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Abstract
This paper is devoted to the study of optimality conditions for strict minimizers of
higher-order for a non-smooth semi-infinite multi-objective optimization problem.
We propose a generalized Guignard constraint qualification and a generalized Abadie
constraint qualification for this problem under which necessary optimality conditions
are proved. Under the assumptions of generalized higher-order strong convexity for
the functions appearing in the formulation of the non-smooth semi-infinite
multi-objective optimization problem, three sufficient optimality conditions are
derived.
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1 Introduction
In recent years, there has been considerable interest in the so-called semi-infinite multi-
objective optimization problems (SIMOPs), which is the simultaneous minimization of
finitely many scalar objective functions subject to an infinitely many constraints. SIMOPs
have been investigated intensively by many researchers from several different perspec-
tives. For example, the pseudo-Lipschitz property and the semicontinuity of the efficient
solution map under some types of perturbation with respect to a parameter have been dis-
cussed in [–]. The density of the set of all stable convex semi-infinite vector optimiza-
tion problems has been established in []. However, the work on optimality conditions
for SIMOPs is limited. Here we should mention that the authors in [] have examined the
optimality conditions and duality relations in SIMOPs involving differentiable functions,
whose constraints are required to depend continuously on an index t belonging to a com-
pact set T . For non-smooth semi-infinite multi-objective optimization problems, work
has been done to obtain necessary optimality conditions for weakly efficient solutions and
sufficient optimality conditions for efficient solutions by presenting several kinds of con-
straint qualifications and imposing assumptions of generalized convexity (see []), and to
establish necessary and sufficient conditions for (weakly) efficient solutions of SIMOPs by
applying some advanced tools of variational analysis and generalized differentiation and
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proposing the concepts of (strictly) generalized convex functions defined by using the lim-
iting subdifferential of locally Lipschitz functions (see []). It is worth noticing that all of
the above mentioned literature studies only weakly efficient solutions or efficient solutions
of SIMOPs.

On the other hand, a continuing interest in the theory of multi-objective optimization
is to define and characterize its solutions. Besides the weak efficiency and efficiency men-
tioned above, a meaningful solution concept called a strict efficient solution of higher-
order (also called a strict minimizer of higher-order) was recently extended by Jiménez in
[] from the strict minimizer of higher-order in scalar optimization given by Auslender
in [] and Ward in []. Recently, Bhatia [] established necessary and sufficient optimal-
ity conditions for strict efficiency of higher-order in multi-objective optimization under
the basic regularity condition and generalized higher-order strong convexity assumption,
respectively.

In this paper, we introduce the notion of a semi-strict minimizer of higher-order for a
semi-infinite multi-objective optimization problem, which includes arbitrary many (possi-
bly infinite) inequality constraints. For the purpose of investigating this new solution con-
cept, we found that the notion of convexity that appears to be most appropriate in the de-
velopment of sufficient optimality conditions is the strong convexity of higher-order [].

The rest of this paper is organized as follows. In Section , some basic notations and
results of non-smooth and convex analysis are reviewed, and the concept of a semi-
strict minimizer for a semi-infinite multi-objective optimization problem is presented.
In Section , we introduce the generalized Guignard constraint qualification and Abadie
constraint qualification for SIMOPs. Necessary optimality conditions of Karush-Kuhn-
Tuchker type are derived under these two constraint qualifications. Finally, in Section ,
three sufficient optimality conditions for SIMOPs are obtained under the assumption of
some generalized strong convexity of higher-order.

2 Notations and preliminaries
Throughout the paper, we let Rn be the n-dimensional Euclidean space endowed with the
Euclidean norm ‖ · ‖, X be a convex subset of Rn, and m ≥  be a positive integer. Let W be
a subset of Rn. We use cl W , co W , and cone W to denote the closure of W , the convex hull
of W , and the conic hull of W (i.e., the smallest convex cone containing W ), respectively.

Definition . (see [–]) Let W be a nonempty subset of Rn. The tangent cone to W
at x̄ ∈ cl W is the set defined by

T(W ; x̄) :=
{

h ∈R
n : h = lim

n→∞ tn
(
xn – x̄

)
such that xn ∈ W ,

lim
n→∞ xn = x̄ and tn >  for all n = , , . . .

