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Abstract
In this paper, we provide Lagrange-type duality theorems for mathematical
programming problems with DC objective and constraint functions. The class of
problems to which Lagrange-type duality theorems can be applied is broader than
the class in the previous research. The main idea is to consider equivalent inequality
systems given by the maximization of the original functions. In order to compare the
present results with the previously reported results, we describe the difference
between their constraint qualifications, which are technical assumptions for the
duality.
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1 Introduction
Lagrange duality is very effective in solving convex programming problems with inequality
constraints. Constraint qualifications, which are technical assumptions for Lagrange dual-
ity, play an essential role in proving its duality theorems. For convex functions fi : Rn →R,
i = , . . . , m, the inequality system {fi ≤ , i = , . . . , m} is said to have the Farkas-Minkowski
property (FM, for short) if cone co

⋃m
i= epi f ∗

i + {} × [, +∞) is closed. FM is well known
as a necessary and sufficient constraint qualification for Lagrange duality; see []. Also
it is easy to check that the system {fi ≤ , i = , . . . , m} has FM if and only if the system
{maxi=,...,m fi ≤ } has FM.

A function is said to be DC if it can be expressed as the difference of two convex func-
tions. In this paper, we consider the following mathematical programming problem with
DC objective and constraint functions:

minimize f(x) – g(x)

subject to fi(x) – gi(x) ≤ , i = , . . . , m,
(P)

where fi, gi : Rn → R are convex functions for each i = , , . . . , m. For the inequality sys-
tem {fi – gi ≤ , i = , . . . , m}, its constraint qualifications for Lagrange-type duality have
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been observed in [, ]. To our surprise, we can observe that such constraint qualifi-
cations of two DC inequality systems {fi – gi ≤ , i = , . . . , m} and {F – G ≤ }, where
F = maxi=,...,m{fi +

∑
j �=i gj} and G =

∑m
j= gj, have a difference in spite of the two systems

being equivalent.
The purpose of this paper is to provide other Lagrange-type duality theorems for DC

programming problems with equivalent DC inequalities. The class of problems to which
Lagrange-type duality theorems can be applied is broader than the class in previous re-
search. The main idea, motivated by the above observation, is to consider equivalent in-
equality systems given by the maximization of the original functions. In order to compare
the present results with the previously reported results, we describe the difference be-
tween their constraint qualifications. The outline of the paper is as follows: In Section , we
introduce definitions and preliminary results which will be used in this paper. In Section ,
we provide a Lagrange-type duality theorem for equivalent inequality system {F – G ≤ }.
We provide an application of this theorem and we describe the difference between the
present and previous constraint qualifications. Also, we provide a unified Lagrange-type
duality theorem which contains the present theorem and the previous results in []. In
Section , we summarize our results. Finally, we give proofs of lemmas which will be used
in the proof of the main result in the Appendix.

2 Notations and preliminaries
In this section, we describe our notations and present preliminary results. The inner
product of two vectors x and y in the n-dimensional real Euclidean space R

n will be de-
noted by 〈x, y〉. For a set A ⊆ R

n, we shall denote the closure, convex hull, conical hull
of A by cl A, co A, and cone A, respectively. For a convex set C ⊆ R

n and α,β ∈ [, +∞),
(α +β)C = αC +βC, where αA = {αx | x ∈ A} and A + B = {x + y | x ∈ A, y ∈ B} for any α ∈R

and A, B ⊆R
n. For an extended real-valued function f : Rn →R∪ {+∞}, the domain, the

epigraph, and the conjugate function of f are defined by

dom f =
{

x ∈R
n | f (x) < +∞}

,

epi f =
{

(x, r) ∈R
n ×R | x ∈ dom f , f (x) ≤ r

}
, and

f ∗(y) = sup
x∈Rn

{〈x, y〉 – f (x)
}

, ∀y ∈R
n.

The indicator function of A ⊆R
n is denoted by δA. For each x ∈ dom f , the subdifferential

of the function f at x is the set

∂f (x) =
{

x∗ ∈R
n | 〈x∗, y – x

〉
+ f (x) ≤ f (y),∀y ∈R

n}.

