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Abstract
In this paper, we study the extreme points and rotundity of Orlicz-Sobolev spaces.
Analyzing and combining the properties of both Orlicz spaces and Sobolev spaces,
we get the sufficient and necessary criteria for Orlicz-Sobolev spaces equipped with a
modular norm to be uniformly rotund in every direction.
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1 Introduction
Sobolev spaces are valuable mathematical models which were formed in the th cen-
tury. Their effect on the development of partial differential equations is obvious (see []).
Orlicz-Sobolev spaces are an important extension of the Sobolev spaces, which have some
properties of both Orlicz spaces and Sobolev spaces. Moreover, the development of Orlicz-
Sobolev spaces not only improves the Banach space theory but also provides a rich model
for solving partial differential equations problems. The rotundity and uniformly rotun-
dity in every direction are important geometric properties of Banach spaces. One of the
reasons is that these properties are strongly related to the fixed point property (see [])
and to the approximation theory (see [, ]). Zizler proved that if a normed linear space
is uniformly rotund in every direction then it has a certain formal structure (see []).

Chen and Hu discussed the extreme points and rotundity of Orlicz-Sobolev spaces with
maximum norm and Luxemburg norm (see [, ]). Garkavi first proposed the concept of
uniform rotundity in every direction when he researched the center of Chebyshev (see []).

The modular norm of Orlicz-Sobolev spaces is the natural generalization of the Lux-
emburg norm. Then we can study the Orlicz-Sobolev spaces with modular norm by using
the methods of Orlicz spaces. So we equip the Orlicz-Sobolev spaces with a modular norm
and study Orlicz-Sobolev spaces.

In the second section we introduce some basic notions, we agree on terminology and
provide some results which we will use further in the paper. In the third section we give
some relationships between a modular and the modular norm. Furthermore we discuss
the extreme points and give the sufficient and necessary criteria for Orlicz-Sobolev spaces
equipped with a modular norm to be uniformly rotund in every direction.

2 Preliminaries
In this section we recall some basic notions and results. Let [X,‖ · ‖] be a Banach space,
S(X) the unit sphere and B(X) the unit ball.
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Definition . ([]) M : � → [,∞) is called an N function if it has the following prop-
erties:

() M is even, continuous, convex and M() = .
() M(u) >  for all u �= .
() limu→

M(u)
u =  and limu→∞ M(u)

u = ∞.
Besides we call M strictly convex if, for any u �= v, we have

M
(

u + v


)
<

M(u) + M(v)


.

An interval [a, b] is called a structural affine interval of M provided that M is affine on
[a, b], and it is not affine on either [a – ε, b] or [a, b + ε] for all ε > . Let {[ai, bi]}i be all the
structural affine intervals of M. We call

SCM � � ∖ [⋃
i

(ai, bi)
]

the set of strictly convex points of M.

Proposition . ([]) Suppose M is strictly convex, then, for any D > , ε > , there exists
δ >  such that, for any u, v, satisfying |u| ≤ D, |v| ≤ D, |u – v| ≥ ε, we have

M
(

u + v


)
≤ ( – δ)

M(u) + M(v)


.

Let (�,�,μ) be the Lebesgue measure space in p Euclidean space with  < μ� < ∞ and
M be an N function. For any measurable function u on �, we define the modular of u by

ρ(u) =
∫

�

M
(
u(t)

)
dt.

The Orlicz space is defined as follows:

LM := LM(�) =
{

u(t) : ∃k > ,ρ(ku) < ∞}
.

Then LM equipped with the Luxemburg norm

‖u‖(M) = inf

{
λ >  :

∫
�

M
(

u(t)
λ

)
dt ≤ 

}

becomes a Banach space which is called the Orlicz space.

Definition . ([]) We say that the N function M satisfies the condition � (we write
M ∈ �) if there exist K >  and u ≥  such that M(u) ≤ KM(u) (|u| ≥ u).

Definition . ([]) Let X be a Banach space, x ∈ S(X). If y, z ∈ B(X), y + z = x implies
x = y = z, then x is called an extreme point of B(X). The set of extreme points of B(X) is
denoted by ext B(X). X is said to be rotund(R) if S(X) = ext B(X).
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Definition . ([]) Let X be a Banach space. X is called uniformly rotund in every di-
rection (URED) if for any z ∈ X, {xn} ⊂ X, ‖xn‖ → , ‖xn + z‖ →  and ‖xn + z‖ →  imply
z =  as n → ∞.

Remark . By Definition . and Definition ., we get URED ⇒ R.