}
.

Recall that a function ϕ : X → R is Lipschitz at x̄ ∈ X if there exists a positive constant
K such that

∣∣ϕ(x) – ϕ(x̄)
∣∣ ≤ K‖x – x̄‖ for all x ∈ X,

where K is called the rank of ϕ at x̄. ϕ is said to be Lipschitz on X if ϕ is Lipschitz at each
x ∈ X. Suppose that ϕ is Lipschitz at x̄ ∈ X, then Clarke’s generalized directional derivative
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of ϕ at x̄ ∈ X in the direction v ∈R
n, denoted by ϕ(x̄, v), is defined as

ϕ(x̄, v) = lim sup
(x,t)→(x̄,+)

ϕ(x + tv) – ϕ(x)
t

.

Clarke’s generalized gradient of ϕ at x̄ ∈ X, denoted by ∂ϕ(x̄), is defined as

∂ϕ(x̄) =
{
ξ ∈R

n : ϕ(x̄, v) ≥ 〈ξ , v〉 for all v ∈R
n}.

It is well known that ∂ϕ(x̄) is a nonempty convex compact set in R
n.

Definition . (see []) Let ϕ : Rn → R be Lipschitz at x̄ ∈ R
n. It is said that ϕ admits a

strict derivative at x̄, an element of Rn, denoted by Dsϕ(x̄), provided that, for each x ∈R
n,

the following holds:

lim
(x′ ,t)→(x̄,)

ϕ(x′ + tx) – ϕ(x′)
t

=
〈
Dsϕ(x̄), x

〉
.

If ϕ admits a strict derivative at x̄, then ϕ is called strictly differentiable at x̄.

Lemma . (see []) Let ϕ, ϕ, and ϕ be Lipschitz from X to R, and x̄ ∈ X. Then the
following properties hold:

(a) ϕ(x̄, v) = max{〈ξ , v〉 : ξ ∈ ∂ϕ(x̄)}, for all v ∈R
n.

(b) ∂(λϕ(x̄)) = λ∂ϕ(x̄), for all λ ∈ R.
(c) ∂(ϕ + ϕ)(x̄) ⊂ ∂ϕ(x̄) + ∂ϕ(x̄).

Now, we recall the definition of the strong convexity of order m for a Lipschitz function.

Definition . (see [, ]) Let ϕ : X → R be Lipschitz at x̄ ∈ X.
(a) ϕ is said to be strongly convex of order m at x̄ if there exists a constant c >  such that

for each x ∈ X and ξ ∈ ∂ϕ(x̄)

ϕ(x) – ϕ(x̄) ≥ 〈ξ , x – x̄〉 + c‖x – x̄‖m.

(b) ϕ is said to be strongly quasiconvex of order m at x̄ if there exists a constant c > 
such that, for each x ∈ X and ξ ∈ ∂ϕ(x̄),

ϕ(x) ≤ ϕ(x̄) ⇒ 〈ξ , x – x̄〉 + c‖x – x̄‖m ≤ .

Based upon the above definition of a strongly convex function of order m, we define the
following generalized strong convexities of order m for a Lipschitz function.

Definition . Let ϕ : X →R be Lipschitz at x̄ ∈ X.
(a) ϕ is strictly strong convex of order m at x̄ if there exists a constant c >  such that, for

each x ∈ X with x = x̄ and ξ ∈ ∂ϕ(x̄),

ϕ(x) – ϕ(x̄) > 〈ξ , x – x̄〉 + c‖x – x̄‖m.
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(b) ϕ is strictly strong quasiconvex of order m at x̄ if there exists a constant c >  such
that, for each x ∈ X with x = x̄ and any ξ ∈ ∂ϕ(x̄),

ϕ(x) ≤ ϕ(x̄) ⇒ 〈ξ , x – x̄〉 + c‖x – x̄‖m < .

The next Lemma gives a basic property of generalized higher-order strong convexities,
which will be used in Section .