If x ∈ dom f , then f (x) + f ∗(y) ≥ 〈y, x〉 (the Young-Fenchel inequality) holds for each y ∈R
n

and

f (x) + f ∗(y) = 〈y, x〉 ⇔ y ∈ ∂f (x).

For two extended real-valued functions f , g : Rn → R ∪ {+∞}, the infimal convolution of
f and g is defined by

(f ⊕ g)(x) = inf
x+x=x

{
f (x) + g(x)

}
, ∀x ∈R

n.
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For extended real-valued convex functions fi : R
n → R ∪ {+∞}, i = , . . . , m, if

⋂m
i= int dom fi �= ∅, then

∂(f + · · · + fm)(x) = ∂f(x) + · · · + ∂fm(x) ()

for all x ∈⋂m
i= dom fi and for each y ∈ ∂(f + · · · + fm)(x), there exists yi ∈ ∂fi(x) (i = , . . . , m)

such that

(f + · · · + fm)∗(y) = f ∗
 (y) + · · · + f ∗

m(ym). ()

Hence

(f + · · · + fm)∗(y) =
(
f ∗
 ⊕ · · · ⊕ f ∗

m
)
(y), ()

the infimal convolution is attained for all y; see []. It is easy to show that () implies that

epi(f + · · · + fm)∗ = epi f ∗
 + · · · + epi f ∗

m. ()

When all fi are real-valued convex functions,

epi
(

max
i=,...,m

fi

)∗
= co

( m⋃

i=

epi f ∗
i

)

()

holds; see Theorem .. in []. The following theorem will be used in the proof of the
main theorem.

Theorem  (Sion, []) Let X be a convex set, Y be a compact convex set, f : X × Y → R,
where f (x, ·) is usc concave on Y for each x ∈ X and f (·, y) is lsc convex on X for each y ∈ Y .
Then

inf
x∈X

max
y∈Y

f (x, y) = max
y∈Y

inf
x∈X

f (x, y).

3 Main results
We observe the following DC programming problem with inequality constraints:

minimize f(x) – g(x)

subject to fi(x) – gi(x) ≤ , i = , . . . , m,
(P)

where fi, gi : Rn → R are convex functions for each i = , , . . . , m. First, we give a real-
valued version of a previous Lagrange-type duality result for (P) in [] as follows, where
Val(P) is the infimum value of (P):

Theorem  (Harada, Kuroiwa, []) Let fi, gi : Rn → R be convex functions for each
i = , , . . . , m, S = {x ∈ R

n | fi(x) – gi(x) ≤ ,∀i = , . . . , m},
⋃

x∈S ∂g(x) ⊆ D ⊆ R
n and
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⋃
x∈S(

∏m
i= ∂gi(x)) ⊆ D ⊆R

nm. If S((yi)m
i=) = {x ∈R

n | fi(x) – 〈x, yi〉+ g∗
i (yi) ≤ ,∀i = , . . . , m}

is not empty and

cone co
m⋃

i=

(
epi f ∗

i –
(
yi, g∗

i (yi)
))

+ {} × [, +∞) is closed ()

for each (yi)m
i= ∈ D ∩∏m

i= dom g∗
i , then

Val(P) = inf
(y,(yi)m

i=)∈D×D
max
λi≥

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y)

+
m∑

i=

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)
}

. ()

We remark that, in the real-valued case, this theorem contains the previous theorems
in []. Clearly, problem (P) is equivalent to the following problem (P′):

minimize f(x) – g(x)

subject to max
i=,...,m

{
fi(x) – gi(x)

}≤ ,
(P′)

and problem (P′) is also a DC programming problem because

max
i=,...,m

{fi – gi} = max
i=,...,m

{

fi +
∑

j �=i

gj –
m∑

i=

gi

}

= max
i=,...,m

{

fi +
∑

j �=i

gj

}

–
m∑

i=

gi = F – G, ()

and F and G are convex functions. To our surprise, we can observe that constraint qual-
ifications of two DC inequality systems {fi – gi ≤ , i = , . . . , m} and {F – G ≤ } have a
difference in spite of the two systems being equivalent. This can be seen at the end of
Section . Motivated by the observation, we give the first duality result.

