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Abstract
This paper gives a new theoretical analysis of the space-time continuous Galerkin
(STCG) method for the wave equation. We prove the existence and uniqueness of the
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1 Introduction
In this article, we analyze the STCG method for the wave equation. As an example, we
study the following model of the wave equation: find u = u(x, t) satisfying

⎧
⎪⎨

⎪⎩

utt – �u = f (x, t), (x, t) ∈ � × [, T],
u(x, t) = , (x, t) ∈ ∂� × [, T],
u(x, ) = u(x), ut(x, ) = v(x), x ∈ �,

(.)

where � is a bounded convex polygonal domain in R with boundary ∂�, utt = ∂u/∂t,
ut = ∂u/∂t, and T >  denotes the total time. The given body force f and the initial value
functions u and v are sufficiently smooth in order to ensure that the following theoretical
analysis is effective.

The STCG method is a kind of finite element technique that uses continuous polynomial
functions both in time and space to approximate the evolution problems, that is, it does
not only use continuous polynomial functions to discretize space but also uses them to
discretize time. Therefore, if we appropriately improve the degrees of polynomials with re-
spect to time, we can easily derive any desired order of accuracy. Furthermore, in compar-
ison with the theoretical analysis of the classical finite element methods in which the space
is discretized by piecewise polynomial functions and the time is discretized by difference
quotients, the theoretical analysis of such a method is uniform for any degree polynomials
in time used to approximate the time variable. Especially, this method is more effective for
solving wave problems since the corresponding discrete schemes retain the energy con-
servation properties (see [–]). Owing to the advantages mentioned, it has been applied

© Zhao and Li 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1215-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1215-9&domain=pdf
mailto:malhong@imu.edu.cn


Zhao and Li Journal of Inequalities and Applications  (2016) 2016:280 Page 2 of 18

extensively to solve various kinds of time-related partial differential equations (TRPDEs)
(see, e.g., [–]).

Aziz and Monk [] applied the STCG method to investigate the approximation of the
heat equation. French and Peterson [, ] and Bales and Lasiecka [] also studied the ap-
proximation of the wave equation through the STCG method. However, the error esti-
mates of [] are obtained under the restrictive assumptions that the mesh size h and time
step k must satisfy k ≤ ĉh, where ĉ is a sufficiently small positive constant. For [, ], al-
though the error analysis does not need any compatibility conditions between the space
and time mesh size, the theoretical analysis is more abstract and complicated. The main
purpose of this article is to propose a new kind of technique to give a theoretical analysis
of the STCG method for the wave equation. To achieve this goal, we introduce Legendre
polynomials and the corresponding Gauss integration rule and apply the basic properties
of Lagrange interpolating polynomials fixed by the Legendre points to prove the existence
and uniqueness of the numerical solutions; we also introduce a space-time projection op-
erator to analyze the error estimates in L and H norms between the exact solutions and
numerical solutions such that our theoretical analysis is more concise and understandable.
Additionally, our error estimates also do not require the time step and space mesh size re-
striction. For [, ], the theoretical analysis is starting from an operator equation obtained
by the coupled set of equations (.)-(.) by introducing an operator matrix. However,
for most of the wave problems, there does not necessarily exist an operator matrix that can
be used to make the coupled system become an operator equation. Thus, the theoretical
analysis in [, ] have some limitations in some cases. Whereas the analysis showed in this
article does not need introducing such an operator matrix, it is directly based on the cou-
pled equation set (.)-(.) to study the existence, uniqueness, and convergence of the
numerical solution. Therefore, compared with the methods presented in [, ], the idea
employed in this paper is relatively easy to be applied to other wave problems. Based on
our analysis, we think that the technique used is a kind of improvement and development
for the existing papers (see [, , ]).

The rest of this paper is arranged in the following manners. In Section , we give some
useful notation and definitions and propose the STCG method for the wave equation. In
Section , we complete the error estimates in L and H norms for u and v without any
restrictions on the space and time mesh size. In Section , a numerical example is given
for illustrating the effectiveness and feasibility of the STCG method. Finally, in Section ,
we state the main conclusions and some perspectives.

2 STCG method for 2D wave equation
In this article, we use the standard definitions for Sobolev spaces and the corresponding
norms (see []). For example, ‖ · ‖s and | · |s denote the usual norms and seminorms of
Sobolev spaces Hs(�) (s ≥ ). When s = , the space H(�) is regarded as the space L(�),
and by (·, ·) and ‖ · ‖ denote the corresponding inner product and norm. Furthermore, we
define the energy norm on L(�) × H(�) by ‖|(v, u)‖| = {‖v‖ + ‖∇u‖} 

 . Let H
(�) be

the subspace of H(�) consisting of the functions in H(�) that vanish on ∂�. In addition,
the space Hl(, tn; Hs(�)) and associated norms are defined by

Hl(, tn; Hs(�)
)

=

{

v(x, t);
l∑

j=

∫ tn



∥
∥
∥
∥

dj

dtj v(·, t)
∥
∥
∥
∥



s
dt < ∞

}
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and

‖v‖Hl(,tn ;Hs) =

[ l∑

j=

∫ tn



∥
∥
∥
∥

dj

dtj v(·, t)
∥
∥
∥
∥



s
dt

]/

.

In particular, when l =  and s = , , the associated norms are denoted by

‖v‖L(,tn ;L) =
[∫ tn



∥
∥v(·, t)

∥
∥ dt

]/

and

‖v‖L(,tn ;H) =
[∫ tn



∥
∥v(·, t)

∥
∥

 dt
]/

,

where tn (n = , , . . . , N ) are the time nodes of the partition of time interval [, T], which
will be defined later. If tn = T , then ‖v‖Hl(,tn ;Hs) are denoted by ‖v‖Hl(Hs). Noting that c in
this paper is a general positive constant independent of all discretization parameters but
may be different at different places.

