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1 Introduction
Let B(H) be the C∗-algebra of all bounded linear operators on a complex separable Hilbert
space H. Let ‖ · ‖ denote a unitarily invariant norm defined on a two-sided ideal τ‖·‖ that is
included in C∞ (the set of compact operators); it has the basic property ‖UAV‖ = ‖A‖ for
every A ∈ τ‖·‖ and all unitary operators U , V ∈ B(H). For A ∈ B(H), |A| = (A∗A) 

 , where
A∗ is the conjugate operator of A.

Hiai and Zhan [] proved that if A, B, X ∈ B(H) with A, B positive and X ∈ τ‖·‖, r > , then
the function f (v) = ‖|AvXB–v|r‖ · ‖|A–vXBv|r‖ is convex on the interval [, ] and attains
its minimum at v = 

 maximum at v =  and v = . Consequently, it is decreasing on [, 
 ]

and increasing on [ 
 , ]; moreover, f (v) = f ( – v) for v ∈ [, ]. Thus for every unitarily

invariant norm ‖ · ‖, we have the operator inequality

∥
∥
∣
∣A


 XB



∣
∣
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 ≤ ∥
∥
∣
∣AvXB–v∣∣r∥

∥ · ∥∥∣
∣A–vXBv∣∣r∥

∥ ≤ ∥
∥|AX|r∥∥ · ∥∥|XB|r∥∥ ()

for A, B, X ∈ B(H) with A, B positive, X ∈ τ‖·‖, r > , and v ∈ [, ]. The inequality
‖|A 

 XB 
 |r‖ ≤ ‖|AX|r‖ · ‖|XB|r‖ is often called the Cauchy-Schwarz norm inequality due

to Bhatia and Davis [].
The Heinz means for operators are defined by g(v) = ‖AvXB–v + A–vXBv‖ for A, B, X ∈

B(H) with A, B positive, X ∈ τ‖·‖, and v ∈ [, ], where ‖ · ‖ is a unitarily invariant norm.
Bhatia and Davis [] obtained the inequality


∥
∥A


 XB



∥
∥ ≤ ∥

∥AvXB–v + A–vXBv∥∥ ≤ ‖AX + XB‖ ()

for A, B, X ∈ B(H) with A, B positive, X ∈ τ‖·‖, and v ∈ [, ]. In fact, they proved that g(v) =
‖AvXB–v + A–vXBv‖ is a convex function of v on the interval [, ], attains its minimum
at v = 

 and maximum at v =  and v = . Hence, it is decreasing on [, 
 ] and increasing
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on [ 
 , ]; moreover, g(v) = g( – v) for v ∈ [, ]. The second inequality in () is one of the

most essential inequalities in operator theory, which is often called the Heinz inequality.
Recently, using the convexity of the function f (v) = ‖|AvXB–v|r‖ · ‖|A–vXBv|r‖ (v ∈

[, ]), Burqan [], Theorem , obtained a refinement of inequality (): Let A, B, X ∈ B(H)
with A, B positive and X ∈ τ‖·‖. Then, for every unitarily invariant norm ‖ · ‖,
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∥
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where v ∈ [, ] and r > .
Using the convexity of the function g(v) = ‖AvXB–v + A–vXBv‖ (v ∈ [, ]), Feng [],

Theorem , obtained a refinement of the first inequality in (): Let A, B, X ∈ B(H) with
A, B positive and X ∈ τ‖·‖. Then, for every unitarily invariant norm ‖ · ‖,
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 XB



∥
∥
]

≤ ∥
∥AvXB–v + A–vXBv∥∥, ()

where v ∈ [, ].
In this note, we present some refinements of norm inequalities (), (), (), and (), also

using the convexity of the functions f and g .

2 Main results
In this section, we mainly present some refinements of the Cauchy-Schwarz and Heinz
inequalities for operators. To achieve our goal, we need some preparations.

Let f : I → R be a real-valued convex function on the interval I ⊆ R. Let a, b ∈ I with
a < b. The inequality

f
(

a + b


)

≤ 
b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


()

is well known as the Hermite-Hadamard inequality, which includes a basic property of
convex functions.

Now, we present some lemmas.

