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Abstract

In this paper, we give new conditions under which the Cirtoaje’s conjecture is also
valid. We also show that a certain generalization of the Cirtoaje’s inequality fulfils an
interesting property.
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1 Introduction and preliminaries

The study of inequalities with power-exponential functions is one of the active areas of
research in the mathematical analysis. The power-exponential functions have useful ap-
plications in mathematical analysis and in other theories like statistics, biology, optimiza-
tion, ordinary differential equations, and probability [1]. We note that the formulas of in-
equalities with power-exponential functions look so simple, but their solutions are not
as simple as it seems. A lot of interesting results for inequalities with power-exponential
functions have been obtained. The history and the literature review of inequalities with
power-exponential functions can be found, for example, in [1]. Some other interesting
problems concerning inequalities of power-exponential functions can be found in [2]. In
this paper, we are studying one inequality conjectured by Cirtoaje [3]. Cirtoaje [3] has

posted the following conjecture on the inequalities with power-exponential functions.

Conjecture 1.1 Ifa,b € (0;1] and r € [0; €], then
2V arab > g’ + b, (1.1)

The conjecture was proved by Matejicka [4]. Matejicka [5] also proved (1.1) under other
conditions. Now we prove that the conjecture (1.1) is also valid under the following con-
ditions:

% <min{a, b} <1and 1 < max{a,b} <eforre[0;e];

1 < min{a, b} < max{a, b} < e forr € [0;e].
We also show that a certain generalization of Cirtoaje’s inequality fulfils an interesting
property with some applications.
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2 Main results
Theorem 2.1 Let a, b be positive numbers. Then

ZW > arb + b (2.1)
for any r € [0, €] if one of the following two conditions is satisfied:

<b<l<a<eg (2:2)

| N

—_

<b<ac<e (2.3)

Proof According to the proof of the Theorem 2.1 in [5], it suffices to consider the case

where r = e.
We split the proof into two parts, labeled as (a) and (b) with valid (2.2) and (2.3), respec-
tively.

(a) Let @ and b satisfy (2.2). Denote
H(x) = 2v/x0%beb — 0 — b
for x € [1,e]. We have
H'(x) = e(x% b (Inx +1) — bx® — b*In b) = eb*"F(x),
where
F(x) = @5 @inxsbinb=2xlnb) (1 | 1 1) _ peleb-Dina—exlnb _jp
and

e 1
F'(x) = ei“”““““”“'““(%(l +Inx)(1+1Inx—2Inb) + —)
x

_ be(eb—l)lnx—exlnb(eb -1 _eln b)
X

If we show that H(1) > 0 and H'(x) > 0 for x € [1, ¢], then the proof will be done.
To prove that H(1) > 0, we consider the function s: [2/e,1] — R defined as

s(b) = H() = 2b% —1—b°.

We have that s(1) = 0. Now, if we show that s'(b) < 0 for b € [2/e,1], then we can conclude
that H(1) > 0. From

s'(b) = e% b+l +1) — eb®!

we obtain that s'(b) < 0 is equivalent to

eblnb

2
—(e-1)Inb+In1+Inb) <0 for—<b<l.
e
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Using

In?b
In1+1Inb) <Inb - nT,

it suffices to show that

b Inb
W) =2 s2-e— 225,
2 2
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But the latter follows from v(2/e) =3 —e + % In(3) > 0 and from v'(b) = (eb —1)/(2b) > 0.
Now we show F’(x) > 0 for x € [1,e]. This implies H'(x) > 0 for x € [1, e]. Indeed, if we

show that F(1) > 0 and F'(x) > 0, then F(x) > 0, so that H'(x) > 0.
We have

F(l) — 6% Inb-elnb _ be—elnb —1Inb.
Because of (% —e) < —3, it suffices to show that
yB)=b"5 b —Inb>0

for % <b<l.
Since y(1) = 0, it suffices to show that

e e 1
‘= b2l (1-eb - <0.
y=-3 (1-e) 5=

This is equivalent to

g= —gb_% +(e-1)b° <1,

which follows from g(2/e) = 0.8488 and from
2

g:%¢%4_@_n%*go

Indeed, g’ < 0 follows from b <1< e/2.
Next, we have that F’'(x) > 0 is equivalent to

e%(xlnx+blnb—2xlnb) > be(eb—l)lnx—exlnb(eb —1-exIn b) )
T Z(nx+1)(Inx+1-2Inb) +1

This can be rewritten as

g(xlnx+ blnb) —(eb-1)Inx

> In(2b(eb -1 - exInb)) — In(ex(Inx + 1)(Inx + 1 - 21nb) + 2).