Further, if we introduce the function v = ut , then (.) can be rewritten as the first-order
system concerning time

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vt – �u = f , (x, t) ∈ � × [, T],
v – ut = , (x, t) ∈ � × [, T],
u(x, t) = , (x, t) ∈ ∂� × [, T],
u(x, ) = u(x), v(x, ) = v(x), x ∈ �.

(.)

Let U = H(, T ; H
(�)). Then the weak formulation to (.) can be given as follows: find

(u, v) ∈ U × U satisfying

∫ T



[
(ut ,φt) – (v,φt)

]
dt = , ∀φ ∈ U , (.)

∫ T



[
(vt ,ψt) + (∇u,∇ψt)

]
dt =

∫ T


(f ,ψt) dt, ∀ψ ∈ U , (.)

u(x, ) = u, v(x, ) = v, x ∈ �. (.)

In order to formulate the STCG method, let 	h = {K} be a quasi-uniform triangulation
partition of discrete region � with h = max hK , where hK stands for the diameter of the
triangle K ∈ 	h (see [–]). Then, we introduce the subspace Shm(�) ⊂ H

(�) consisting
of piecewise continuous mth-degree polynomials defined on the subdivision 	h of � with
mesh parameter h. Let  = t < t < · · · < tN = T be a subdivision on time span [, T] with
the maximum time step k = max≤j≤N |tj – tj–|. Let Skl([, T]) be a finite element space
on this subdivision consisting of continuous piecewise lth-degree polynomials regarding
time, i.e., Skl([, T]) = {υ ∈ C([, T]) : υ|[tj–,tj] ∈ Pl([tj–, tj]), j = , . . . , N}, where Pl([tj–, tj])
is the set of polynomials of degree l restricted on the interval [tj–, tj]. Finally, we define
Uhk = Shm(�) ⊗ Skl([, T]). Then, the STCG formulation to the wave equation is given as
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follows: find (uhk , vhk) ∈ U
hk such that

∫ T



[(
uhk

t ,φt
)

–
(
vhk ,φt

)]
dt = , ∀φ ∈ Uhk , (.)

∫ T



[(
vhk

t ,ψt
)

+
(∇uhk ,∇ψt

)]
dt =

∫ T


(f ,ψt) dt, ∀ψ ∈ Uhk , (.)

uhk(x, ) = Phu, vhk(x, ) = Phv, x ∈ �. (.)

The STCG solution pair (uhk , vhk) can be computed by marching through successive time
levels. To see this, let Jn = [tn, tn+], and let Pl(Jn) denote the set of polynomials of degree l
defined on interval Jn. Then, for n = , , . . . , N – , we find the STCG solution pair (uhk , vhk)
on Jn satisfying

∫

Jn

[(
uhk

t ,φt
)

–
(
vhk ,φt

)]
dt = , ∀φ ∈ Shm(�) ⊗ Pl(Jn), (.)

∫

Jn

[(
vhk

t ,ψt
)

+
(∇uhk ,∇ψt

)]
dt =

∫

Jn

(f ,ψt) dt, ∀ψ ∈ Shm(�) ⊗ Pl(Jn) (.)

or, equivalently,
∫

Jn

[(
uhk

t ,φ
)

–
(
vhk ,φ

)]
dt = , ∀φ ∈ Shm(�) ⊗ Pl–(Jn), (.)

∫

Jn

[(
vhk

t ,ψ
)

+
(∇uhk ,∇ψ

)]
dt

=
∫

Jn

(f ,ψ) dt, ∀ψ ∈ Shm(�) ⊗ Pl–(Jn), (.)

with uhk(x, ) = Phu, vhk(x, ) = Phv (where Ph is the elliptic projection defined further in
(.)), and uhk(x, tn), vhk(x, tn) (n = , , . . . , N – , x ∈ �) have been fixed at previous time
level.

Remark  In fact, (.)-(.) can be regarded as the Petrov-Galerkin method since they
are tested by φt and ψt , respectively.

To analyze the well-posedness of problem (.)-(.), we need to introduce the Legen-
dre polynomials and the corresponding Gauss integration rule. For a given l ≥ , let {�i}l

i=
be the Lagrange interpolating polynomials of degree l – , that is,

�i(μ) =
l∏

j=,j �=i

(μ – μj)
(μi – μj)

, (.)

where the interpolating points  < μ < · · · < μl <  are l roots of the Legendre polynomial
on the interval [, ]. Then the Gauss-Legendre integration formula is as follows:

∫ 


m(μ) dμ ∼=

l∑

j=

ωjm(μj), (.)

where ωj =
∫ 

 �j(μ) dμ, which is exact for any polynomial of degree not higher than l – .
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Further, applying the linear transformation t = tn +μkn (kn = tn+ – tn) that maps the unit
interval [, ] onto the interval Jn, its quadrature points and weights are defined by

⎧
⎪⎨

⎪⎩

tn,i = tn + μikn, i = , . . . , l,
�n,i(t) = �i(μ),
ωn,i =

∫ tn+
tn

�n,i(t) dt = kn
∫ 

 �i(μ) dμ = knωi, i = , . . . , l.
(.)

Then the Gauss-Legendre integration formula associated with Jn is as follows:

∫ tn+

tn

m(t) dt ∼=
l∑

i=

ωn,im(tn,i). (.)

We also need to employ the Lagrange interpolating polynomials {�̃i}l
i= of degree l corre-

sponding to the l +  interpolating points  = μ < μ < · · · < μl < , that is,

�̃i(μ) =
l∏

j=,j �=i

(μ – μj)
(μi – μj)

.