Lemma . Let f be a real-valued convex function on the interval [a, b]. Then




(

f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


))

≤ 
b – a

∫ b

a
f (x) dx. ()
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Proof Thanks to the Hermite-Hadamard’s inequality (), we obtain

f
(

a + b


)

= f
(a + a+b




)

≤ 
b – a

∫ a+b


a
f (x) dx ()

and

f
(

a + b


)

= f
( a+b

 + a+b




)

≤ 
b – a

∫ a+b


a+b


f (x) dx. ()

Inequalities () and () give

f
(

a + b


)

+ f
(

a + b


)

≤ 
b – a

∫ a+b


a
f (x) dx. ()

Similarly, due to the convexity of f on the interval [ a+b
 , b], we have

f
(

a + b


)

+ f
(

a + b


)

≤ 
b – a

∫ b

a+b


f (x) dx. ()

Hence, by inequalities () and () we deduce




(

f
(
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)

+ f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


))

≤ 
b – a

∫ b

a
f (x) dx.

This completes the proof. �

Remark . Let f be a real-valued convex function on the interval [a, b]. By the convexity
of f on the interval [a, a+b

 ] we get

f
(

a + b


)

= f
(




(
a + b



)

+



(
a + b



))

≤ 


f
(

a + b


)

+



f
(

a + b


)

. ()

Similarly, due to the convexity of f on the interval [ a+b
 , b], we have

f
(

a + b


)

≤ 


f
(

a + b


)

+



f
(

a + b


)

. ()

Hence, inequality () is a refinement of the inequality




(

f
(

a + b


)

+ f
(

a + b


))

≤ 
b – a

∫ b

a
f (x) dx

obtained by Burqan [], Lemma .
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Lemma . Let f be a real-valued convex function on the interval [a, b]. Then


b – a

∫ b

a
f (x) dx ≤ 



(

f (a) + f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


)

+ f (b)
)

. ()

Proof By the Hermite-Hadamard’s inequality () we obtain


b – a

∫ b

a
f (x) dx =


b – a

{∫ a+b


a
f (x) dx +

∫ a+b


a+b


f (x) dx

+
∫ a+b



a+b


f (x) dx +
∫ b
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}
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 )


· b – a


+

f ( a+b
 ) + f ( a+b

 )


· b – a


+
f ( a+b

 ) + f ( a+b
 )


· b – a


+

f ( a+b
 ) + f (b)


· b – a



}

=



(

f (a) + f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


)

+ f (b)
)

.

This completes the proof. �

Remark . Let f be a real-valued convex function on the interval [a, b]. Thanks to the
convexity of f on the interval [a, a+b

 ] and [ a+b
 , b], respectively, we obtain

f
(

a + b


)

= f
(a + a+b




)

≤ f (a) + f ( a+b
 )


()

and

f
(

a + b


)

= f
( a+b

 + b


)

≤ f (b) + f ( a+b
 )


. ()

Hence, combining inequalities () and (), we get




(

f (a) + f
(

a + b


)

+ f
(

a + b


)

+ f
(

a + b


)

+ f (b)
)

≤
(

f (a) + f
(

a + b


)

+ f (b)
)

. ()

Hence, inequality () is a refinement of the inequality


b – a

∫ b

a
f (x) dx ≤ 



(

f (a) + f
(

a + b


)

+ f (b)
)

obtained by Feng [], Lemma .

Combining Lemmas . and ., we obtain the following lemma.
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Lemma . Let f be a real-valued convex function on the interval [a, b]. Then




(

f
(

a + b


)

+ f
(

a + b


)

+ f
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a + b
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+ f
(

a + b
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(
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)

+ f (b)
)

. ()

Remark . By inequalities (), (), and () it is easy to see that inequality () is a
refinement of inequality ().

Based on Lemma ., we obtain the following theorems.

Theorem . Let ‖ · ‖ be a unitarily invariant norm, and A, B, X ∈ B(H) with A, B positive
and X ∈ τ‖·‖. Then
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where v ∈ [, ] \ { 
 } and r > .

Proof We first consider the case  ≤ v < 
 . Applying Lemma . to the function f (x) =

‖|AxXB–x|r‖ · ‖|A–xXBx|r‖ on the interval [v,  – v] and f (x) = f ( – x) for x ∈ [, ], we
obtain




{

f
(

v + 


)

+ f
(

v + 


)}

≤ 
 – v

∫ –v

v
f (x) dx
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)

+ f
(




)}

.