Theorem  Let fi, gi : Rn → R be convex functions for each i = , , . . . , m, S = {x ∈ R
n |

fi(x) – gi(x) ≤ ,∀i = , . . . , m},
⋃

x∈S ∂g(x) ⊆ D and D =
⋃

x∈S
∑m

i= ∂gi(x). If

cone co

( m⋃

i=

(

epi f ∗
i +

∑

j �=i

epi g∗
j

)

–
m∑

i=

(
yi, g∗

i (yi)
)
)

+ {} × [, +∞) is closed ()

for each (yi)m
i= ∈⋃

x∈S
∏m

i= ∂gi(x), then the following Lagrange-type duality holds:

Val(P) = inf
(y,ŷ)∈D×D

max
λ̂,λi≥

∑m
i= λi=λ̂

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

m∑

i=

λi
(
fi(x) – gi(x)

)

+ λ̂

( m∑

j=

gj(x) – 〈x, ŷ〉 +

( m∑

j=

gj

)∗
(ŷ)

)}

.

Also we give a unified result of Theorem  and Theorem , as follows.
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Theorem  Let fi, gi : Rn → R be convex functions for each i = , , . . . , m, S = {x ∈ R
n |

fi(x) – gi(x) ≤ ,∀i = , . . . , m}, I ⊆ {, . . . , m},
⋃

x∈S ∂g(x) ⊆ D and D =
⋃

x∈S(
∏

i /∈I ∂gi(x) ×
∑

i∈I ∂gi(x)). If

cone co

(⋃

i∈I

((

epi f ∗
i +

∑

j �=i
j∈I

epi g∗
j

)

–
∑

i∈I

(
yi, g∗

i (yi)
)
)

∪
⋃

i /∈I

(
epi f ∗

i –
(
yi, g∗

i (yi)
))
)

+ {} × [, +∞) ()

is closed for each (yi)m
i= ∈⋃

x∈S
∏m

i= ∂gi(x), then

Val(P) = inf
(y,((yi)i /∈I ,ŷ))∈D×D

max
λ̂,λi≥

∑
i∈I λi=λ̂

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y)

+
∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+
∑

i∈I

λi
(
fi(x) – gi(x)

)

+ λ̂

(∑

j∈I

gj(x) – 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

.

Remark  If I = ∅, then Theorem  becomes Theorem , and if I = {, . . . , m}, then The-
orem  becomes Theorem . Also, the assumptions of Theorem  and Theorem  have a
difference. This can be seen at the end of Section . Therefore Theorem  is a generaliza-
tion of Theorem  and Theorem .

In order to prove Theorem , we provide Lemma  and Lemma .

Lemma  For any m ∈N and for any convex sets Ci ⊆R
n (i = , . . . , m),

co
m⋃

i=

Ci =
⋃

λi≥∑m
i= λi=

m∑

i=

λiCi. ()

Lemma  For any m ∈N and for any convex sets Ai, Bi ⊆R
n (i = , . . . , m),

co
⋃

λi≥∑m
i= λi=

m∑

i=

(
λiAi + ( – λi)Bi

)
= co

m⋃

i=

(

Ai +
∑

j �=i

Bj

)

. ()

The proofs of Lemma  and Lemma  will be given in the Appendix.

Proof of Theorem  Let F = maxi∈I{fi +
∑

j �=i
j∈I

gj} and G =
∑

i∈I gi. We can see the problem

(P) is converted to the following equivalent problem (P′′) from ():

minimize f(x) – g(x)

subject to fi(x) – gi(x) ≤ , ∀i /∈ I, (P′′)

F(x) – G(x) ≤ .
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From (),

D =
⋃

x∈S

(∏

i /∈I

∂gi(x) ×
∑

i∈I

∂gi(x)
)

=
⋃

x∈S

(∏

i /∈I

∂gi(x) × ∂
∑

i∈I

gi(x)
)

.

