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Abstract
In this paper, we first show that the first Seiffert mean P is concave whereas the
second Seiffert mean T and the Neuman-Sándor mean NS are convex. As
applications, we establish the sub-stabilizability/super-stabilizability of certain
bivariate means. Open problems are derived as well.
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1 Introduction
A (bivariate) mean m is a binary map from (,∞) × (,∞) into (,∞) satisfying

min(x, y) ≤ m(x, y) ≤ max(x, y)

for all x, y > . Symmetric (resp. homogeneous/continuous/monotone) means are defined
in the usual way; see, for instance, []. The standard examples of such means are the fol-
lowing:

A(x, y) =
x + y


; G(x, y) =

√
xy; H(x, y) =

xy
x + y

; Q(x, y) =
√

x + y


;

L(x, y) =
y – x

ln y – ln x
, L(x, x) = x; I(x, y) = e–

(
yy

xx

)/(y–x)

, I(x, x) = x;

P(x, y) =
y – x

 arcsin y–x
y+x

, T(x, y) =
y – x

 arctan y–x
y+x

, NS(x, y) =
y – x

 arcsinh y–x
y+x

,

with P(x, x) = T(x, x) = NS(x, x) = x, known as the arithmetic mean, geometric mean, har-
monic mean, quadratic (or root-square) mean, logarithmic mean, identric mean, first Seif-
fert mean [], second Seiffert mean [], and the Neuman-Sándor mean [], respectively.
Recently, the three means P, T , and NS have been the subject of intensive research because
of their interesting properties and nice relationships. For more details about the three pre-
vious means and their bounds in terms of the other familiar means, we refer the reader to
[–] and the references therein.
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As usual, we identify a mean m with its value at (x, y) by setting m = m(x, y) for simplicity.
All the previous means are symmetric homogeneous monotone continuous.

For two means m and m, we write m ≤ m if m(x, y) ≤ m(x, y) for every x, y > 
and m < m if m(x, y) < m(x, y) for all x, y >  with x �= y. We say that m and m are
comparable if either m ≤ m or m ≤ m. The previous means are comparable with the
chain of inequalities

min < H < G < L < P < I < A < NS < T < Q < max .

Unless otherwise stated, all means considered are further assumed to be symmetric. Let
m, m, m be three means. We set, for all x, y >  (see []),

R(m, m, m)(x, y) = m
(
m(x, m), m(m, y)

)
with m := m(x, y).

A mean m is called stable if R(m, m, m) = m. The two trivial means min and max are sta-
ble. Let m and m be two nontrivial stable means. We say that m is (m, m)-stabilizable
if R(m, m, m) = m. Following [], there exists a unique (m, m)-stabilizable mean, pro-
vided that m and m are cross means (see [] for the definition and details).

If, moreover, m and m are comparable, then we say that m is (m, m)-sub-stabilizable
if R(m, m, m) ≤ m and m is between m and m; see []. If this latter mean inequality
is strict, then we say that m is strictly (m, m)-sub-stabilizable. The super-stabilizability
of m is defined in an analogous manner (by reversing the previous mean inequalities). In
short, we can say that m is (m, m)-super-stabilizable if and only if m∗ is (m∗

, m∗
 )-sub-

stabilizable, where m∗ refers to the dual mean of m defined by m∗(x, y) = (m(x–, y–))– for
all x, y > . For a large study about sub-stabilizable and super-stabilizable means and the
related results, see [].

The following results will be also needed in the sequel.

Theorem . ([]) The following assertions hold:
(i) The means A, H , G, and Q are stable.

(ii) The mean L is simultaneously (A, G)-stabilizable and (H , A)-stabilizable, whereas I
is (G, A)-stabilizable.

Theorem . The following assertions hold:
(i) L is strictly (G, A)-super-stabilizable and strictly (A, H)-sub-stabilizable, whereas I is

strictly (A, G)-sub-stabilizable; see [].
(ii) P is strictly (A, G)-sub-stabilizable and strictly (G, A)-super-stabilizable; see []

and [], respectively.