Proposition . Let ϕi : X → R be Lipschitz at x̄ ∈ X, i = , , , . . . , s. Suppose that ϕ is a
strictly strong convex function of order m and ϕ,ϕ, . . . ,ϕs are strongly convex functions of
order m at x̄. If λ >  and λi ≥  for i = , , . . . , s, then

∑s
i= λiϕi is strictly strong convex of

order m at x̄.

Proof It is evident that the function
∑s

i= λiϕi is Lipschitz at x̄. Thus, we get

∂

( s∑
i=

λiϕi

)
(x̄) = ∅.

Taking ξ ∈ ∂(
∑s

i= λiϕi)(x̄). It follows from Lemma . that

∂

( s∑
i=

λiϕi

)
(x̄) ⊂

s∑
i=

∂(λiϕi)(x̄) =
s∑

i=

λi∂ϕi(x̄).

This means that there exist ξi ∈ ∂ϕi(x̄), i = , , . . . , s, such that

ξ =
s∑

i=

λiξi.

Since ϕ is strictly strong convex of order m at x̄ and ϕi, i = , , . . . , s, is strongly convex of
order m at x̄, we derive that there exist ci > , i = , , . . . , s, such that, for all x ∈R

n,

⎧⎨
⎩

ϕ(x) – ϕ(x̄) > 〈ξ, x – x̄〉 + c‖x – x̄‖m,

ϕi(x) – ϕi(x̄) ≥ 〈ξi, x – x̄〉 + ci‖x – x̄‖m for all i = , , . . . , s,

which implies that

s∑
i=

λi
(
ϕi(x) – ϕi(x̄)

)
>

s∑
i=

λi〈ξi, x – x̄〉 +

( s∑
i=

λici

)
‖x – x̄‖m.

Therefore, we get

( s∑
i=

λiϕi

)
(x) –

( s∑
i=

λiϕi

)
(x̄) > 〈ξ , x – x̄〉 + c‖x – x̄‖m,

where c =
∑s

i= λici. This completes the proof of the proposition. �
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Consider the following semi-infinite multi-objective optimization problem:

(P) Minimize f (x) =
(
f(x), f(x), . . . , fp(x)

)

subject to gt(x) ≤  for t ∈ T ,

x ∈ X,

where fi, i ∈ P = {, , . . . , p}, and gt , t ∈ T are Lipschitz from X to R, and the index set T is
arbitrary, not necessarily finite (but nonempty). The feasible set of (P) is denoted by �,

� :=
{

x ∈ X : gt(x) ≤ ,∀t ∈ T
}

.

For a given x̄ ∈ �, set

T̂(x̄) :=
{

t ∈ T : gt(x̄) = 
}

.

In the sequel, we use the following notations. For x, y ∈R
n.

(i) f (x) < f (y) ⇔ fi(x) < fi(y) for every i ∈ P;
(ii) f (x) ≮ f (y) is the negation of f (x) < f (y);

(iii) f (x) ≤ f (y) ⇔ fi(x) ≤ fi(y) for every i ∈ P, but there is at least one i ∈ P such that
fi (x) < fi (y);

(iv) f (x) � f (y) is the negation of f (x) ≤ f (y).

Definition . (see []) A point x̄ ∈ � is said to be a strict minimizer of order m for (P)
if there exists c = (c, c, . . . , cp) ∈R

p with ci > , i ∈ P, such that

f (x) ≮ f (x̄) + c‖x – x̄‖m for all x ∈ �.

Definition . A point x̄ ∈ � is said to be a semi-strict minimizer of order m for (P) if
there exists c = (c, c, . . . , cp) ∈R

p with ci > , i ∈ P, such that

f (x) � f (x̄) + c‖x – x̄‖m for all x ∈ �.

Remark . It is obvious that if x̄ ∈ � is a semi-strict minimizer of order m for (P), then
x̄ ∈ � is a strict minimizer of order m for (P).

Example . The functions fi : R →R, i = , , defined by

f(x) =

⎧⎨
⎩

x + ex if x ≥ ,

x +  if x < ,
f(x) =

⎧⎨
⎩

x + x if x ≥ ,

x – x if x < ,

are Lipschitz at x̄ = . It is easy to verify that x̄ is a semi-strict minimizer of order  with
c = (, ) for the following optimization problem:

(P) Minimize f (x) =
(
f(x), f(x)

)

subject to x ∈R.