For each ((yi)i /∈I , ŷ) ∈ D ∩ (
∏

i /∈I dom g∗
i × dom G∗), there exists x̂ ∈ S such that yi ∈ ∂gi(x̂)

for each i /∈ I and ŷ ∈ ∂
∑

i∈I gi(x̂), that is,

gi(x̂) + g∗
i (yi) = 〈x̂, yi〉 (i /∈ I),

(∑

i∈I

gi

)

(x̂) +
(∑

i∈I

gi

)∗
(ŷ) = 〈x̂, ŷ〉.

From (), there exists yi (i ∈ I) such that (
∑

i∈I gi)∗(ŷ) =
∑

i∈I g∗
i (yi) and

∑
i∈I yi = ŷ. Then

∑

i∈I

(
gi(x̂) + g∗

i (yi)
)

=
∑

i∈I

〈x̂, yi〉,

and since gi(x̂) + g∗
i (yi) ≥ 〈x̂, yi〉 for each i ∈ I , we have

gi(x̂) + g∗
i (yi) = 〈x̂, yi〉, that is, yi ∈ ∂gi(x̂)

for each i ∈ I . Therefore

(yi)m
i= ∈

m∏

i=

∂gi(x̂) ⊆
⋃

x∈S

m∏

i=

∂gi(x). ()

From ŷ ∈ ∂
∑

i∈I gi(x̂) and x̂ ∈ S,

F(x) – 〈x̂, ŷ〉 + G∗(ŷ) = max
i∈I

{

fi(x̂) +
∑

j �=i
j∈I

gj(x̂)
}

– 〈x̂, ŷ〉 +
(∑

i∈I

gi

)∗
(ŷ)

= max
i∈I

{

fi(x̂) +
∑

j �=i
j∈I

gj(x̂)
}

–
∑

i∈I

gi(x̂)

= max
i∈I

{
fi(x̂) – gi(x̂)

}≤ .

From yi ∈ ∂gi(x̂) for each i /∈ I and x̂ ∈ S, fi(x̂) – 〈x̂, yi〉 + g∗
i (yi) = fi(x̂) – gi(x̂) ≤ . Therefore

x̂ is an element of {x ∈ R
n | fi(x) – 〈x, yi〉 + g∗

i (yi) ≤ ,∀i /∈ I, F(x) – 〈x, ŷ〉 + G∗(ŷ) ≤ } and
this set is non-empty. For each i ∈ I , let Fi = fi +

∑
j �=i
j∈I

gj. Now we have

epi F∗ = co
⋃

i∈I

epi F∗
i

(
∵ from ()

)

=
⋃

λi≥∑
i∈I λi=

∑

i∈I

λi epi F∗
i (∵ by using Lemma )

=
⋃

λi≥∑
i∈I λi=

∑

i∈I

λi

(

epi f ∗
i +

∑

j �=i
j∈I

epi g∗
j

)
(
∵ from ()

)
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=
⋃

λi≥∑m
i= λi=

∑

i∈I

(
λi epi f ∗

i + ( – λi) epi g∗
i
)

= co
⋃

λi≥∑m
i= λi=

∑

i∈I

(
λi epi f ∗

i + ( – λi) epi g∗
i
)

= co
⋃

i∈I

(

epi f ∗
i +

∑

j �=i
j∈I

epi g∗
i

)

(∵ from Lemma ).

Therefore

epi F∗ –
(
ŷ, G∗(ŷ)

)
= co

(⋃

i∈I

(

epi f ∗
i +

∑

j∈I
j �=i

epi g∗
j

)

–
∑

i∈I

(
yi, g∗

i (yi)
)
)

,

and hence

cone co

(⋃

i /∈I

(
epi f ∗

i –
(
yi, g∗

i (yi)
))∪ (

epi F∗ –
(
ŷ, G∗(ŷ)

))
)

+ {} × [, +∞)

= cone co

(⋃

i /∈I

(
epi f ∗

i –
(
yi, g∗

i (yi)
))∪

(⋃

i∈I

(

epi f ∗
i +

∑

j∈I
j �=i

epi g∗
j

)

–
∑

i∈I

(
yi, g∗

i (yi)
)
))

+ {} × [, +∞),

because co(A ∪ co B) = co(A ∪ B) for any A, B ⊆ R
n. From (), this set is closed. By using

Theorem ,

Val(P) = inf
(y,((yi)i /∈I ,ŷ))∈D×D

max
λ̂,λi≥

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y)