Choosing {�̃n,i}l
i= (where �̃n,i(t) = �̃i(μ)) as the basis functions to the polynomial space

Pl(Jn), then (uhk , vhk)|Jn are solely fixed by the functions (uhk
n,i, vhk

n,i) = (uhk(x, tn.i), vhk(x, tn.i)) ∈
Shm × Shm such that

uhk(x, t) =
l∑

i=

�̃n,i(t)uhk
n,i(x), vhk(x, t) =

l∑

i=

�̃n,i(t)vhk
n,i(x), (x, t) ∈ � × Jn,

where tn, = tn.
Further, let (uhk

n,i, vhk
n,i) = (ũhk

n,iμ
/
i , ṽhk

n,iμ
/
i ) (i = , . . . , l). Then the new expressions for

uhk(x, t) and vhk(x, t) can be rewritten as

uhk(x, t) =
l∑

i=

�̃n,i(t)uhk
n,i(x)

=
l∑

i=

μ/
i �̃n,i(t)ũhk

n,i(x) + �̃n,(t)uhk
n,(x), (.)

vhk(x, t) =
l∑

i=

�̃n,i(t)vhk
n,i(x)

=
l∑

i=

μ/
i �̃n,i(t)ṽhk

n,i(x) + �̃n,(t)vhk
n,(x). (.)

By choosing (φ,ψ) = (μ–/
i �n,iϕ,μ–/

i �n,iϕ) (where ϕi ∈ Shm, i = , ) in (.) and (.)
we can equivalently rewrite the STCG scheme (.)-(.) for (ũhk

n,j, ṽhk
n,j) (j = , , . . . , l) as

⎧
⎪⎨

⎪⎩

∑l
j= b̃ij(ũhk

n,j,ϕ) – knωi(ṽhk
n,i,ϕ) = –μ–/

i bi(uhk
n,,ϕ),

∑l
j= b̃ij(ṽhk

n,j,ϕ) + knωi(∇ũhk
n,i,∇ϕ)

= –μ–/
i bi(vhk

n,,ϕ) +
∫

Jn
μ–/

i �n,i(f ,ϕ) dt, i = , . . . , l,
(.)
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where

b̃ij = μ–/
i bijμ

/
j , bij =

∫

Jn

�̃′
n,j(t)�n,i(t) dt, i = , . . . , l, j = , , . . . , l. (.)

Remark  To illustrate how to use (.) to solve the numerical solution, we take l = 
for example. In this case, �̃n,j(t) (j = , , ) is determined via tn,, tn,, and tn, or via (.),
which is equivalently fixed by , μ, and μ, and �n,i (i = , ) is fixed via tn,, tn, (or μ,μ),
where μ, μ are the two roots of the quadratic Lengendre polynomial defined in interval
[, ]. Therefore, by (.) we can obtain the values of b̃ij (i, j = , ) and bi (i = , ). In
addition, since ũhk

n,j and ṽhk
n,j are elements of Shm, they can be expressed as follows:

ũhk
n,j = cj,χ + cj,χ + · · · + cj,nχn,

ṽhk
n,j = dj,χ + dj,χ + · · · + dj,nχn,

(.)

where χi (i = , , . . . , n) denote the basis functions of Shm, and n stands for the dimen-
sion of Shm. Then we substitute (.) into (.) and let ϕ and ϕ take χi (i = , , . . . , n),
respectively. We finally obtain the set of equations

⎛

⎜
⎜
⎜
⎝

knωA  –b̃A –b̃A
 knωA –b̃A –b̃A

b̃A b̃A knωM 
b̃A b̃A  knωM

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

d

d

c

c

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

f

f

g

g

⎞

⎟
⎟
⎟
⎠

, (.)

where A = (aij)n×n, aij = (χi,χj), M = (mij)n×n, mij = (∇χi,∇χj). ci = (ci,, ci,, . . . , ci,n)T ,
di = (di,, di,, . . . , di,n)T (i = , ). fi = (fi,, fi,, . . . , fi,n)T , gi = (gi,, gi,, . . . , gi,n)T (i = , ), fi,j =
–μ–/

i bi(uhk
n,,χj), gi,j = –μ–/

i bi(vhk
n,,χj) +

∫

Jn
μ–/

i �n,i(f ,χj) dt (j = , , . . . , n). We notice
that uhk

n, and vhk
n, have been found in the previous time level. Therefore, by (.) and

(.), (.) we can obtain uhk(x, t) and vhk(x, t).

Furthermore, the following lemma holds (see []).

Lemma  Let λ := 
 minj

ωj
μj

. Then

xTB̃x ≥ λ|x| = λ

( l∑

i=

x
i

)

, ∀x ∈ Rl, (.)

where B̃ = D–/BD/, B = (bij)l×l , and D = diag{μ, . . . ,μl}.

For further theoretical analysis, we need to introduce the discrete operator Ah : L(�) →
Shm(�) defined by

(∇Ahu,∇φ) = (u,φ), ∀φ ∈ Shm(�). (.)

From this definition we can easily prove that Ah is a nonnegative self-adjoint operator.
Therefore, there exists a square-root operator A/

h satisfying (u, Ahu) = (A/
h u, A/

h u) (∀u ∈
L(�)). Furthermore, Ah is invertible on Shm. In fact, if we take Ahφ =  for arbitrary φ ∈
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Shm, then (φ,φ) = (∇Ahφ,∇φ) = , that is, φ = . Note that Ah can also be extended to
functions in L(, T ; L(�)) in the L sense.

Theorem  Assume that the solution pair (uhk(tn), vhk(tn)) is given in the time level Jn–.
Then, for k small enough, there exists a unique solution pair (uhk , vhk) ∈ (Shm(�) ⊗ Pl(Jn))

to the system of equation (.)-(.).

Proof Since (.)-(.) is a linear system of equations, in order to demonstrate the exis-
tence and uniqueness of its approximate solutions, we only need to prove that if f =  and
uhk

n, = vhk
n, = , then there is a zero solution pair to it.