Thus, we get inequality () for  ≤ v < 
 .

Similarly, when 
 < v ≤ , applying Lemma . to the function f on the interval [ – v, v]

and f (x) = f ( – x) for x ∈ [, ], we obtain




{

f
(
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)

+ f
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v + 


)}

≤ 
v – 

∫ v

–v
f (x) dx
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{

f (v) + f
(

v + 


)

+ f
(




)}

.

Hence, we get inequality () for 
 < v ≤ .
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This completes the proof. �

The next theorem is a refinement of Heinz’s norm inequalities.

Theorem . Let ‖ · ‖ be a unitarily invariant norm, and A, B, X ∈ B(H) with A, B positive
and X ∈ τ‖·‖. Then
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, ()

where v ∈ [, ] \ { 
 }.

Proof Replacing f (x) = ‖|AxXB–x|r‖ · ‖|A–xXBx|r‖ by g(x) = ‖AxXB–x + A–xXBx‖ in the
proof of Theorem ., we get the desired result. �

Remark . Putting f (x) = ‖|AxXB–x|r‖·‖|A–xXBx|r‖ (x ∈ [, ]), where ‖·‖ is a unitarily
invariant norm, A, B, X ∈ B(H) with A, B positive, X ∈ τ‖·‖, and r > . By the convexity
of f we have f ( v+

 ) ≤ 
 {f ( v+

 ) + f ( v+
 )} and 

 {f (v) + f ( v+
 ) + f ( 

 )} ≤ 
 {f (v) + f ( 

 )}
for v ∈ [, ] \ { 

 }. So, norm inequality () is a refinement of inequality () obtained by
Burqan [], Theorem .

Remark . Putting g(x) = ‖AxXB–x + A–xXBx‖ (x ∈ [, ]), where ‖ · ‖ is a unitarily
invariant norm, and A, B, X ∈ B(H) with A, B positive and X ∈ τ‖·‖. By the convexity of
g we have g( v+

 ) ≤ 
 {g( v+

 ) + g( v+
 )} and 

 {g(v) + g( v+
 ) + g( 

 )} ≤ 
 {g(v) + g( 

 )} for
v ∈ [, ] \ { 

 }. Hence, norm inequality () is a refinement of inequality () obtained by
Feng [], Theorem .

For  < v < , applying Lemma . to the convex functions f (x) = ‖|AxXB–x|r‖ ·
‖|A–xXBx|r‖ and g(x) = ‖AxXB–x + A–xXBx‖ on the interval [, v] when  < v ≤ 

 and on
the interval [v, ] when 

 ≤ v < , respectively, we obtain the following theorems, where
‖ · ‖ is a unitarily invariant norm, A, B, X ∈ B(H) with A, B positive and X ∈ τ‖·‖, and r > .

Theorem . Let ‖·‖ be a unitarily invariant norm, and A, B, X ∈ B(H) with A, B positive
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where r > .

Theorem . Let ‖·‖ be a unitarily invariant norm, and A, B, X ∈ B(H) with A, B positive
and X ∈ τ‖·‖. Then

(i) for  < v ≤ 
 ,




{∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥ +

∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥

+
∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥ +

∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥
}

≤ 
v

∫ v



∥
∥AxXB–x + A–xXBx∥∥dx

≤ 

{‖AX + XB‖ + 

∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥

+ 
∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥ + 

∥
∥A

v
 XB

–v
 + A

–v
 XB

v

∥
∥

+
∥
∥AvXB–v + A–vXBv∥∥

}

;

(ii) for 
 < v ≤ ,




{∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥ +

∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥

+
∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥ +

∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥
}

≤ 
 – v

∫ 

v

∥
∥AxXB–x + A–xXBx∥∥dx

≤ 

{∥
∥AvXB–v + A–vXBv∥∥ + 

∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥



Zhao et al. Journal of Inequalities and Applications  (2016) 2016:274 Page 8 of 10

+ 
∥
∥A

+v
 XB

–v
 + A

–v
 XB

+v


∥
∥ + 

∥
∥A

v+
 XB

–v
 + A

–v
 XB

v+


∥
∥

+ ‖AX + XB‖}.