+
∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂
(
F(x) – 〈x, ŷ〉 + G∗(ŷ)

)
}

holds. For any (y, ((yi)i /∈I , ŷ)) ∈ D × D,

max
λi≥(i /∈I)

λ̂≥

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂
(
F(x) – 〈x, ŷ〉 + G∗(ŷ)

)
}

= max
λi≥(i /∈I)

λ̂≥

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂

(

max
i∈I

{

fi(x) +
∑

j �=i,j∈I

gj(x)
}

– 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}
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= max
λi≥(i /∈I)

λ̂≥

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂

(

max
λi≥(i∈I)∑

i∈I λi=

∑

i∈I

λi

(

fi(x) +
∑

j �=i,j∈I

gj(x)
)

– 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

= max
λi≥(i /∈I)

λ̂≥

inf
x∈Rn

max
λi≥(i∈I)∑

i∈I λi=

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂

(∑

i∈I

λi

(

fi(x) +
∑

j �=i,j∈I

gj(x)
)

– 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

= max
λi≥(i /∈I)

λ̂≥

max
λi≥(i∈I)∑

i∈I λi=

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂

(∑

i∈I

λi

(

fi(x) +
∑

j �=i,j∈I

gj(x)
)

– 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

= max
λ̂,λi≥∑
i∈I λi=

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂

(∑

i∈I

λi

(

fi(x) – gi(x) +
∑

j∈I

gj(x)
)

– 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

= max
λ̂,λi≥∑
i∈I λi=

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+ λ̂
∑

i∈I

λi
(
fi(x) – gi(x)

)
+ λ̂

(∑

j∈I

gj(x) – 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

= max
λ̂,λi≥

∑
i∈I λi=λ̂

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y) +

∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+
∑

i∈I

λi
(
fi(x) – gi(x)

)
+ λ̂

(∑

j∈I

gj(x) – 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

.

The fourth equality of the previous equalities follows from Theorem . Hence we have

Val(P) = inf
(y,((yi)i /∈I ,ŷ))∈D×D

max
λ̂,λi≥

∑
i∈I λi=λ̂

inf
x∈Rn

{

f(x) – 〈x, y〉 + g∗
(y)

+
∑

i /∈I

λi
(
fi(x) – 〈x, yi〉 + g∗

i (yi)
)

+
∑

i∈I

λi
(
fi(x) – gi(x)

)

+ λ̂

(∑

j∈I

gj(x) – 〈x, ŷ〉 +
(∑

j∈I

gj

)∗
(ŷ)

)}

.

This completes the proof. �
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Now we can apply Theorem  to DC programming problems.

Example  Consider the following DC programming problem:

minimize f(x) – g(x)

subject to x = (x, x) ∈R
, fi(x) – gi(x) ≤ , i = , ,

(P)

where f(x, x) = x
 – x, g(x, x) = , f(x, x) = x, g(x, x) = |x|, f(x, x) = –x, and

g(x, x) = |x|. This mathematical programming problem is neither convex nor differ-
entiable, therefore the previous theorems concerned with convex or differentiable pro-
gramming problems cannot be applied directly. Let D =

⋃
x∈S ∂g(x) = {(, )} and D =

⋃
x∈S(∂g(x) + ∂g(x)) = [–, ] × {}. We can check that the assumption of Theorem 

holds. Therefore,

Val(P) = inf
ŷ∈[–,]

max
λ,λ≥

inf
x,x∈R

(
x

 – x + λ
(|x| + x

)
+ λ

(|x| – x
)

– (λ + λ)ŷx
)

= inf
ŷ∈[–,]

max
λ,λ≥

inf
x,x∈R

(
x

 + (λ + λ)
(|x| – ŷx

)
+ (– + λ – λ)x

)

= inf
ŷ∈[–,]

max
λ≥

inf
x∈R

(
x

 + (λ + )
(|x| – ŷx

))

= inf
ŷ∈[–,]

max
λ≥

min
{

inf
x≥

(
x

 + (λ + )( – ŷ)x
)
, inf

x≤

(
x

 – (λ + )( + ŷ)x
)}

,

and we can see that

inf
x≥

(
x

 + (λ + )( – ŷ)x
)