Taking (ϕ,ϕ) = (ũhk
n,i, Ahṽhk

n,i) in (.), we have

l∑

i,j=

b̃ij
{(

ũhk
n,j, ũhk

n,i
)

+
(
A/

h ṽhk
n,j, A/

h ṽhk
n,i
)}

= –
l∑

i=

μ–/
i bi

{(
uhk

n,, ũhk
n,i
)

+
(
A/

h vhk
n,, A/

h ṽhk
n,i
)}

+
l∑

i=

∫

Jn

μ–/
i �n,i

(
A/

h f , A/
h ṽhk

n,i
)

dt. (.)

For the terms of the left side of (.), in view of Lemma , we have

λ

l∑

i=

(∥
∥ũhk

n,i
∥
∥ +

∥
∥A/

h ṽhk
n,i
∥
∥) ≤

l∑

i,j=

b̃ij
{(

ũhk
n,j, ũhk

n,i
)

+
(
A/

h ṽhk
n,j, A/

h ṽhk
n,i
)}

. (.)

For the first part of the right side of (.), using the Hölder and Cauchy inequalities, we
have

l∑

i=

μ–/
i bi

{(
uhk

n,, ũhk
n,i
)

+
(
A/

h vhk
n,, A/

h ṽhk
n,i
)}

≤
l∑

i=

μ–/
i

∫ 


�̃′

(μ)�i(μ) dμ
(∥
∥uhk

n,
∥
∥
∥
∥ũhk

n,i
∥
∥ +

∥
∥A/

h vhk
n,

∥
∥
∥
∥A/

h ũhk
n,i
∥
∥
)

≤ c
λ

l∑

i=

(∥
∥uhk

n,
∥
∥ +

∥
∥A/

h vhk
n,

∥
∥) +

λ



l∑

i=

(∥
∥ũhk

n,i
∥
∥ +

∥
∥A/

h ṽhk
n,i
∥
∥). (.)

Also, by the Hölder and Cauchy inequalities, noting that
∫

Jn
�

n,i(t) dt = knωi, for the second
part of the right side of (.), we derive

l∑

i=

∫

Jn

μ–/
i �n,i

(
A/

h f , A/
h ṽhk

n,i
)

dt

≤ c
∥
∥A/

h f
∥
∥

L(Jn ;L) + ck
l∑

i=

∥
∥A/

h ṽhk
n,i
∥
∥. (.)



Zhao and Li Journal of Inequalities and Applications  (2016) 2016:280 Page 8 of 18

Combining (.) with (.)-(.) and assuming that k ≤ λ
c , we have

λ



l∑

i=

(∥
∥ũhk

n,i
∥
∥ +

∥
∥A/

h ṽhk
n,i
∥
∥)

≤ λ



l∑

i=

∥
∥ũhk

n,i
∥
∥ +

(
λ


– ck

) l∑

i=

∥
∥A/

h ṽhk
n,i
∥
∥

≤ c
λ

l∑

i=

(∥
∥uhk

n,
∥
∥ +

∥
∥A/

h vhk
n,

∥
∥) + c

∥
∥A/

h f
∥
∥

L(Jn ;L). (.)

Setting f =  and uhk
n, = vhk

n, =  in (.), since A/
h invertible on Shm, we get ũhk

n,i = ṽhk
n,i = 

(i = , , . . . , l), that is, uhk = vhk = . Because the existence of the solution is implied by the
uniqueness, system (.)-(.) has a unique solution pair. �

3 Error estimates of the STCG solutions
In this section, we give some error estimates between the approximate solutions and exact
solutions. To this end, we need to introduce some projections.

We define the space variable Ritz projection Ph : H
(�) → Shm(�), that is, for u ∈ H

(�),
we have

(∇Phu,∇φh) = (∇u,∇φh), ∀φh ∈ Shm(�). (.)

Because of the regularity of the triangulation 	h, we know that Ph has the following ap-
proximation properties (see [, ]). If u ∈ H

(�) ∩ Hs(�), then

‖Phu – u‖r ≤ chs–r‖u‖s,  ≤ s ≤ m + ; r = , . (.)

The projection Ph can be generalized to functions of t and x in the L sense. Namely, we
define the generalized projection Ph : L(, T ; H

(�)) → Shm(�) × L(, T) by

∫ T


(∇Phu,∇φh) dt =

∫ T


(∇u,∇φh) dt, ∀φ ∈ Shm(�) ⊗ L(, T). (.)

Furthermore, we need to define the time projection Pk : H(, T) → Skl([, T]) as well;
namely, for w ∈ H(, T), it satisfies Pkw() = w() and

∫ T


(Pkw)tφ

k
t dt =

∫ T


wtφ

k
t dt, ∀φk ∈ Skl

(
[, T]

)
. (.)

We can easily conclude from the classical FE techniques that Pk satisfies the following
estimate: for w ∈ H(, T) ∩ Hs(, T),

‖Pkw – w‖Hr (,T) ≤ chs–r‖w‖Hs(,T), –l +  ≤ r ≤  ≤ s ≤ l + . (.)

Also, we can generalize Pk to functions of t and x in the L sense. Thus, we define Pk :
H(, T ; L(�)) → L(�) × Skl([, T]) by

∫ T



(
(Pkw)t ,φk

t
)

dt =
∫ T



(
wt ,φk

t
)

dt, ∀φk ∈ L(�) ⊗ Skl
(
[, T]

)
, (.)
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with initial condition (Pkw(),φ) = (w(),φ) (∀φ ∈ L(�)). Further, from (.) we conclude
that Pkw(tn) = w(tn) (n = , , , . . . , N ). Moreover, the projections Ph and Pk satisfy the
following properties (see []).

Lemma  Let Ph and Pk be defined in the generalized sense via (.) and (.).
() Let v ∈ H(, T ; H(�)). Then

(Phv)t = Phvt , ∇(Pkv) = Pk∇v,

PhPkv = PkPhv, AhPkv = PkAhv.
(.)