Evidently,

ex(Inx +1)(Inx +1-21Inb) + 2 > ex + 2.

(2.5)
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So, to prove F'(x) > 0, it suffices to show that
~(Inx+bInb) - (eb-Dlnx
> ln(2b(eb —1-exln b)) —In(ex + 2).
Using Inb > (b — 1)/b, we obtain
2b(eb -1 —exInb) < 2eb* — 2b + 2ex(1 - b).
So we need to show that
g(xlnx +blnb) - (eb—-1)Inx
> In(2eb” - 2b + 2ex(1 - b)) — In(ex + 2).
Using again Inb > (b —1)/b and Inx > (x — 1)/x, it suffices to show that
r(x) = g(x+ b-2)—(eb-1)Inx
—In(2eb® - 2b + 2ex(1 - b)) + In(ex +2) > 0.
Because of Inx < x — 1, it suffices to prove that
F@ = S+ b-2) - (eb-1(x-1)
- ln(2eb2 —2b +2ex(1— b)) +1In(ex +2) > 0.

It will be done if we show that »*(x) < 0, *(1) > 0, and r*(e) > 0.
We have

4e%(1 - b)? e?

") = Ger —2b s 2ex D) e s 2R

Because of r*(

x) = 0 only for one real root x; = (eh? — 3b + 2)/(2be — 2¢) < 0, we obtain
r(x) <0for2/e<b<landl<x<e.
Now we show that 7*(e) > 0. We have

r*(e) = u(b)

62

=5 - 1+ b<§e—ez) —ln(2e2 -2b(1+ ez) + 2eb2) + ln(e2 +2)>0.

First, we show that #(1) > 0 and then #/(b) < 0. We have

e’ 3
wl) = o -1+ 56—62 ~In(2e - 2) +In(e* +2) = 0.388 > 0.
Since
u’(b)z%— ) 4eb -2 — 2€

e - )
2 2e2 —2b(1 + €2) + 2eb?
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we obtain that u/(b) < 0 is equivalent to
2 3 4 n(3e 3¢ 5\,
k(b) =2+ 2¢” + 3¢® — 2¢* —2b(1 + €°) 5 ¢ —4deb + 2e 5 ¢ b <0.

It is evident that k(b) is a concave function. We show that k" = 0 only for m > 1 and k(1) < 0.
This implies that k(b) < 0 for 2/e < b < 1. So «/(b) < 0. Indeed, if K’ = 0, then

_(1+e)(2e* —3e) —4de  2e*—3e” +2e-7

= =1.2411.
2e(2e2 - 3e) 4e2 - 6e

We also have
k(1) = 2 +2¢* + 3¢ - 2¢* — 2b(1 + ¢?) (3% - e2) —deb+ 2e<3§ - ez)bz - _54757 <0.
Now we show that 7*(1) > 0. It will be done if we prove

£(b) = g(b 1)~ In(2eb? - 2b + 2¢ — 2eb) + In(e +2) > 0.

But this follows from ¢ (b) > 0 and £(2/e) > 0. We have

2 e 4 .
tl - =1—E—ln —+2e—4 ) +In(e+2)=0.1248>0
e e

and

e deb—2e—-2

Yb)=- - .
®) 2 2eb?-2b+2e—2eb

The inequality ¢/(b) > 0 is equivalent to
nb)=e’b* -b(5e +e*) +e* +2e+2>0

since o(b) = 2eb®> — 2b + 2e — 2eb > 0, which is evident (0”(b) > 0, o/(b) = 0 for b =
(1 + e)/(2e) < 2/e,0(2/e) > 0). Now n(b) > 0 follows from #n"(b) > 0, n'(b) = 0 for b =
(5+e)/(2e)>1,and n(l) = e* —3e + 2 =1.2342 > 0.

(b) We assume that a and b satisfy (2.3).

We show again that H'(x) > 0 but now for 1 < b <x <e. Because of H(b) = 0, the proof
will be done.

From (2.4) we have that if (eb — 1 — exInb) < 0, then F'(x) > 0. So we need to show that
F'(x) > 0 for s(x,b) = (eb—1—exInb) > 0.