=

⎧
⎨

⎩

– 
 (λ + )( – ŷ) if ŷ ∈ [, ],

 if ŷ ∈ [–, ),

inf
x≤

(
x

 – (λ + )( + ŷ)x
)

=

⎧
⎨

⎩

– 
 (λ + )( + ŷ) if ŷ ∈ [–, –],

 if ŷ ∈ (–, ],

then we have

Val(P) = inf
|ŷ|∈[,]

max
λ≥

{

–



(λ + )( – |ŷ|
)
}

= inf
|ŷ|∈[,]

{

–


(
 – |ŷ|

)
}

= –



.

This example shows that Theorem  contributes to solving DC programming problems.
Next, we provide an observation that Theorem  has no relevance to Theorem . At first,

we give a DC inequality system for which holds the assumption of Theorem  but not the
assumption of Theorem  in the following example.
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Example  Define f, f, g, g : R →R as

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩


 x – x +  if x ≥ ,

 if –  < x < ,

 x + x +  otherwise,

f(x) =



x –




,

g(x) =



x and g(x) =
[

x + 


]

x –
[

x + 


]

,

where [·] is the greatest integer function. We have g(x) = kx–k if x ∈ [k –, k +) where
k ∈ Z, g is also a convex function. Also we can see that

f ∗
 (y) =

⎧
⎨

⎩

y + y if y ≥ ,

y – y otherwise,
f ∗
 (y) = y +




,

g∗
 (y) =




y and g∗
 (y) =

(
[y] + 

)
y – [y] – [y].

Put F = max{f + g, f + g} and G = g + g. For each ŷ ∈ D =
⋃

x∈S(∂g(x) + ∂g(x)), there
exists x̂ ∈ S, y ∈ ∂g(x̂), y ∈ ∂g(x̂) such that ŷ = y + y and G∗(ŷ) = g∗

 (y) + g∗
 (y) from

(). Since epi F∗ = co((epi f ∗
 + epi g∗

 ) ∪ (epi f ∗
 + epi g∗

 )),

cone co
(
epi F∗ –

(
ŷ, G∗(ŷ)

))
+ {} × [, +∞)

= cone co
({(

n, n) | n ∈ Z
}

–
(
y + y, g∗

 (y) + g∗
 (y)

))
+ {} × [, +∞).

The latter set is always closed. In general,

cone co
({(

n, n) | n ∈ Z
}

– (a, b)
)

=

⎧
⎨

⎩

epi h if a /∈ Z,α ≤ β or a ∈ Z, a – b ≥ ,

R
 otherwise,

where a, b ∈ R, α = min{ n–b
n–a | n ∈ Z, n > a}, β = max{ n–b

n–a | n ∈ Z, n > a}, and h(x) =
{

αx if x ≥ ,
βx otherwise. From this, cone co({(n, n) | n ∈ Z} – (a, b)) is always closed. Therefore for

{F – G ≤ } holds condition (). Also S(ŷ) �= ∅ because F(x̂) – 〈x̂, ŷ〉 + G∗(ŷ) ≤ . Therefore
for {F – G ≤ } holds the assumption of Theorem . However,

cone co
((

epi f ∗
 –

(
, g∗

 ()
))∪ (

epi f ∗
 –

(
, g∗

 ()
)))

+ {} × [, +∞)

=
{

(x,α) | |x| < α
}∪ {

(, )
}

is not closed, that is, {f – g ≤ , f – g ≤ } does not hold ().

Next, we give a DC inequality system for which holds the assumption of Theorem  but
not the assumption of Theorem  in the following example.
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Example  Define f, f, g, g : R →R as

f(x) =
[

x + 


]

x –
[

x + 


]

, f(x) =
[

x + 


]

x –



[
x + 



]

,

g(x) =



x, and g(x) =



x.