() Let v ∈ Hs(, tn; L(�)). Then, for –l +  ≤ r ≤  ≤ s ≤ l + ,

∫

�

n–∑

m=

‖v – Pkv‖
Hr(Jm) dx ≤ ck(s–r)‖v‖

Hs(,tn ;L). (.)

() Let v ∈ H(, T ; Hm+(�)) ∩ H(, T ; H
(�)) for all t ∈ [, T]. Then

∥
∥(v – Phv)(t)

∥
∥

r ≤ chm+–r∥∥v(t)
∥
∥

m+, r = , . (.)

() Let v ∈ L(, tn; Hs(�)) ∩ H(, tn; H
(�)). Then

∥
∥(v – Phv)(t)

∥
∥

L(,tn ;L) ≤ chs∥∥v(t)
∥
∥

L(,tn ;Hs),  ≤ s ≤ m + . (.)

() Let v ∈ Hl+(, tn; L(�)) ∩ H(, tn; H
(�)) and

vt ∈ L(, tn; Hm+(�)) ∩ H(, tn; H
(�)). Then

∥
∥(v – PhPkv)t

∥
∥

L(,tn ;L) ≤ c
{

hm+‖vt‖L(,tn ;Hm+) + kl‖v‖Hl+(,tn ;L)
}

. (.)

Lemma  Let Ph and Pk be the projections defined before, and let u, v ∈ H(, tn; H
(�)).

Then, for any (ψ ,φ) ∈ U
hk , we have

∫ tn



[((
Phv – vhk)

t ,ψt
)

+
(∇(

PkPhu – uhk),∇ψt
)]

dt

=
∫ tn



[(
(Phv – v)t ,ψt

)
+
(∇(Pku – u),∇ψt

)]
dt (.)

and

∫ tn



[((
PkPhu – uhk)

t ,φt
)

–
(
Phv – vhk ,φt

)]
dt = . (.)

Proof From the definitions of Ph and Pk and the properties of the projections we get

∫ tn



[((
Phv – vhk)

t ,ψt
)

+
(∇(

PkPhu – uhk),∇ψt
)]

dt

=
∫ tn



[(
(Phv – v)t ,ψt

)
+
(∇(PkPhu – Phu),∇ψt

)]
dt
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+
∫ tn



[((
v – vhk)

t ,ψt
)

+
(∇(

Phu – uhk),∇ψt
)]

dt

=
∫ tn



[(
(Phv – v)t ,ψt

)
+
(∇(Pku – u),∇ψt

)]
dt

+
∫ tn



[((
v – vhk)

t ,ψt
)

+
(∇(

u – uhk),∇ψt
)]

dt. (.)

In addition,

∫ tn



[((
PkPhu – uhk)

t ,φt
)

–
((

Phv – vhk),φt
)]

dt

=
∫ tn



[(
(PkPhu – u)t ,φt

)
– (Phv – v,φt)

]
dt

+
∫ tn



[((
u – uhk)

t ,φt
)

–
(
v – vhk ,φt

)]
dt

=
∫ tn



[(
(Phu – u)t ,φt

)
– (Phv – v,φt)

]
dt

+
∫ tn



[((
u – uhk)

t ,φt
)

–
(
v – vhk ,φt

)]
dt. (.)

Because (u, v) and (uhk , vhk) are solution pairs of (.)-(.) and (.)-(.), respectively,
combining (.)-(.) with the fact v = ut finishes the proof of Lemma . �

In order to continue the theoretical analysis, the following Gronwall lemma needs to be
recalled. In the sequel, it will be used frequently.

Lemma  (Gronwall Lemma) Suppose y(s), g(s), h(s) are three nonnegative locally inte-
grable functions on the interval [,∞) and that, for any given t and all t ≥ t, the following
inequality holds:

g(t) + W (t) ≤ C +
∫ t

t

y(τ ) dτ +
∫ t

t

g(τ )h(τ ) dτ . (.)

Then,

g(t) + W (t) ≤
(

C +
∫ t

t

y(τ ) dτ

)

exp

(∫ t

t

h(τ ) dτ

)

, (.)

where W (t) is a nonnegative function, and C ≥  represents a positive constant that does
not depend on k and h.

The results on the convergence of the numerical solutions of (.)-(.) are given in the
following theorems and corollary.

Theorem  Let (u(x, t), v(x, t)) be a solution pair of (.)-(.), and let (uhk(x, t), vhk(x, t))
satisfy (.)-(.). Then the following error estimates hold:
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() Let ∇u ∈ Hm+(�) for  ≤ t ≤ T , �u ∈ Hl+(, T ; L(�)), vt ∈ H(, T ; Hm+(�)),
and vtt ∈ L(, T ; Hm+(�)). Then

∥
∥
(
u(tn) – uhk(tn)

)∥
∥



≤ C
{

hm
(∥
∥∇u(tn)

∥
∥

m+ + ‖vtt‖L(,tn ;Hm+) + sup
≤t≤tn

‖vt‖m+

)

+ kl‖�u‖Hl+(,tn ;L)

}
, n = , , . . . , N . (.)

() Let v ∈ Hm+(�) for  ≤ t ≤ T , �u ∈ Hl+(, T ; L(�)), vt ∈ H(, T ; Hm+(�)), and
vtt ∈ L(, T ; Hm+(�)). Then

∥
∥
(
v(tn) – vhk(tn)

)∥
∥

≤ C
{

hm+
(∥
∥v(tn)

∥
∥

m+ + ‖vtt‖L(,tn ;Hm+) + sup
≤t≤tn

‖vt‖m+

)

+ kl‖�u‖Hl+(,tn ;L)

}
, n = , , . . . , N . (.)

Proof Taking (ψ ,φ) = (PkPhu – uhk , Phv – vhk) in (.) and (.), we obtain
∫ tn



[(
Phv – vhk ,

(
Phv – vhk)

t

)
+
(∇(

PkPhu – uhk),∇(
PkPhu – uhk)

t

)]
dt

=
∫ tn



[(
(Phv – v)t ,

(
PkPhu – uhk)

t

)
+
(
�(Pku – u),

(
PkPhu – uhk)

t

)]
dt. (.)