Next, we introduce the Orlicz-Sobolev space, which is an expansion of the Orlicz space.

Definition . ([]) Let M be an N function and � be bounded and connected open sub-
set of �n. The Orlicz-Sobolev space is defined as follows:

W mLM := W mLM(�) =
{

u ∈ LM : Dαu ∈ LM,  ≤ |α| ≤ m
}

,

where α = (α,α, . . . ,αn), |α| =
∑n

i= αi, αi (i = , , . . . , n) are nonnegative integers, Dαu is
the αth distributional derivative of u.

Suppose u ∈ W mLM , we define its convex modular with respect to M by

ρ̃M(u) =
∑

≤|α|≤m

∫
�

M
(
Dαu(t)

)
dt,

and define the modular norm by

‖u‖m,(M) = inf

{
λ >  : ρ̃M

(
u
λ

)
≤ 

}
.

Then (W mLM,‖ · ‖m,(M)) is a Banach space.

3 Main results
In this section, we first of all discuss the relationships between modular and the modular
norm which are similar to that of Orlicz spaces. The results are showed through Lemma .
to Lemma .. Furthermore, these lemmas will help us to study the geometric properties
in this paper. Second, we will discuss the extreme points. In this part we get a sufficient
criterion for a point to be an extreme point or not, combining the generating function
M and properties of both Orlicz spaces and Sobolev spaces. Finally we get the sufficient
and necessary criteria for Orlicz-Sobolev spaces equipped with a modular norm to be
uniformly rotund in every direction.

Lemma . Suppose u ∈ W mLM , then:
() ρ̃M(u) ≤  ⇒ ‖u‖m,(M) ≤ , ρ̃M(u) =  ⇒ ‖u‖m,(M) = .
() u �= , ρ̃M( u

‖u‖m,(M)
) ≤ .

() ‖u‖m,(M) ≤  ⇒ ρ̃M(u) ≤ ‖u‖m,(M).
() ‖u‖m,(M) >  ⇒ ρ̃M(u) ≥ ‖u‖m,(M).

Lemma . Suppose M ∈ � and u ∈ W mLM , then ρ̃M(u) =  ⇔ ‖u‖m,(M) = .

Lemma . Suppose M ∈ � and u ∈ W mLM , then:
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() ∀ε ∈ (, ), ∃δ ∈ (, ), such that ρ̃M(u) ≤  – ε ⇒ ‖u‖m,(M) ≤  – δ.
() ∀ε ∈ (, ), ∃δ ∈ (, ), such that ρ̃M(u) >  + ε ⇒ ‖u‖m,(M) ≥  + δ.

The proofs of Lemma . to Lemma . are clear.

Lemma . ([]) Let α = inf{t : (t, t, . . . , tn) ∈ �}, β = sup{t : (t, t, . . . , tn) ∈ �}, r ∈
[α,β]. Assume that f ∈ LM satisfies f (t) ≥ , for μ-a.e. t = (t, t, . . . , tn) ∈ �. Then if f (t) is
non-decreasing with respect to t and f (t) =  for t ≤ r, we have ‖ ∫

E(t) f (t) ds‖(M) ≤ (β –
r)‖f ‖(M), where E(t) = Er(t, t, . . . , tn) = {s ∈ [r, t] : (s, t, . . . , tn) ∈ �}.

Base on the above lemmas, we obtain the following result.

Theorem . Suppose u ∈ W mLM , the following statements are equivalent:
() M ∈ �.
() ρ̃M(u) →  ⇔ ‖u‖m,(M) → .
() ρ̃M(u) →  ⇔ ‖u‖m,(M) → .

Proof () ⇒ (). The proof is similar to that of the Orlicz spaces (see []).
() ⇒ (). Otherwise, if M /∈ �, then there exists a nonnegative sequence {ck} ↑ ∞ such

that

M
((

 +

k

)
ck

)
> kM(ck).