We can see that

f ∗
 (y) =

(
[y] + 

)
y – [y] – [y], f ∗

 (y) =
(

[y] +



)

y –



[y] –



[y],

g∗
 (y) = y and g∗

 (x) =



y,

and then

cone co
((

epi f ∗
 –

(
y, g∗

 (y)
))∪ (

epi f ∗
 –

(
y, g∗

 (y)
)))

+ {} × [, +∞)

= cone co

(
({(

n, n) | n ∈ Z
}

–
(
y, g∗

 (y)
))

∪
({(

n,



n
) ∣
∣
∣ n ∈ Z

}

–
(
y, g∗

 (y)
)
))

+ {} × [, +∞),

for each (y, y) ∈ ⋃
x∈S(∂g(x) × ∂g(x)). The latter set is always closed in a similar way

to Example . Also, for each (y, y) ∈ ⋃
x∈S(∂g(x) × ∂g(x)), there exists z ∈ R such that

y = 
 z, y = z, then

S(y, y) =
{

x ∈R | fi(x) – xyi + g∗
i (yi) ≤ , i = , 

}

=
{

x ∈R

∣
∣
∣

[
x + 



]

x –
[

x + 


]

–



xz +



z ≤ ,

[
x + 



]

x –



[
x + 



]

– xz +



z ≤ 
}

⊇
{

x ∈R

∣
∣
∣




x –



xz +



z ≤ ,



x – xz +



z ≤ 
}

� z,

Then S(y, y) is non-empty. Therefore {f – g ≤ , f – g ≤ } holds by the assumption of
Theorem . However,

cone co
((

epi f ∗
 + epi g∗


)∪ (

epi f ∗
 + epi g∗


)

–
(
 + , g∗

 () + g∗
 ()

))
+ {} × [, +∞)

= R× (, +∞) ∪ {
(, )

}

is not a closed set, that is, () does not hold.

4 Conclusions
In this paper, we studied Lagrange-type duality for DC programming problems with DC
inequality constraints. It is well known that the maximum of DC functions is also a DC
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function. Based on this idea, we presented Theorem , which is a Lagrange-type duality
theorem for the maximum DC inequality constraint of the original DC inequality con-
straints. Theorem  has no relevance to Theorem , which is a previous Lagrange-type
duality for DC programming problems proved in []. More precisely, Theorem  does
not imply Theorem  and Theorem  does not imply Theorem . Also we proved The-
orem , which is a unified Lagrange-type duality result of Theorem  and Theorem .
Consequently, the class of DC programming problems to which Lagrange-type duality
theorems can be applied was broader than the class in previous research.

Appendix
In this section, we give proofs of Lemma  and Lemma .

Proof of Lemma  Clearly, () holds when m = , . Assume that () holds for some m ∈N.
Let Ci ⊆R

n be convex sets for all i = , . . . , m + . Then

co
m+⋃

i=

Ci = co

( m⋃

i=

Ci ∪ Cm+

)

= co

(

co

( m⋃

i=

Ci

)

∪ Cm+

)

=
⋃

λ∈[,]

(

λ co
m⋃

i=

Ci + ( – λ)Cm+

)

(∵ from the case when m = )

=
⋃

λ∈[,]

(

λ
⋃

λi≥∑m
i= λi=

m∑

i=

λiCi + ( – λ)Cm+

)

(∵ from the assumption)

=
⋃

λ∈[,]

⋃

λi≥∑m
i= λi=

( m∑

i=

λλiCi + ( – λ)Cm+

)

=
⋃

λi≥
∑m+

i= λi=

m+∑

i=

λiCi.

Therefore () holds for m + . From mathematical induction, the proof is completed. �

Proof of Lemma  We may assume that all Ai and Bi are not empty. We show this lemma by
using mathematical induction. It is clear that () holds when m = . In the case of m = ,
() holds from Lemma  by putting C = A + B and C = A + B. Assume that () holds
for some m ∈N. Let Ai, Bi ⊆R

n be convex sets for all i = , . . . , m + . Then

co
⋃

λi≥
∑m+

i= λi=

m+∑

i=

(
λiAi + ( – λi)Bi

)

= co
⋃

≤λ≤

(
⋃

λ,...,λm+≥
∑m+

i= λi=

(m+∑

i=

(
λiAi + ( – λi)Bi

)
))
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= co

(
⋃

≤λ<

(
⋃

λ,...,λm+≥
∑m+

i= λi=

(m+∑

i=

(
λiAi + ( – λi)Bi

)
))