Noting that (Phv(), Phu()) = (vhk(), uhk()) and Pkw(tn) = w(tn) (∀w ∈ H(, T)) and us-
ing integration by parts to the right side of (.), we have



∥
∥Phv(tn) – vhk(tn)

∥
∥

 +


∥
∥∇(

PhPku(tn) – uhk(tn)
)∥
∥



≤ (
(Phv – v)t(tn),

(
PkPhu – uhk)(tn)

)

+
∫ tn



(
PkPhu – uhk , (Phv – v)tt

)
dt

+
∫ tn



(
PkPhu – uhk ,�(Pku – u)t

)
dt. (.)

Using the Hölder and Cauchy inequalities, we have
∥
∥Phv(tn) – vhk(tn)

∥
∥

 +
∥
∥∇(

PhPku(tn) – uhk(tn)
)∥
∥



≤ c
∥
∥(Phv – v)t(tn)

∥
∥ + c

∫ tn



∥
∥(Phv – v)tt

∥
∥ dt

+ c
∫ tn



∥
∥�(Pku – u)t

∥
∥ dt +

∫ tn



∥
∥∇(

PkPhu – uhk)∥∥dt. (.)

Applying the Gronwall lemma to (.) yields
∥
∥Phv(tn) – vhk(tn)

∥
∥

 +
∥
∥∇(

PhPku(tn) – uhk(tn)
)∥
∥



≤ c max
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∫ tn



∥
∥(Phv – v)tt

∥
∥ dt + c

∫ tn



∥
∥�(Pku – u)t

∥
∥ dt. (.)
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By the triangle inequality and (.), noting that PkPhu(tn) = Phu(tn), we see that

∥
∥∇(

u(tn) – uhk(tn)
)∥
∥ ≤ ∥

∥∇(
u(tn) – Phu(tn)

)∥
∥ +

∥
∥∇(

PkPhu(tn) – uhk(tn)
)∥
∥

≤ c sup
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∥
∥(Phv – v)tt

∥
∥

L(,tn ;L)

+ c
∥
∥�(Pku – u)t

∥
∥

L(,tn ;L) +
∥
∥∇(

u(tn) – Phu(tn)
)∥
∥. (.)

Then (.) follows from (.) and Lemma . Again, using the triangle inequality and
(.), we obtain

∥
∥v(tn) – vhk(tn)

∥
∥ ≤ ∥

∥v(tn) – Phv(tn)
∥
∥ +

∥
∥Phv(tn) – vhk(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∥
∥(Phv – v)tt

∥
∥

L(,tn ;L)

+ c
∥
∥�(Pku – u)t

∥
∥

L(,tn ;L) +
∥
∥v(tn) – Phv(tn)

∥
∥. (.)

By (.) and Lemma  we finish the proof of part  of Theorem . �

We also give the energy norm estimate in the following corollary.

Corollary  Suppose that the conditions of the Theorem  hold. Then

∥
∥u(tn) – uhk(tn)

∥
∥

 +
∥
∥v(tn) – vhk(tn)

∥
∥

≤ C
{

hm
(∥
∥∇u(tn)

∥
∥

m+ +
∥
∥v(tn)

∥
∥

m+ + ‖vtt‖L(,tn ;Hm+) + sup
≤t≤tn

‖vt‖m+

)

+ kl‖�u‖Hl+(,tn ;L)

}
, n = , , . . . , N . (.)

Proof The corollary is directly demonstrated via the results (.) and (.) of Theo-
rem . �

Theorem  Suppose that solutions u and v to (.)-(.) are smooth enough so that
u ∈ Hm+(�) for  ≤ t ≤ T , �u ∈ Hl+(, T ; L(�)), vt ∈ H(, T ; Hm+(�)), and vtt ∈
L(, T ; Hm+(�)). Then we have

∥
∥
(
u(tn) – uhk(tn)

)∥
∥ ≤ C

{
hm+

(∥
∥u(tn)

∥
∥

m+ + ‖vtt‖L(,tn ;Hm+) + sup
≤t≤T

‖vt‖m+

)

+ kl‖�u‖Hl+(,tn ;L)

}
, n = , , . . . , N . (.)

Proof Setting (ψ ,ϕ) = (Ah(PkPhu – uhk), Ah(Phv – vhk)) in (.) and (.) and applying the
definition and symmetry property of Ah, we obtain

∫ tn



[((
Phv – vhk), Ah

(
Phv – vhk)

t

)
+
((

PkPhu – uhk),
(
PkPhu – uhk)

t

)]
dt

=
∫ tn



(
(Phv – v)t , Ah

(
PkPhu – uhk)

t

)
dt

+
∫ tn



(∇(Pku – u),∇Ah
(
PkPhu – uhk)

t

)
dt. (.)



Zhao and Li Journal of Inequalities and Applications  (2016) 2016:280 Page 13 of 18

From the initial condition (Phv(), Phu()) = (vhk(), uhk()) and Pkw(tn) = w(tn) (∀w ∈
H(, T)), using integration by parts to the right side of (.), we see that



∥
∥A/

h
(
Phv – vhk)(tn)

∥
∥

 +


∥
∥
(
PkPhu – uhk)(tn)

∥
∥



≤ (
Ah(Phv – v)t(tn),

(
PkPhu – uhk)(tn)

)

+
∫ tn



(
PkPhu – uhk , Ah(Phv – v)tt

)
dt

+
∫ tn



(
PkPhu – uhk , Ah(Pk�u – �u)t

)
dt. (.)