Part (ii) of Theorem . was proved in [] via a long way and later proved again by the
authors in [] via a simple and fast way. There is no result proved yet about stabilizability,
sub-stabilizability, or super-stabilizability of the means T and NS.

The remainder of this paper is organized as follows. Section  contains basic notions
about convexity of bivariate means and some needed lemmas. Section  is devoted to
show the convexity/concavity of the three standard means P, NS, and T . Section  contains
some applications of the previous results to the sub/super stabilizability of certain bivariate
means. Some open problems of interest are derived as well.
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2 Mean-convexity and needed tools
The convexity concept for bivariate means can be defined as for real functions involving
two variables. Precisely, a mean m is called convex if it satisfies

m
(
( – t)x + tx, ( – t)y + ty

) ≤ ( – t)m(x, y) + tm(x, y)

for all x, y, x, y >  and t ∈ [, ]. We say that m is concave if the previous inequality is
reversed. The mean m is strictly convex (resp. strictly concave) if the previous inequality
(resp. reversed inequality) is strict for all (x, y) �= (x, y) and t ∈ (, ).

We say that m is partially convex (resp. concave) if the real functions x �−→ m(x, y) for
fixed y >  and y �−→ m(x, y) for fixed x >  are convex (resp. concave) on (,∞). If m
is symmetric homogeneous, then m is partially convex (resp. concave) if and only if the
map x �−→ m(x, ) is convex (resp. concave) on (,∞). It is clear that every convex (resp.
concave) mean is partially convex (resp. concave). The reverse of this latter property is not
always true. However, for special class of regular means, it remains true, as confirmed by
the following result.

Lemma . Let m be a homogeneous continuous mean. Then m is convex (resp. concave)
if and only if the real function x �−→ m(x, ) is convex (resp. concave) on (,∞).

Proof It follows from [], p.. �

Remark . For a mean of class C (i.e., twice differentiable on (,∞) × (,∞) with con-
tinuous second derivative), we can give a direct proof of the previous lemma without re-
firing to the general result of [] stated for general positively homogeneous functions.
In fact, let m be symmetric homogeneous mean. Denote φ(x) = m(x, ). Then m(x, y) =
yφ(x/y) for all x, y > . If m is C, then m is convex (resp. concave) if and only if its Hessian
defined by

∇m(x, y) :=

( dm
dx (x, y) dm

dx dy (x, y)
dm
dx dy (x, y) dm

dy (x, y)

)

is (symmetric) positive semidefinite (resp. negative semidefinite). Simple computations
lead to

∇m(x, y) :=

y φ′′

(
x
y

)(
y –xy

–xy x

)
,

and the desired result follows since det(∇m(x, y)) =  for all x, y > .

In order to give more application examples, we need to recall another mean of interest.
Let p be a real number, and let

∀x, y > , Ap := Ap(x, y) =
(

xp + yp



)/p

with A(x, y) = limp→ Ap(x, y) = √xy = G(x, y). Such a mean is known as the power (bino-
mial) mean of order p. It is easy to see that A = A, A– = H , A = Q, and A/ = A+G

 . As
proved in [], Ap is stable for all real p. Further, it is easy to see that A∗

p = A–p for all real p.
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The next lemma will be needed in the sequel.

Lemma . With the above, the following statements hold:
(i) The maps (x, y) �−→ Ap(x, y) for fixed p ∈R and p �−→ Ap(x, y) for fixed x, y >  are

continuous and strictly increasing.
(ii) Let x, y >  be fixed. If p ≥ , then the map p �−→ Ap(x, y) is concave, that is (since

p �−→ Ap(x, y) is continuous),

∀p, p ≥ ,
Ap (x, y) + Ap (x, y)


≤ A p+p


(x, y).

Proof (i) It is a well-known result. See a generalization in [, ].
(ii) See, for instance, [–]. �

Now, we can state the following examples.

Example . It is easy to check that the trivial mean (x, y) �−→ min(x, y) is concave,
whereas (x, y) �−→ max(x, y) is convex. More generally (see []), if p �= , then simple com-
putation leads to

dAp

dx (x, ) =
p – 


xp–

(
xp + 



)/p–

.