∪
(

A +
m+∑

i=

Bi

))

= co

(
⋃

≤λ<

(

λA + ( – λ)B

+
⋃

λ,...,λm+≥
∑m+

i= λi=

(m+∑

i=

(
λiAi + ( – λi)Bi

)
))

∪
(

A +
m+∑

i=

Bi

))

= co

(
⋃

≤λ<

(

λA + ( – λ)B + ( – λ)
⋃

λ,...,λm+≥
∑m+

i=
λi

–λ
=

(m+∑

i=

(
λi

 – λ
Ai +

 – λi

 – λ
Bi

)))

∪
(

A +
m+∑

i=

Bi

))

. ()

For all i = , . . . , m + , since Bi are convex sets,  – λi = ( – λ – λi) + λ, and  – λ – λi ≥ ,
we have

 – λi

 – λ
Bi =

 – λ – λi

 – λ
Bi +

λ

 – λ
Bi =

(

 –
λi

 – λ

)

Bi +
λ

 – λ
Bi

and then

⋃

λ,...,λm+≥
∑m+

i=
λi

–λ
=

(m+∑

i=

(
λi

 – λ
Ai +

 – λi

 – λ
Bi

))

=
⋃

λ,...,λm+≥
∑m+

i=
λi

–λ
=

m+∑

i=

(
λi

 – λ
Ai +

(

 –
λi

 – λ

)

Bi +
λ

 – λ
Bi

)

=
λ

 – λ

m+∑

i=

Bi +
⋃

λ,...,λm+≥
∑m+

i=
λi

–λ
=

(m+∑

i=

(
λi

 – λ
Ai +

(

 –
λi

 – λ

)

Bi

))

=
λ

 – λ

m+∑

i=

Bi +
⋃

λ′
,...,λ′

m+≥
∑m+

i= λ′
i=

(m+∑

i=

(
λ′

iAi +
(
 – λ′

i
)
Bi
)
)

.

Hence,

() = co

(
⋃

≤λ<

(

λA + ( – λ)B + λ

m+∑

i=

Bi

+ ( – λ)
⋃

λ′
,...,λ′

m+≥
∑m+

i= λ′
i=

(m+∑

i=

(
λ′

iAi +
(
 – λ′

i
)
Bi
)
))

∪
(

A +
m+∑

i=

Bi

))
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= co

(
⋃

≤λ<

(

λA + ( – λ)B + λ

m+∑

i=

Bi

+ ( – λ) co
⋃

λ′
,...,λ′

m+≥
∑m+

i= λ′
i=

(m+∑

i=

(
λ′

iAi +
(
 – λ′

i
)
Bi
)
))

∪
(

A +
m+∑

i=

Bi

))

. ()

From the assumption,

() = co

(
⋃

≤λ<

(

λA + ( – λ)B + λ

m+∑

i=

Bi

+ ( – λ) co
m+⋃

i=

(

Ai +
∑

j �=i
≤j≤m+

Bj

))

∪
(

A +
m+∑

i=

Bi

))

= co

(
⋃

≤λ<

(

λA + ( – λ)B + λ

m+∑

i=

Bi

+ ( – λ)
m+⋃

i=

(

Ai +
∑

j �=i
≤j≤m+

Bj

))

∪
(

A +
m+∑

i=

Bi

))

= co

(
⋃

≤λ≤

(

λ

(

A +
m+∑

i=

Bi

)

+ ( – λ)

(

B +
m+⋃

i=

(

Ai +
∑

j �=i
≤j≤m+

Bj

))))

= co

(
⋃

≤λ≤

(

λ

(

A +
m+∑

i=

Bi

)

+ ( – λ)

(m+⋃

i=

(

Ai +
∑

j �=i

Bj

))))

. ()

By using Lemma ,

() = co

((

A +
m+∑

i=

Bi

)

∪
(m+⋃

i=

(

Ai +
∑

j �=i

Bj

)))

= co
m+⋃

i=

(

Ai +
∑

j �=i

Bj

)

.

Consequently, () holds for m + . �
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