tn)‖xn – p‖
= ( – αntn)‖xn – p‖ + αntn‖u – p‖
≤ max

{‖x – p‖,‖u – p‖}. (.)

This means that {xn} is bounded.
Step . We show that ‖xn+ – xn‖ →  as n → ∞. Since zn = tnu + ( – tn)PCUnxn and

p ∈ Fix(Un), we have

‖zn – p‖ =
∥
∥tnu + ( – tn)PCUnxn – p

∥
∥

≤ tn‖u – p‖ + ( – tn)‖xn – p‖
≤ max

{‖xn – p‖,‖u – p‖}. (.)

Therefore, {zn} is also bounded. Let M > , such that

M > max
{

sup
n≥

∥
∥A∗(I – PQ)Axn

∥
∥, sup

n≥
‖xn‖, sup

n≥
‖PCUnxn‖

}
. (.)

On the other hand, we have

‖zn+ – zn‖ =
∥
∥tn+u + ( – tn+)PCUn+xn+ – tnu – ( – tn)PCUnxn

∥
∥

≤ |tn+ – tn|‖u‖ +
∥
∥( – tn+)PCUn+xn+ – ( – tn+)PCUn+xn

∥
∥

+
∥
∥( – tn+)PCUn+xn – ( – tn)PCUn+xn

∥
∥

+
∥
∥( – tn)PCUn+xn – ( – tn)PCUnxn

∥
∥

≤ |tn+ – tn|‖u‖ + ( – tn+)‖xn+ – xn‖
+ |tn+ – tn|M + ( – tn)‖Un+xn – Unxn‖

≤ |tn+ – tn|‖u‖ + ( – tn+)‖xn+ – xn‖
+ |tn+ – tn|M + ( – tn)|γn+ – γn|M. (.)

It turns out from (.) that

‖zn+ – zn‖ – ‖xn+ – xn‖
≤ |tn+ – tn|‖u‖ + |tn+ – tn|M + ( – tn)|γn+ – γn|M.

Taking limsup on both sides of the above inequality, we get

lim sup
n→∞

(‖zn+ – zn‖ – ‖xn+ – xn‖
) ≤ .

With the help of Lemma ., we obtain limn→∞ ‖xn – zn‖ = . Therefore,

lim
n→∞‖xn+ – xn‖ = lim

n→∞αn‖xn – zn‖ = . (.)
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Step . We prove that lim supn→∞〈q – xn, q – u〉 ≤ , where q = P�u. We have

‖xn – PCUnxn‖ ≤ ‖xn – xn+‖ + ‖xn+ – PCUnxn‖
≤ ‖xn – xn+‖ + ( – αn)‖xn – PCUnxn‖ + αntn

(
M + ‖u‖), (.)

which leads to

‖xn – PCUnxn‖ ≤ 
αn

‖xn – xn+‖ + tn
(
M + ‖u‖). (.)

We can choose a subsequence {xnj} of {xn} such that

lim sup
n→∞

〈q – xn, q – u〉 = lim
j→∞〈q – xnj , q – u〉.

Because {xnj} is bounded, there exists a subsequence of {xnj} which converges weakly to a
point x. Without loss of generality, we may assume that {xnj} converges weakly to x. Since
{γn} is bounded, we may assume that γnj → γ . Let U = I –γ A∗(I – PQ)A,  < γ < /ρ(A∗A),
we have

‖xnj – PCUxnj‖ ≤ ‖xnj – PCUnj xnj‖ + ‖PCUnj xnj – PCUxnj‖
≤ ‖xnj – PCUnj xnj‖ + ‖Unj xnj – Uxnj‖
≤ ‖xnj – PCUnj xnj‖ + |γnj – γ |M
→ , as j → ∞. (.)

Since PCU is nonexpansive, from Lemma ., we know that x ∈ Fix(PCU), that is, x ∈ �.
It follows from the properties of the projection operator that

lim sup
n→∞

〈xn – q, u – q〉 = 〈x – q, u – q〉 ≤ . (.)

Step . Finally, we prove xn → q, where q = P�u. By (.) and Proposition ., we have

‖xn+ – q‖ =
∥
∥( – αn)xn + αn

(
tnu + ( – tn)PCUnxn

)
– q

∥
∥

=
∥
∥( – αn)(xn – q) + αn

(
tn(u – q) + ( – tn)(PCUnxn – q)

)∥
∥

≤ ∥
∥( – αn)(xn – q) + αn( – tn)(PCUnxn – q)

∥
∥

+ αntn〈u – q, xn+ – q〉
≤ ( – αn)‖xn – q‖ + αn

∥
∥( – tn)(PCUnxn – q)

∥
∥

+ αntn〈u – q, xn+ – q〉
≤ ( – αn)‖xn – q‖ + αn( – tn)‖xn – q‖

+ αntn〈u – q, xn+ – q〉
≤ ( – αntn)‖xn – q‖ + αntn〈u – q, xn+ – q〉. (.)
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It is clear that all conditions of Lemma . are satisfied. Therefore, we immediately ob-
tain ‖xn – q‖ →  as n → ∞, i.e., {xn} converges strongly to q = P�u. This completes the
proof. �

Remark . The results of Dang and Gao [] is a special case of Theorem  by letting
u =  in (.). Theorem  and Theorem  consider the variable step sizes of {γn}, which
improve the results of Xu [], Wang and Xu [], Dang and Gao [] and Yu et al. []
where the iterative sequence (.), (.), and (.) are involved with a constant step size
of γ . Theorem  and Theorem  also improve the corresponding results of Wang and Xu
[] by discarding the condition of (iv) in (.) and (.) and weakening the condition on
{γn} from

∑∞
n= |λn+ – λn| < +∞ to limn→∞ |γn+ – γn| = .

4 Conclusions
The split feasibility problem has been received much attention in recent years. We devel-
oped several new iterative algorithms to solve the split feasibility problem in an infinite-
dimensional Hilbert spaces. We proved that the iterative sequence converged to the solu-
tion of the split feasibility problem which is the best close to a given point. The minimum
solution of it can also be found by letting the given point to be zero. Our results improve
and generalize the corresponding results of Xu [], Wang and Xu [], Dang and Gao []
and Yu et al. [].
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