Lets(x,b) =(eb—1—exInb) >0 for1 <b <x <e. Then F'(x) > 0 if only if

fx,b) = g(xlnx +blnb)—(eb—-1)Inx — ln(2b(eb -1- exlnb))
+In(ex(Inx +1)(Inx + 1 - 2Inb) + 2) > 0. (2.6)

If (eb—1-exInb) > 0, thenx < 2?“_;. Because of x > b, we have belnb < eb—1. Put ¢ = eb and

v(it)=tint-2t+1fore<t<e’. Thenwehave vie)=1—-e<0, v(e?) =1, V() =lnt-1>
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0. This implies that there is only one ¢* such that e < t* < ¢? and v(t*) = 0. Because of
¥(6.3055) = 8.8113e — 005 > 0, we get t* < 6.3055. So b < b* < 2.3196. This implies that it
suffices to show f(x,b) > 0 for 1 < b < 2.3196.

The mean value theorem gives

1 1 2x—1
Inx—Inb+1-Inb>—(x—-b)+ —(e-b), lnx+lzx—.
x e x

This implies

ln(ex(lnx +1)(Inx+1-21Inb) + 2)

> In(e(2x — 1)(2ex — eb — xb) + 2ex) — Inx — 1.
Similarly,

xInx+bInb-2blnx = (x—b)Inx + b(Inb —Inx) > (x — b)(Inx —Ine)

(x—b)(e-x)
" .

> —

So

® (¥lnx + blnb) — eblng > — < E=DCE=H
2 B P

From Inb > 2(;;11) we have f(x, b) > G(x, b), where
—b)(e- -1
Gy = - E=0€=D 1 (op(ep1- 20D
2 x 1+b
+1n((2x — 1)(2ex — eb — xb) + 2x).

We show that G(b,b) > 0 and G(x,b) > 0, and the proof will be done.
We have

2eb(b-1)

b,b)=—In|2b|eb-1-
G(b,b) n( (e 1+b

)) +1n((26 - 1)(eb - b*) +2b) =

1+b
L(b) = ln<%) - 1n(—eb2 +3eb—-b- 1) + ln(—2b2 +2eb+b—-e+ 2).

If we show that

—2bz+2eb+b—e+2>1 @7)
—eb?+3eb-b-1 ~ '

then L(b) > 0, so G(b,b) > 0.
Inequality (2.7) is equivalent to

sh)=(e-2)b*+(2-e)b+3-e>0.

From s'(b) =2(e - 2)b + (2 —e), s'(b) =0 if b= 0.5, s(1) = 3 — e > 0 we have s(b) > 0, so
G(b,b) > 0.
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Now we show G/ (x,b) > 0 for 1 < b <x < min{e, (eb —1)/(elnb)} and 1 < b < b*.
2ex(b-1

Becauseofeb—l—T)>eb—1—exln(b)>0,wehave
e [ be — x* 2e(b-1)
G.(x,b) > —=
<0 b) 2 2( P )+b((eb—1)(1+b)—2ex(b—1))
+8696—4193¢—2196—2e+19+2
(2x —1)(2ex —eb —xb) + 2x

(We omitted a positive term of derivation G (x, b).)
Since
be—x>  x(e—x) 2e(b-1)

< B+ b) 21

it suffices to show that

xe—e> 8ex—4bx—2be—2e+b+2

2.
2x " (2x—1)(2ex —eb — xb) + 2x = 28)

To prove (2.8), it suffices to show that (we used x > b)

X2 ((4e - 2b)(eb - ez) +16e — 8b)

+x((eb—€*)(2+ b —2eb —2e) — deb—de +2b +4) + eb(eb— ) > 0.
This can be rewritten as
T(x,b) = x*u(b) + xv(b) + w(b) = 0,
where

u(b) = —2eb” + b(6e* - 8) + e(16 — 4¢?),
v(b) = b2(e - 262) + b(2 —2e—3ée* + 263) +2e% —2e? —4de + 4,
w(b) = e2b* — be.

From this we obtain that the roots of u are b; = 1.2468 and b, = 5.4366. We have that
u <0 on (1,b;) and u > 0 on (by, b*). If we show that T'(b,b) > 0, T(e,b) > 0 for b € (1, ;)
(T'(x) is a concave function), and T..(x, b) > 0, T'(b, b) > 0 for b € (by, b*), then the proof will
be complete. Because of T),(x, b) = 2xu + v, it suffices to prove that P(b) = 2bu(b) + v(b) > 0
for b € (by, b*).