Remark . Putting f (x) = ‖|AxXB–x|r‖ ·‖|A–xXBx|r‖, where ‖ ·‖ is a unitarily invariant
norm, A, B, X ∈ B(H) with A, B positive and X ∈ τ‖·‖, and r > . We first consider the case
 < v ≤ 

 . Since f is decreasing on the interval [, 
 ], we have

f (v) ≤ f
(

v


)

. ()

Using inequalities () and () for f on the interval [, v], respectively, we get




{

f
(

v


)

+ f
(

v


)}

≤ 


{

f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f
(

v


)}

()

and




{

f () + f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f (v)
}

≤ 


{

f () + f
(

v


)

+ f (v)
}

. ()

By the convexity of f on the interval [, v] we have

f
(

v


)

≤ f ( v
 ) + f ( v

 )


, f
(

v


)

≤ f () + f (v)


. ()

Noting that

f () + f (v)


=
f () + f (v)


≤ f () =

∥
∥|AX|r∥∥ · ∥∥|XB|r∥∥, ()

by (i) of Theorem . we have




{

f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f
(

v


)}

≤ 
v

∫ v


f (x) dx

≤ 


{

f () + f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f (v)
}

. ()

Combining inequalities (), (), (), (), (), and (), we have

f (v) ≤ f
(

v


)

≤ 


{

f
(

v


)

+ f
(

v


)}
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≤ 


{

f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f
(

v


)}

≤ 
v

∫ v


f (x) dx

≤ 


{

f () + f
(

v


)

+ f
(

v


)

+ f
(

v


)

+ f (v)
}

≤ 


{

f () + f
(

v


)

+ f (v)
}

≤ f () + f (v)


≤ f (). ()

Similarly, when 
 < v < , since f (v) is increasing on the interval [ 

 , ], we have f (v) ≤
f ( +v

 ). By the same process as before, we also have

f (v) ≤ f
(

 + v


)

≤ 


{

f
(

v + 


)

+ f
(

v + 


)}

≤ 


{

f
(

v + 


)

+ f
(

v + 


)

+ f
(

v + 


)

+ f
(

v + 


)}

≤ 
 – v

∫ 

v
f (x) dx

≤ 


{

f (v) + f
(

v + 


)

+ f
(

 + v


)

+ f
(

v + 


)

+ f ()
}

≤ 


{

f (v) + f
(

v + 


)

+ f ()
}

≤ f () + f (v)


≤ f (). ()

Thus, inequalities () and () are refinements of the second inequality in () and also a
refinement of Theorem  of Burqan [].

Remark . Putting g(x) = ‖AxXB–x +A–xXBx‖, where ‖·‖ is a unitarily invariant norm,
and A, B, X ∈ B(H) with A, B positive and X ∈ τ‖·‖. Replacing f by g in Remark ., we
obtain

g(v) ≤ g
(

v


)

≤ 


{

g
(

v


)

+ g
(

v


)}

≤ 


{

g
(

v


)

+ g
(

v


)

+ g
(

v


)

+ g
(

v


)}

≤ 
v

∫ v


g(x) dx
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≤ 


{

g() + g
(

v


)

+ g
(

v


)

+ g
(

v


)

+ g(v)
}

≤ 


{

g() + g
(

v


)

+ g(v)
}

≤ g() + g(v)


≤ g(), ()

where  < v ≤ 
 .

Similarly, when 
 < v < , we have

g(v) ≤ g
(

 + v


)

≤ 


{

g
(

v + 


)

+ g
(

v + 


)}

≤ 


{

g
(

v + 


)

+ g
(

v + 


)

+ g
(

v + 


)

+ g
(

v + 


)}

≤ 
 – v

∫ 

v
g(x) dx

≤ 


{

g(v) + g
(

v + 


)

+ g
(

 + v


)

+ g
(

v + 


)

+ g()
}

≤ 


{

g(v) + g
(

v + 


)

+ g()
}

≤ g() + g(v)


≤ g(). ()

Therefore, inequalities () and () are refinements of the second inequality in () and
also a refinement of Theorem  of Feng [].
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