For p = , we have A(x, ) =
√

x. It follows by Lemma . that Ap is strictly concave for p < 
and strictly convex for p > . In particular, the geometric mean G and the harmonic mean
H are strictly concave, whereas the quadratic mean Q is strictly convex. The arithmetic
mean A is convex and concave since it is linear affine.

Example . As proved in [], the real functions x �−→ L(x, ) and x �−→ I(x, ) are
(strictly) concave on (,∞). By Lemma . we then deduce that L and I are also strictly
concave.

Example . Let S := S(x, y) = xx/(x+y)yy/(x+y) be the weighted geometric mean. Simple
computation (directly or by considering logarithmic derivative) leads to

d

dx S(x, ) = x
x

x+

(
(ln x)

(x + ) +


x(x + )

)
.

We then conclude that S is strictly convex.

The following remark is worth to be stated.

Remark . The previous examples were just stated as direct illustrations of the related
lemmas. However, their assertions are particular cases of Minkowski’s inequalities for dif-
ference means and Gini means, which were first proved in [] and [], respectively. It is
also worth mentioning that the study of the log-convexity of these two families of means
with respect to their parameters can be found, for instance, in [–].

Before proving that the means NS and T are strictly convex and that P is strictly concave,
we need another lemma.
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Lemma . Let g be a real function such that g(x) >  for all x >  and set

∀x > , f (x) =
x – 
g(x)

.

If g ∈ C(,∞), then f ∈ C(,∞). Further, f is strictly convex (resp. concave) on (,∞) if
and only if

(x – )
(
g ′(x)

) ≥ (≤) g(x)
(
g ′(x) + (x – )g ′′(x)

)

for all x > , and the equalities do not hold on a certain interval (a, b) ⊂ (,∞).

Proof It is a simple exercise of real analysis. Therefore, we leave the details to the
reader. �

3 Convexity of P, NS, and T
We start this section by stating the following result.

Proposition . Let m be a symmetric homogeneous monotone mean. Assume that m is
C and (strictly) convex. Then m∗ is (strictly) concave.

Proof First, it is well known that if m is symmetric homogeneous monotone, then so is m∗.
According to Lemma ., we have to show that the real function x �−→ m∗(x, ) is concave,
where m∗(x, ) = x

m(x,) for all x > . Set φ(x) = m(x, ) and φ∗(x) = m∗(x, ) for simplicity.
We have φ(x) = xφ( 

x ) for all x > . By differentiating this last equality with respect to x we
find (after simple computation) that

∀x > , xφ′(x) = φ(x) – φ′
(


x

)
≤ φ(x) (.)

since m is monotone (i.e., φ is increasing). Now, the relationship

∀x > , φ∗(x) =
x

φ(x)

by differentiation with respect to x yields (after elementary computation)

(
φ∗)′′(x) :=

d

dx φ∗(x) =
x(φ′(x)) – xφ(x)φ′′(x) – φ(x)φ′(x)

(φ(x)) .

The numerator of the last expression can be written as follows:

x
(
φ′(x)

) – xφ(x)φ′′(x) – φ(x)φ′(x) = φ′(x)
(
xφ′(x) – φ(x)

)
– xφ(x)φ′′(x),

which, with (.) and the fact that φ(x) > , φ′(x) ≥ , and φ′′(x) ≥ , yields the desired
result and so completes the proof. �

Remark . The converse of the previous proposition is in general false, that is, the con-
cavity of m does not imply the convexity of m∗. In fact, G is concave, and G∗ = G is also
concave. Also, it is not hard to verify that L∗ is concave, too, as is L.
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Remark . In the previous proposition, the hypothesis “m is monotone” is a primordial
condition. In fact, let us consider the contraharmonic mean C defined by C(x, y) = x+y

x+y
for all x, y > . It is easy to see that C is convex. Further, C is not monotone (see []). The
dual C∗ of C is such that C∗(x, ) = x+x

x+ =  + x–
x+ . Simple computation leads to (we can

also apply Lemma . with g(x) = x + )

d

dx C∗(x, ) = 
x – x – x + 

(x + ) = 
(x + )(x –  –

√
)(x –  +

√
)

(x + ) .