First, we show T'(b,b) > 0, T'(e,b) > 0 for b € (1, b1). We have

T(b,b) = b(-2eb® + b*(4€” + e — 8) + b(2 + 14e — 2¢* - 2¢°)
+4—4e—2¢ +e3).

The roots of T'(b,b) = 0 are r; = —0.1913, r, = 0.8517, r3 = 3.7046, r4 = 0. This implies
that T'(b,b) > 0 for b € (1, e).
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Next, we have
T(e, b) = 2e(b*(-2€ + €) + b(4e® — 2¢* —5e +1) — 2¢* + € + 7e* — 2e + 2).

The roots of T(e, b) = 0 are r; = 0.9969, r, = 3.3956, and T (e, 0) < 0 implies T(e,b) > 0
for b e (1,e).
Now we show that P(b) > 0 for b € (b1, b*). We have

P(b) = —4eb® + b*(10€* + e — 16) + b(~6€® — 3€” + 30e + 2) + 2¢* — 2¢* — 4e + 4.

Because of P(b) = 0 has only one real root r; = 4.4344, P(0) = 18.5198, and T'(e,0) < 0,
we obtain that p(b) > 0 for b € (b, b*).
So the proof is complete. O

3 Some generalizations of Conjecture 1.1
Denote M* = {(a,b); (0 <a,b<e)vV(0<bha<e)V(a>eb<.a)Vv(b=>e,a<vb)V
(0 <a = D)} (seeFigurel)and M(n,7) = {(x1,...,%,); x; > 0,7 > O Ay, .., %, are solutions of the
inequality (3.3)}.
We have:
o {(a,b);0<a,b=<e} C M2,e) (see [5]).
o Vs>e, Ja,b <1 such that (a,b) ¢ M(2,s) (see [4]).
o M*C M(2e).
(5,10) ¢ M(2,¢e) (see [5]).
(1/3,1/9,2/3) ¢ M(3,5/2) (see [5]).
« If0 <r<s, then M(n,s) C M(n,r) (Note 3.4).
e Vx1,...,%, >0, 3s > 0 such that (x1,...,%,) € M(n,r) for 0 <r <s (Note 3.4).

.

.

Lemma 3.1 ([6], the log-sum inequality) Let n € N, x1,...,%,,91,...,Y, be positive num-

bers. Then
n xi n an xi
X 1n<—> > x; ln< ’n’l ) (3.1)
with equality only for % ===

Figure 1 Part of the set M*. Part of the set M’ - green color
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Lemma 3.2 Let

n n-1
F(r)=Ilnn+ % (Z x; lnx,-) —1In (e’x1 Inxn Z il lnxi), 3.2)
i=1

i=1

wherer>0,neN, n>2,x1,...,%, >0 A i #j such that x; # x;. Then F(0) =0, F'(0) >0,
F'(r)<0.

Note 3.3 We note that F(r) > 0 is equivalent to

nn

n n-1

X X1 TXit1
| |xi >x,t + E x; (3.3)
i=1 i=1

Proof 1t is evident that F(0) = 0. Next, we have

n —1 . .
, 1 eM My Inx, + Y ) e ¥y Ing;
F'(r)=— E x;Inx; | — 1 — 1 .
X1 In X, rX;. nx;
n i1 erx1inxy 4 Zizl el¥i+1 Inx;

The inequality F'(0) > 0 is equivalent to

n n-1
E x;Inx; —x1Inx,, — E Xxi11lnx; >0,
i=1 i=1

which can be rewritten as

n
x; x
inln<—l) 7 ln<—1> > 0. (3.4)
i=2 Xi-1 Xn

To prove (3.4), we use the Jensens log-sum inequality (Lemma 3.1).
Put y; =%y, Y2 = X1,...,¥n = %41 in (3.1). We obtain

n n n
Zx,»ln( il ) +x11n(ﬂ> >yp= in ln<Z:_21xl> +x11n<ﬁ>. (3.5)
2 Fi-1 Fn 2 2in i *n

We show that v = v(y,x1,%,) > 0, where y = Zl’:zl x;. We have

v(y, %1, %) = (y+xn)ln<y+xn) + X ln(ﬂ).
y+tx

Xn

It is evident that v(0,x1,x,,) = (x, —x1) ln(%) > 0 and

(3.6)

y+x X —x
V;,(y,xl,x,,) =ln< ) + u

y+x y+x1'