Set λk = 
k M(ck ) (k = , , . . .), α, β are defined as in Lemma .. Without loss of generality,

let
∑∞

k= λk < μ(�). Taking δ ∈ (α,β) such that setting � = {t ∈ � : t ≤ δ}, we have
μ(�) = μ(�) –

∑∞
k= λk . Then choose δ ∈ (δ,β) and � = {t ∈ � : δ < t ≤ δ} such that

μ(�) = λ. By the induction process, for any k ∈ N+, we have �k = {t ∈ � : δk– < t ≤ δk}
such that μ(�k) = λk . Obviously,

∑∞
k= μ(�k) = μ(�) and M(ck)μ(�k) = 

k for any k ∈ N+.
Let

up(t) =
∞∑

k=p+

ck · χ�k (t),  ≤ p < ∞,

then

ρM(up) =
∫

�

M

( ∞∑
k=p+

ck · χ�k (t)

)
dt

=
∞∑

k=p+

∫
�k

M
(
ck · χ�k (t)

)
dt

=
∞∑

k=p+

M(ck) · μ(�k)

=
∞∑

k=p+


k =


p , (.)

which implies ‖up‖(M) ≤ .
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On the other hand, for any l > , there exists p satisfying l ≥  + 
p

, thus for all p ≥ p,

ρM(lup) ≥ ρM

((
 +


p

)
up

)
=

∞∑
k=p+

M
((

 +


p

)
ck

)
· μ(�k)

≥
∞∑

k=p+

M
((

 +

k

)
ck

)
· μ(�k)

≥
∞∑

k=p+

kM(ck) · μ(�k) > .

We have ‖up‖(M) ≥ 

l

= l, thus ‖up‖(M) ≥ . Consequently, ‖up‖(M) = .
Define

ũj,p(t) =
∫ t

α

∫ xj–

α

· · ·
∫ x

α

∞∑
k=p+

ck · χ�k (s, t, . . . , tn) ds dx dx · · · dxj–,  ≤ j ≤ m,

ũ,p(t) = up(t).
Then, for α = (j, , , . . . , ), we have D(j,,,...,)ũm,p(t) = ũm–j,p(t),  ≤ j ≤ m. And at the

same time for α /∈ {(, , . . . , ), (, , . . . , ), . . . , (m, , . . . , )},

Dαũm,p(t) = .

Furthermore, by the induction and Lemma ., we derive

‖Dαũm,p‖(M) ≤ (β – δp)m–|α|‖up‖(M).

It follows from λk →  that μ(�k) = λk → , k → ∞. This implies that δk approaches β .
We can conclude, for any α �= (m, , , . . . , ), ‖Dαũm,p‖(M) →  as p → ∞. By (.) and
Lemma .(), we obtain ρ̃M(ũm,p) → , p → ∞. Thus ‖ũm,p‖m,(M) ≤ , p → ∞.

But

‖ũm,p‖m,(M) ≥ ‖up‖(M) = ,

since
{
λ >  : ρ̃M

(
ũm,p

λ

)
≤ 

}
⊂

{
λ >  : ρM

(
up

λ

)
≤ 

}
.

By the above discussion we have

ρ̃M(ũm,p) → , ‖ũm,p‖m,(M) = , p → ∞.

It is a contradiction. Thus M ∈ �.
() ⇒ (). By Lemma .(), () and Lemma ..
() ⇒ (). Suppose ρ̃M(u) →  ⇔ ‖u‖m,(M) →  and M /∈ �, by the proof of () ⇒ ()

we can get

ρ̃M(ũm,p) → , ‖ũm,p‖m,(M) = , p → ∞.

It is a contradiction. Thus M ∈ �. �
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Now, we turn to the extreme points and rotundity of Orlicz-Sobolev spaces.

Proposition . Suppose u ∈ S(W mLM), if there exist ε >  and affine intervals (aα , bα) of
M,  ≤ |α| ≤ m such that

int
⋂

≤|α|≤m

{
t ∈ � : Dαu(t) ∈ (aα + ε, bα – ε)

} �= ∅,

then u /∈ ext B(W mLM).

Proof Let � =
⋂

≤|α|≤m{t ∈ � : Dαu(t) ∈ (aα + ε, bα – ε)}. Take t′, t′′, r > , such that
U(t′, r) ⊂ �, U(t′′, r) ⊂ �, and U(t′, r) ∩ U(t′′, r) = ∅, define

Jt′ (t) =

⎧⎨
⎩

e
– 

r–
∑n

i=(ti–t′i ) , t ∈ U(t′, r),

, t ∈ � \ U(t′, r),

Jt′′ (t) =

⎧⎨
⎩

e
– 

r–
∑n

i=(ti–t′′i ) , t ∈ U(t′′, r),

, t ∈ � \ U(t′′, r),

then Jt′ (t), Jt′′ (t) ∈ C∞
c (�) ⊂ W mLM(�).