Further, using the Hölder and Cauchy inequalities, we have that

∥
∥A/

h
(
Phv – vhk)(tn)

∥
∥ +

∥
∥PkPhu(tn) – uhk(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥Ah(Phv – v)t

∥
∥ + c

∫ tn



∥
∥Ah(Phv – v)tt

∥
∥ dt

+ c
∫ tn



∥
∥Ah(Pk�u – �u)t

∥
∥ dt +

∫ tn



∥
∥
(
PkPhu – uhk)∥∥ dt. (.)

Applying the Gronwall lemma to (.) yields

∥
∥A/

h
(
Phv – vhk)(tn)

∥
∥ +

∥
∥PkPhu(tn) – uhk(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥Ah(Phv – v)t

∥
∥ + c

∫ tn



∥
∥Ah(Phv – v)tt

∥
∥ dt

+ c
∫ tn



∥
∥Ah(�u – Pk�u)t

∥
∥ dt. (.)

Therefore, applying the triangle inequality to (.), we get that

∥
∥u(tn) – uhk(tn)

∥
∥

≤ ∥
∥u(tn) – Phu(tn)

∥
∥ +

∥
∥PkPhu(tn) – uhk(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥Ah(Phv – v)t

∥
∥ + c

∥
∥Ah(Phv – v)tt

∥
∥

L(,tn ;L)

+ c
∥
∥Ah(Pk�u – �u)t

∥
∥

L(,tn ;L) +
∥
∥u(tn) – Phu(tn)

∥
∥. (.)

Inequality (.) now directly follows from (.), the boundedness of Ah, and Lemma .
�

Theorem  Let ∇v ∈ Hm+(�) for  ≤ t ≤ T , �u ∈ Hl+(, T ; L(�)), vt ∈ H(, T ;
Hm+(�)), and vtt ∈ L(, T ; Hm+(�)). Then

∥
∥
(
v(tn) – vhk(tn)

)∥
∥

 ≤ C
{

hm
(∥
∥∇v(tn)

∥
∥

m+ + ‖vtt‖L(,tn ;Hm+) + sup
≤t≤tn

‖vt‖m+

)

+ kl‖�u‖Hl+(,tn ;L)

}
, n = , , . . . , N . (.)
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Proof We first introduce the discrete space-time operator Th : L(, T ; H
(�)) → Shm(�)×

L(, T) satisfying

∫ T


(Thχ ,φ) dt =

∫ T


(∇χ ,∇φ) dt, ∀φ ∈ Shm(�) × L(, T). (.)

Taking (ψ ,ϕ) = (Th(PkPhu – uhk), Th(Phv – vhk)) in (.) and (.) and applying the
definition of Th, we obtain

∫ tn



[(∇(
Phv – vhk),∇(

Phv – vhk)

t

)

+
(
Th

(
PkPhu – uhk), Th

(
PkPhu – uhk)

t

)]
dt

=
∫ tn



(
(Phv – v)t , Th

(
PkPhu – uhk)

t

)
dt

–
∫ tn



(
�(Pku – u), Th

(
PkPhu – uhk)

t

)
dt. (.)

Further,

∥
∥∇(

Phv – vhk)(tn)
∥
∥ +

∥
∥Th

(
PkPhu – uhk)(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∫ tn



∥
∥(Phv – v)tt

∥
∥ dt

+ c
∫ tn



∥
∥(Pk�u – �u)t

∥
∥ dt +

∫ tn



∥
∥Th

(
PkPhu – uhk)∥∥ dt. (.)

Then applying the Gronwall lemma to (.) yields

∥
∥∇(

Phv – vhk)(tn)
∥
∥ +

∥
∥Th

(
PkPhu – uhk)(tn)

∥
∥

≤ c sup
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∫ tn



∥
∥(Phv – v)tt

∥
∥ dt

+ c
∫ tn



∥
∥(Pk�u – �u)t

∥
∥ dt. (.)

Therefore,

∥
∥∇(

v – vhk)(tn)
∥
∥

≤ ∥
∥∇(v – Phv)(tn)

∥
∥ +

∥
∥∇(

Phv – vhk)(tn)
∥
∥

≤ c sup
≤t≤T

∥
∥(Phv – v)t

∥
∥ + c

∥
∥(Phv – v)tt

∥
∥

L(,tn ;L)

+ c
∥
∥(Pk�u – �u)t

∥
∥

L(,tn ;L) +
∥
∥∇(v – Phv)(tn)

∥
∥. (.)

In view of (.), Lemma  completes the proof for Theorem . �

4 Numerical example
In this part, a numerical example is provided to validate the efficiency and feasibility of
the STCG method presented in this paper. We discretize (.) on the unit spatial domain
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Figure 1 A partition of the domain with h = 1/16.

Table 1 The errors and convergence rates of u – uhk in the L2 and H1 norms concerning h at
t = 1

h Error in L2 Rate Error in H1 Rate

1/8 4.8975e–2 1.6055e–0
1/16 1.2272e–2 1.9967 8.0820e–1 0.9902
1/32 3.0747e–3 1.9968 4.0534e–1 0.9956
1/64 7.6265e–4 2.0113 2.0206e–2 1.0043

Table 2 The errors and convergence rates of v – vhk in the L2 and H1 norms concerning h at
t = 1

h Error in L2 Rate Error in H1 Rate

1/8 2.4889e–2 8.0276e–1
1/16 6.2303e–3 1.9981 4.0410e–1 0.9903
1/32 1.4268e–3 2.1266 2.0268e–1 0.9955
1/64 2.3105e–4 2.6265 1.0109e–1 1.0036

Table 3 The errors and convergence rates of u – uhk in the L2(L2) and L2(H1) norms
concerning h

h Error in L2(L2) Rate Error in L2(H1) Rate

1/8 6.4243e–2 2.1045e–0
1/16 1.6078e–2 1.9985 1.0594e–0 0.9902
1/32 4.0188e–3 2.0003 5.3134e–1 0.9956
1/64 9.8849e–4 2.0235 2.6487e–1 1.0043

� = [, ] and the time span I = [, ]. The exact solutions u = e– t
 sin(πx) sin(πy) and

v = – 
 e– t

 sin(πx) sin(πy) are established by (.) if f = ( + π)e– t
 sin(πx) sin(πy),

u = sin(πx) sin(πy), and v = – 
 sin(πx) sin(πy). We set discrete initial values

(uhk(), vhk()) = (Phu, Phv). We also provide the errors and orders of convergence in
the L(L) and L(H) norms for u – uhk and v – vhk concerning h and k. All the experi-
ments are simulated on unstructured meshes (see Figure ) and computed from t =  to
t = .