It follows that C∗ is neither concave nor convex, although C is convex.

Now, we discuss the convexity of the three standard means P, NS, and T .

Theorem . The first Seiffert mean P is strictly concave.

Proof Following Lemma ., it is sufficient to show that x �−→ P(x, ) is strictly concave for
x > . According to the explicit form of P(x, ), we set g(x) = arcsin x–

x+ for x > . Then we
have (by elementary computations)

g ′(x) =


(x + )
√

x
, g ′′(x) = –

x + 
x

√
x(x + ) .

Using Lemma ., we have to show that

arcsin
x – 
x + 

>

√

x(x – )
x + x + 

for all x > . Noting that x + x +  = (x + ) – (x – ) and putting t = x–
x+ , we have x = +t

–t
with  < t <  and

√
x

x + 
=

√
x

(x + ) =


√

 – t.

Substituting these quantities into the last inequality, we are then in a position to prove that
(after simple reduction)

arcsin t >
t

√
 – t

 – t

for all  < t < . Now, we set, for  < t < ,

�(t) = arcsin t –
t

√
 – t

 – t .

Simple computations lead to

�′(t) =
√

 – t
– 

( – t)( – t) + t( – t)
( – t)

√
 – t

=
t(t + )

( – t)
√

 – t
.

It follows that �′(t) >  for all  < t < , and so � is strictly increasing for  < t < . We then
deduce that �(t) > �() = , so completing the proof. �
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For the mean NS, we have the following:

Theorem . The Neuman-Sándor mean NS is strictly convex.

Proof Similarly as before, we take g(x) = arcsinh x–
x+ for x > . Simple computations lead to

g ′(x) =
√


(x + )

√
 + x

, g ′′(x) = –
√


x + x + 

(x + )( + x)
√

 + x
.

According to Lemma ., we have to show (after elementary simplification and reduction)
that

arcsinh
x – 
x + 

< 
√


(x – )

√
 + x

x + x + 

for all x > . Here, we write x + x +  = (x + ) + (x – ), and as in the previous proof, we
set t = x–

x+ , x = +t
–t with  < t < . The last inequality becomes (after simple manipulations)

arcsinh t <
t

√
 + t

 + t .

Now, for  < t < , we set

�(t) =
t

√
 + t

 + t – arcsinh t.

A simple computation leads to

�′(t) = 
( + t)( + t) – t( + t)

( + t)
√

 + t
–

√
 + t

or, equivalently (after simplification and reduction),

�′(t) =
t( – t)

( + t)
√

 + t
.

Clearly, �′(t) >  for all  < t < , and so � is strictly increasing for  < t < . We then
deduce that �(t) > �() =  for all  < t < , which is the desired inequality. The proof is
complete. �

Finally, we state the following result.

Theorem . The second Seiffert mean T is strictly convex.

Proof It similar to the previous ones. We just present here a short proof since the related
computations are easy. In fact, setting g(x) = arctan x–

x+ , x > , we have

g ′(x) =


 + x , g ′′(x) =
–x

( + x) .
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The inequality corresponding to Lemma . is equivalent to (after all computation and
reduction)

∀x > , arctan
x – 
x + 

<
x – 
x + 

,

which is valid since arctan z < z for z > . The proof is finished. �

Remark .
(i) According to Proposition ., we deduce that NS∗ and T∗ are strictly concave.

(ii) Following their graphs, the means NS and T seem to be not log-convex. The mean
P is log-concave since it is concave.

4 Application for sub-super-stabilizability
As already pointed before, this section displays some applications of the mean-convexity
to the so-called sub/super-stabilizability of some standard means. Let m, m, m be three
means such that m < m < m. In some situations, it may be of interest to show that m <
m(m, m) or m(m, m) < m, that is, m(x, y) < (>) m(m(x, y), m(x, y)) for all x, y > . Many
inequalities of this type are well known in the literature, such as L < L(A, G), I(A, G) < I ,
and T(A, Q) < T ; see, for instance, [, ]. In what follows, we will see that strict con-
vexity/concavity of m, when combined with its sub/super-satbilizability, can be used for
obtaining some of these (composed) mean-inequalities. This is described in the following
result.