Let

c = ε · min
≤|α|≤m

{


maxt∈� |DαJt′ (t)| + 

}
,

c = ε · min
≤|α|≤m

{


maxt∈� |DαJt′′ (t)| + 

}
,

then c > , c > , and cDαJt′ (t) ≤ ε, cDαJt′′ (t) ≤ ε, for any α with  ≤ |α| ≤ m, t ∈ �. Let
c = min{c, c}. Then we define

v(t) = u(t) + cJt′ (t) – cJt′′ (t), w(t) = u(t) – cJt′ (t) + cJt′′ (t), t ∈ �,

then v, w ∈ W mLM , w + v = u, and w �= v. Let M(u) = kαu + dα on (aα , bα), therefore
∫

�

M
(
Dαv(t)

)
dt =

∫
�\U(t′ ,r)\U(t′′ ,r)

M
(
Dαu(t)

)
dt +

∫
U(t′ ,r)

M
(
Dαu(t) + DαcJt′ (t)

)
dt

+
∫

U(t′′ ,r)
M

(
Dαu(t) – DαcJt′′ (t)

)
dt

=
∫

�\U(t′ ,r)\U(t′′ ,r)
M

(
Dαu(t)

)
dt +

∫
U(t′ ,r)

(
kαDαu(t) + dα

)
dt

+
∫

U(t′′ ,r)

(
kαDαu(t) + dα

)
dt

+
∫

U(t′ ,r)
kαDαcJt′ (t) dt –

∫
U(t′′ ,r)

kαDαcJt′′ (t) dt

=
∫

�\U(t′ ,r)\U(t′′ ,r)
M

(
Dαu(t)

)
dt +

∫
U(t′ ,r)∪U(t′′ ,r)

(
kαDαu(t) + dα

)
dt

=
∫

�

M
(
Dαu(t)

)
dt.
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So we conclude ρ̃M(v) = ρ̃M(u) ≤ . Likewise, ρ̃M(w) = ρ̃M(u) ≤ . Therefore v, w ∈
B(W mLM) and v �= w, we know that u /∈ ext B(W mLM). �

Lemma . Let u ∈ S(W mLM), if
(i) ρ̃M(u) = , and

(ii) μ{t ∈ � : u(t) /∈ SCM} = ,
then u ∈ ext B(W mLM).

Proof Suppose v, w ∈ B(W mLM) and w + v = u. We have to show u = v = w. The convexity
of M implies

 = ρ̃M(u) =
∑

≤|α|≤m

∫
�

M
(
Dαu(t)

)
dt

=
∑

≤|α|≤m

∫
�

M
(

Dα

(
v(t) + w(t)



))
dt

≤
∑

≤|α|≤m

(



∫
�

M
(
Dαv(t)

)
dt +




∫
�

M
(
Dαw(t)

)
dt

)

=



∑
≤|α|≤m

∫
�

M
(
Dαv(t)

)
dt +




∑
≤|α|≤m

∫
�

M
(
Dαw(t)

)
dt

≤ .

So the equality holds in the above inequations. Again by the convexity of M, for any α with
 ≤ |α| ≤ m,

∫
�

M
(
Dαu(t)

)
dt =




∫
�

M
(
Dαv(t)

)
dt +




∫
�

M
(
Dαw(t)

)
dt.

In particular, when α = (, , . . . , ),

∫
�

M
(
u(t)

)
dt =




∫
�

M
(
v(t)

)
dt +




∫
�

M
(
w(t)

)
dt.

Then by (ii), we conclude u = v = w. So u ∈ ext B(W mLM) holds. �

Theorem . Let M be a strictly convex N function. W mLM is rotund if and only if M ∈ �.

Proof Sufficiency. It is trivial by Lemma . and Lemma ..
Necessity. Suppose M /∈ �, by the proof process of Theorem ., there exist p and p+

such that

‖ũm,p‖m,(M) = , ‖ũm,p+‖m,(M) = .

Let w = ũm,p , v = ũm,p+ , and u = w+v
 .

Then

‖u‖m,(M) = .
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Therefore v, w ∈ B(W mLM), but w �= v, so u /∈ ext B(W mLM). That is a contradiction with
the fact that W mLM is rotund. Thus the condition M ∈ � holds. �

Based on the above results, we can prove the following theorem.

Theorem . Let M be a strictly convex N function. W mLM is URED if and only if M ∈ �.

Proof Sufficiency. Suppose w ∈ W mLM , {un} ⊂ W mLM satisfying ‖un‖m,(M) → , ‖un +
w‖m,(M) →  and ‖un + w‖m,(M) →  as n → ∞. Let vn = un + w. We get

‖vn‖m,(M) → ,
∥∥∥∥un + vn



∥∥∥∥
m,(M)

→  as n → ∞.