In this example, we set a linear polynomial regarding space variables and a quadratic
polynomial regarding time variable, that is, m = , l = . Firstly, we investigate the orders
of convergence concerning h. To achieve this goal, we fix the time step k = . and set the
mesh size h = 

 , 
 , 

 , 
 , respectively. Table , Table , Table , and Table  indicate that

the first-order accuracy in the L∞(H) and H norms and the second-order accuracy in the
L∞(L) and L norms are obtained, in accordance with theoretical analysis. Moreover, we



Zhao and Li Journal of Inequalities and Applications  (2016) 2016:280 Page 16 of 18

Table 4 The errors and convergence rates of v – vhk in the L2(L2) and L2(H1) norms
concerning h

h Error in L2(L2) Rate Error in L2(H1) Rate

1/8 3.2219e–2 1.0523e–0
1/16 8.0528e–3 2.0004 5.2971e–1 0.9903
1/32 2.0065e–3 2.0048 2.6567e–1 0.9955
1/64 5.0324e–4 1.9953 1.3247e–1 1.0040

Figure 2 The numerical solution of u at t = 1.

Figure 3 The exact solution of u at t = 1.

provide the plots to numerical solutions and exact solutions for u in Figure  and Figure 
and for v in Figure  and Figure  with h = /, both of which show that the numerical
solutions are very close to the exact solutions.

Next, we analyze the orders of convergence with respect to k. Because we take l =  in
this example, the errors in the L(L), L(H), L, and H norms theoretically should have
the third-order accuracy concerning k. Thus, in order to study the orders of convergence
in the L∞(L), L and L∞(H), H norms concerning k, we take h = O(k/) and h = O(k),
respectively. In this case, the errors are only functions of time step k. Table , Table ,
Table , and Table  show that the orders of convergence for u – uhk and v – vhk in these
norms near third-order accuracy concerning k, respectively, which are one order accuracy
higher than the theoretical findings.

5 Conclusions and perspectives
In this paper, we propose a new theoretical analysis on the STCG method for wave equa-
tion. We prove the existence and uniqueness to the STCG solutions and get the optimal
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Figure 4 The numerical solution of v at t = 1.

Figure 5 The exact solution of v at t = 1.

Table 5 The errors and convergence rates of u – uhk in the L2 and H1 norms concerning k at
t = 1

(h, k) Error in L2 Rate (h, k) Error in H1 Rate

(0.125, 1/4) 2.4620e–2 (1/8, 1/2) 8.0728e–1
(0.0442, 1/8) 3.1414e–3 2.9703 (1/27, 1/3) 2.4231e–1 2.9681
(0.0156, 1/16) 3.9093e–4 3.0064 (1/64, 1/4) 1.0114e–1 3.0372

Table 6 The errors and convergence rates of v – vhk in the L2 and H1 norms concerning k at
t = 1

(h, k) Error in L2 Rate (h, k) Error in H1 Rate

(0.125, 1/4) 1.2556e–2 (1/8, 1/2) 4.0417e–1
(0.0442, 1/8) 1.5500e–3 3.0181 (1/27, 1/3) 1.2116e–1 2.9712
(0.0156, 1/16) 1.1918e–4 3.7010 (1/64, 1/4) 5.0577e–2 3.0367

Table 7 The errors and convergence rates of u – uhk in the L2(L2) and L2(H1) norms
concerning k

(h, k) Error in L2(L2) Rate (h, k) Error in L2(H1) Rate

(0.125, 1/4) 3.2246e–2 (1/8, 1/2) 1.0582e–0
(0.0442, 1/8) 4.1121e–3 2.9712 (1/27, 1/3) 3.1763e–1 2.9681
(0.0156, 1/16) 5.0685e–4 3.0203 (1/64, 1/4) 1.3257e–1 3.0372

Table 8 The errors and convergence rates of v – vhk in the L2(L2) and L2(H1) norms
concerning k

(h, k) Error in L2(L2) Rate (h, k) Error in L2(H1) Rate

(0.125, 1/4) 1.6141e–2 (1/8, 1/2) 5.2912e–1
(0.0442, 1/8) 2.0566e–3 2.9724 (1/27, 1/3) 1.5882e–1 2.9681
(0.0156, 1/16) 2.5788e–4 2.9955 (1/64, 1/4) 6.6294e–2 3.0369
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error estimates in the L and H norms for u and v regarding space. The theoretical anal-
ysis presented in this paper is different from those in [, , ] since we introduce Legendre
polynomials and the corresponding Gauss integration rule to study the well-posedness of
the STCG scheme and introduce a space-time projection operator to analyze the error
estimates in the L and H norms for u – uhk and v – vhk such that our theoretical analysis
is more concise and understandable. Especially, our techniques can be easily extended to
other TRPDEs. Thus, we develop and improve the existing results. Finally, a numerical ex-
ample is given to validate the feasibility and efficiency of the STCG method. In the future
work, we hope that the approach used in this paper will be a foundation for the nonlinear
problems, such as the KdV equation, the Klein-Gordon equation, and so on. Moveover,
although the STCG method can easily improve the accuracy of approximate solutions,
it has lots of degrees of freedom; so in the forthcoming work, we plan to investigate the
reduced-order STCG method based on a proper orthogonal decomposition for the wave
equation.
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