Theorem . Let m be a mean. Then the following assertions hold:
(i) If m is strictly convex and (A, Ap)-sub-stabilizable for some p ∈R, then we have

m(A, Ap) < m.
(ii) If m is strictly concave and (A, Ap)-super-stabilizable for some p ∈R, then we have

m < m(A, Ap).

Proof (i) By assumption we have R(A, m, Ap) ≤ m, that is, by the definition of R and A,

∀x, y > ,
m(x, Ap) + m(y, Ap)


≤ m,

which, with the strict convexity of m, immediately implies the desired inequality.
(ii) It is analogous to (i) by similar arguments. �

It is worth mentioning that the sub-stabilizability and super-stabilizability in the previ-
ous theorem are not strict, and so we have the same conclusions when we replace both
them by stabilizability. For example, L is strictly concave and (A, G)-stabilizable. Then,
Theorem .(ii) immediately yields L < L(A, G).

Now, let us observe another example, which explains more how to use the mean-
convexity for establishing the sub-stabilizability of a certain bivariate mean.

Theorem . Let m be a strictly concave mean. Assume that there exists r <  such that
A+Ar

 ≤ m < A. Then m is strictly (A, Ar)-sub-stabilizable.
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Proof First, since A+Ar
 ≤ m < A and r < , we have Ar < m < A. Now, we need to show that

R(A, m, Ar) < m. We have, for all x, y > , x �= y,

R(A, m, Ar)(x, y) :=
m(x, Ar) + m(y, Ar)


with Ar := Ar(x, y),

which, with the fact that m is strictly concave, yields

R(A, m, Ar)(x, y) < m(A, Ar) with A :=
x + y


.

It follows that

R(A, m, Ar)(x, y) < m(A, Ar) < A(A, Ar) :=
A + Ar


≤ m,

and the desired result is obtained. �

As a particular case of the previous theorem, we have the following result.

Corollary . The mean P is strictly (A, G)-sub-stabilizable.

Proof In [] the authors proved this result by three different methods. We give here a
fourth method based on the previous arguments. In fact, following [, ], we have 

π
A +

( – 
π

)G < P, which implies that A+G
 < P. The desired result follows from the previous

theorem by taking m = P and r = . �

Another result of interest is presented in the following:

Theorem . Let m be a strictly convex mean. Assume that there exists r >  such that
A < m ≤ A+Ar

 . Then m is strictly (A, Ar)-super-stabilizable.

Proof Since r > , we have A < m ≤ A+Ar
 < Ar . We then need to show that m < R(A, m, Ar).

By the definition of R we have, for all x, y > ,

R(A, m, Ar)(x, y) = A
(
m(x, Ar), m(y, Ar)

)
=

m(x, Ar) + m(y, Ar)


with Ar := Ar(x, y).

This, with the strict convexity of m, allows us to write, with x �= y,

R(A, m, Ar)(x, y) > m
(

x + y


, Ar

)
= m(A, Ar) with A := A(x, y) =

x + y


.

Since A < m, we have A(A, Ar) < m(A, Ar), that is, m(A, Ar) > A+Ar
 . This with our assump-

tion yields R(A, m, Ar) > m, which completes the proof. �

The two following corollaries, whose proof will be deduced from that of the previous
theorem, assert that the assumption m < A+Ar

 , r > , is satisfied for the two particular cases
m = NS and m = T .
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Corollary . The mean NS is strictly (A, Q)-super-stabilizable.

Proof Following [], we have NS < 
 A+ 

 Q, which is stronger than NS < A+Q
 . The desired

result follows from the previous theorem by taking m = NS and r =  since A = Q. �

Corollary . The mean T is strictly (A, A)-super-stabilizable.

Proof Since T is convex, Theorem . immediately implies the desired result, provided
that the inequality (A<)T < A+A

 holds. Such an inequality is established in the follow-
ing: �

Proposition . We have

T <
A + A


.