If we show V;(y,xl,x,,) < 0, then limy_, ;00 V(y, %1, %4) = %, — %1 + %1 1n ;‘—}7 >0 (if we put £ =
x1/x,, then g =1—¢ + tInt > 0) implies v(y,x1,x,) > 0.
Put ¢ = ﬁ;’: in (3.6). Then v/ (y,x1,%,) = Int + 1 — ¢. This implies v/ (y,%1,%,) < 0.
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Now we prove F”(r) < 0. We have

1/ —L(V)
F (I") = n-1
(exp(rwy Inx,) + Y17 exp(rai Inxg))?

where

n-1
L(r) = (exp(rxl lnx,,)xf In?x, + Zexp(rxm lnxi)xf+1 In? xi)
i=1

n-1
X (exp(rxl Inx,) + Z exp(rxis1 lnxi))

i=1

n-1 2
- (exp(rxl Inx,)x; Inx,, + Z exp(rai1 Inx;)xi 1nx,-> > 0.
i=1

The equality L(r) > 0 can be rewritten as

n-1
L(r)=A,+B, = Z exp(r(xm Inx; + x; lnx,,)) (%141 Inx; — 27 Inx,,)?
i=1
n-1 n-1
+ Z Z exp(r(xm Inux; + %1 lnxj)) (xl%rl In?x; — Ki1 %1 (Inx;) lnx/) > 0.
i=1 j=1

From By > 0 and

n-1
2
Buui =By + Y exp(r(®i In; + x,,1 1n2,)) (101 I — 6001 In )
i=1

we have A, + B, > 0 for n > 2. So, F(r) is a concave function for r > 0. O

Note 3.4 We note that Lemma 3.2 implies: if F(s) > 0 for some s > 0 and for positive num-
bers x1,...,x, € M(n,s), then F(r) > 0 for r € [0,s] on M(n,s).

3.1 Other applications of Lemma 3.2
« Foreach A e R” = {(xy,...,%,),%;>0,i=1,...,n}, n €N, there is a finite limit
Ly=1lim,_, o F'(r)= % o xilog(x;) — my, where m, = maxy<y<n{®ms1 10g(x,)},
Xn+l = X1.
+ Denote by r4 the positive root of F(r) = 0 (if the root exists) for A € R}-S" where
S§"={(®1,..., %), % = %j,i,j =1,...,n}. Then
(a) Ly >0 & thereis no rg >0 such that F(ry) = 0.
(b) Ls <0 & thereis ry > 0 such that F(ry) = 0.

Let @ # M C R} — S§". Put ryr = infaep{ra} and Ry = supycpr{ra}. Then there are seven

cases:
(@ ry =Ry =0,
(b) 0=ry <Ry <oo,
() rar =0,Rp = 00,

)
(d) 0<ry=Rp<o00,
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(e) 0<ry <Ry <00,

(f) 0<rpy <Ry =00,

(g) rar =Ry = o0.

From this we have:

«+ Case (a) is not possible (Lemma 3.2).

« In case (b), inequality (3.3) is not valid for r > 0 on M, but the reverse inequality to
(3.3) is valid for r > Ry; on M.

« In case (c), inequality (3.3) and the reverse inequality to (3.3) are not valid for r > 0
on M.

« In case (d), inequality (3.3) is valid for 0 < r < ra; on M, and the reverse inequality to
(3.3) is valid for r > rp; on M.

« In case (e), inequality (3.3) is valid for 0 < r < ry; on M, but the reverse inequality to
(3.3) is valid for r > Ry; > rar on M.

« In case (f), inequality (3.3) is valid for 0 < r < ry; < 00 on M, but the reverse inequality
to (3.3) is not valid for any r > 0 on M.

+ In case (g), inequality (3.3) is valid for all ¥ > 0 on M.

3.2 Example
Let n = 2. Denote a = x,, b = x1. Then (1.1) is equivalent to F(r) > 0.
We have three cases:

blog(a) > alog(b); then Ly =lim,_ o F'(r) = (52)
alog(b) > blog(a); then L, =lim,_, o F'(r) = (k=2) log(b) + 5 log(5);
blog(a) = alog(b); then L =1lim,_, o F'(r) = (%2)

Let
M = {(a,b);0<b<a§1}.

From b < a we have alog(b) < blog(a), so (%b)log(a) + glog(g) < 0. Lemma 2.2 in [4]
gives that ry = e. lim,_,1,5-.0 F(r) = log 2 implies that Ry; = co. So, we have that the reverse
inequality to (3.3) cannot be valid for any r > 0 on M.
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