Furthermore ρ̃M(un) → , ρ̃M(vn) → , ρ̃M( un+vn
 ) → , since M ∈ �. Now we claim that

{un – vn} converges in measure to . Otherwise, there exist δ > , ε > , and {unk } and
{vnk }, such that

μ
{

t ∈ � :
∣∣unk (t) – vnk (t)

∣∣ ≥ δ
} ≥ ε.

Since ρ̃M(unk ) → , for any ε̄, choose k ∈ N+, for k ≥ k we have

∣∣ρ̃M(unk ) – 
∣∣ < ε̄.

Then for D = M–( (+ε̄)
ε

) and k ≥ k,

 + ε̄ > ρ̃M(unk ) =
∑

≤|α|≤m

∫
�

M
(
Dαunk (t)

)
dt

≥
∫

{t∈�:|unk (t)|>D}
M

(
unk (t)

)
dt

≥ M(D)μ
{

t ∈ � :
∣∣unk (t)

∣∣ > D
}

,

which implies

μ
{

t ∈ � :
∣∣unk (t)

∣∣ > D
}

<
ε


(k ≥ k).

Likewise, μ{t ∈ � : |vnk (t)| > D} < ε
 (k ≥ k).

Define

�D,δ =
{

t ∈ � :
∣∣unk (t) – vnk (t)

∣∣ ≥ δ,
∣∣unk (t)

∣∣ ≤ D,
∣∣vnk (t)

∣∣ ≤ D
}

(k ≥ k).

Since

�D,δ ∪ {
t ∈ � :

∣∣unk (t)
∣∣ > D

} ∪ {
t ∈ � :

∣∣vnk (t)
∣∣ > D

}
⊃ {

t ∈ � :
∣∣unk (t) – vnk (t)

∣∣ ≥ δ
}

.
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Then the following inequalities hold:

μ(�D,δ ) ≥ μ
({

t ∈ � :
∣∣unk (t) – vnk (t)

∣∣ ≥ δ
})

– μ
({

t ∈ � :
∣∣unk (t)

∣∣ > D
})

– μ
({

t ∈ � :
∣∣vnk (t)

∣∣ > D
})

≥ ε


.

By Proposition ., for the given D, δ, there exists δ >  such that

M
(

vnk (t) + unk (t)


)
< ( – δ)

M(vnk (t)) + M(unk (t))


,

where t ∈ �D,δ .
Therefore

 = lim
k→∞

ρ̃M

(
unk + vnk



)
= lim

k→∞
∑

≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt.

= lim
k→∞

∫
�

M
(

unk (t) + vnk (t)


)
dt + lim

k→∞
∑

≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

= lim
k→∞

∫
�D,δ

M
(

unk (t) + vnk (t)


)
dt + lim

k→∞

∫
�\�D,δ

M
(

unk (t) + vnk (t)


)
dt

+ lim
k→∞

∑
≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

≤ lim
k→∞

( – δ)
∫

�D,δ

M(vnk (t)) + M(unk (t))


dt + lim
k→∞

∫
�\�D,δ

M
(

unk (t) + vnk (t)


)
dt

+ lim
k→∞

∑
≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

≤ lim
k→∞

ρM(unk ) + ρM(vnk )


– lim
k→∞

δ

∫
�D,δ

M(vnk (t)) + M(unk (t))


dt

+ lim
k→∞

∑
≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

≤ lim
k→∞

ρM(unk ) + ρM(vnk )


– lim
k→∞

δ

∫
�D,δ

M
(

unk (t) – vnk (t)


)
dt

+ lim
k→∞

∑
≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

≤ lim
k→∞

ρM(unk ) + ρM(vnk )


– δM
(

δ



)
μ(�D,δ )

+ lim
k→∞

∑
≤|α|≤m

∫
�

M
(

Dα

(
unk (t) + vnk (t)



))
dt

≤ lim
k→∞

ρM(unk ) + ρM(vnk )


– δM
(

δ



)
μ(�D,δ )

+ lim
k→∞

∑
≤|α|≤m

[



∫
�

M
(
Dαunk (t)

)
dt +




∫
�

M
(
Dαvnk (t)

)
dt

]
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≤ lim
k→∞



ρ̃M(unk ) + lim

k→∞


ρ̃M(vnk ) – δM

(
δ



)
ε



≤  – δM
(

δ



)
ε


< .

It is a contradiction. Then the claim holds, so w = . We finished the proof of sufficiency.
Necessity follows from Remark . and Theorem .. �
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