Proof Since T < A+Q
 (see []), it suffices to show that A+Q

 < A+A
 or Q < A+A

 . By the
weighted arithmetic-geometric mean inequality we have

A/A/
 <

A + A


,

and so it suffices to prove that Q < A/A/
 . By the homogeneity of the involved means with

their definitions, we have to show that the following inequality (after a simple reduction)
(x + ) < (x + )(x + ) holds for all x >  with x �= . After simple manipulations, this
latter inequality is reduced to (x – ) > , and the desired result is obtained, completing
the proof. �

Remark . From the three previous corollaries we immediately deduce that P∗ is
strictly (H , G)-super-stabilizable, NS∗ is strictly (H , A–)-sub-stabilizable, and T∗ is strictly
(H , A–)-sub-stabilizable, respectively.

Remark . In Theorem ., the assumption m < A+Ar
 implies by Lemma . that m <

A +r


, r > . Then if m has an upper bound as power mean, that is, m < As, where s is the best
possible, then we should have s ≤ +r

 . For example, if m = NS, then we know that NS < A/

with A/ the best power bound of NS (see []), and so we should have +r
 ≥ /, that is,

r ≥ /. Corollary . confirms that r =  ≥ / is a convenient case, but perhaps r =  is
not the best possible. See more details in the next section.

Remark . Following Example ., the mean A+Ar
 is strictly concave for r <  and strictly

convex for r > . This, combined with Theorem . and Theorem ., respectively, yields
that A+Ar

 is strictly (A, Ar)-sub-stabilizable for r <  and strictly (A, Ar)-super-stabilizable
for r > .

5 Some open problems
We end this paper by stating some open problems as the purpose for future research.
These problems are derived from the previous theoretical results and their proofs.
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Problem  Let p, q, r be three real numbers such that p < r < q. Do exist α ∈ (, ) and
β ∈ (, ), α < β , satisfying the following double mean-inequality:

( – α)Ap + αAq < Ar < ( – β)Ap + βAq?

If the answer is positive, what are the best α and β?

Problem  Let m be a convex mean (resp. concave mean) such that m > A (resp. m < A).
Under what conditions there exists r >  (resp. r < ) such that

m <
A + Ar



(
resp. m >

A + Ar



)
?

When such r exists, what is the best one?

Corollary . and Corollary . assert that Problem  has a positive answer when m =
NS > A and m = T > A, with r =  and r = , respectively. In parallel, Corollary . gives
a positive answer for m = P < A with r = . Of course, we can then ask what is the best
possible r >  such that NS < A+Ar

 . A similar question can be stated for T and P. About
this, we state the following conjectures.

Problem  () The best r >  satisfying T < A+Ar
 is

r := rT =
ln 

ln( π
–π

)
≈ . · · · .

() The best r >  such that NS < A+Ar
 is

r := rNS =
ln 

ln(/α)
, with α = ln

(


ln( +
√

) – 

)
, rNS ≈ . · · · .

() The best r <  satisfying A+Ar
 < P is

r := rP =
ln 

ln( π
–π

)
≈ . · · · .

However, the conclusion of Problem  does not always work for any m > A. In fact, if we
take, for example, m = C > A, where C is the contra-harmonic mean, then there is no s > 
such that C < As. Indeed, if C ≤ As for some s > , then by virtue of the homogeneity of C
and As we should have

∀x > ,
(

x + 
x + 

)s

≤ xs + 


.

This last inequality is impossible since, for x enough large, it gives a contradiction. This,
with the help of Lemma ., shows that there is no r >  such that C < A+Ar

 , and our claim
is then justified.

Finally, we end this paper by mentioning the following. In the previous study, we have
seen that the standard symmetric homogeneous monotone means that are less than A
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(such as min, H , G, L, L∗, I , and P) are concave, whereas those that are greater than A (like
max, C, S, T , and NS) are convex. We have seen that the nonmonotone mean C∗ is neither
convex nor concave with C > A, and so C∗ < A∗ = H < A. This, with Proposition ., allows
us to arise the following open problem.

Problem  Let m be a symmetric homogeneous strictly monotone mean.
(i) Prove or disprove that Proposition . holds for m not necessarily of class C.

(ii) Prove or disprove that if m < A, then m is strictly concave and if m > A, then m is
strictly convex.
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