Yu Journal of Inequalities and Applications  (2016) 2016:263 Page 6 of 13

Motivated by the notion of a linearizing cone at a point to the feasible set of a differen-
tiable multi-objective optimization problem, which was introduced by Maeda in [], we
give the definition of a linearizing cone for the semi-infinite multi-objective optimization
problem (P). We first need to define a set.

Let x̄ ∈ � be a semi-strict minimizer of order m for (P), and define

Qi(x̄) :=
{

x ∈R
n : fk(x) ≤ fk(x̄) + ck‖x – x̄‖m, k ∈ P and k = i

} ∩ �.

It is obvious that x̄ ∈ Qi(x̄), i ∈ P.

Definition . Let x̄ ∈ �. The linearizing cone at x̄ is the set defined by

C(x̄) =
{

z ∈R
n : 〈ξ , z〉 ≤  for all ξ ∈ ∂fi(x̄), i ∈ P and

〈ζ , z〉 ≤  for all ζ ∈ ∂gt(x̄), t ∈ T̂(x̄)
}

.

3 Necessary conditions
In this section, we shall examine necessary optimality conditions for a semi-strict (strict)
minimizer of order m for (P). we begin with presenting two constraint qualifications,
which are the non-smooth, semi-infinite version of the generalized Guignard constraint
qualification and generalized Abadie constraint qualification presented in [] and [].

Definition . The problem (P) satisfies the generalized Guignard constraint qualification
at a given point x̄ ∈ � which is a semi-strict minimizer of order m for (P) if the following
holds: C(x̄) ⊆ ⋂p

i= cl[co(T(Qi; x̄))], where Qi := Qi(x̄).

Definition . The problem (P) satisfies the generalized Abadie constraint qualification
at a given point x̄ ∈ � which is a semi-strict minimizer of order m for (P) if the following
holds: C(x̄) ⊆ ⋂p

i= T(Qi; x̄).

Next, we recall the generalized Motzkin theorem discussed in [].

Lemma . (see []) Let A be a compact set in R
n, B an arbitrary set in R

n. Suppose that
the set cone B is closed. Then either the system

⎧⎨
⎩

〈a, z〉 <  for all a ∈ A,

〈b, z〉 ≤  for all b ∈ B,

has a solution z ∈ R
n, or there exist integers μ and ν , with  ≤ ν ≤ n+, such that there exist

μ points ai ∈ A (i = , , . . . ,μ), ν points bm ∈ B (m = , , . . . ,ν), μ nonnegative numbers ui,
with ui >  for at least one i ∈ {, , . . .μ}, and ν positive numbers vm for m ∈ {, , . . .ν},
such that

μ∑
i=

uiai +
ν∑

m=

vmbm = ,

but never both.
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The following lemma is a generalization of the classical Tucker theorem of the alterna-
tive. We use this lemma in the proof of our necessary efficiency result. The proof of the
lemma is similar to that of Lemma . in [], hence it is omitted.

Lemma . Let Ai ⊂ R
n, i ∈ P, be compact convex sets, B an arbitrary set in R

n. Suppose
that, for each i ∈ P, the set cone(B ∪ [

⋃
j∈P,j =i Aj]) is closed. Then either the system

⎧⎪⎪⎨
⎪⎪⎩

〈a, z〉 <  for at least one i ∈ P and for all a ∈ Ai,

〈a, z〉 ≤  for all a ∈ ⋃p
i= Ai,

〈b, z〉 ≤  for all b ∈ B,

has a solution z ∈ R
n, or there exist u ∈ U ≡ {u ∈ R

p : u > ,
∑p

i= ui = }, ai ∈ Ai for i ∈ P,
and integer ν with  ≤ ν ≤ n + , such that there exist ν points bm ∈ B, and ν positive
numbers vm, m ∈ {, , . . . ,ν}, such that

p∑
i=

uiai +
ν∑

m=

vmbm = ,

but never both.

Lemma . Let x̄ be a semi-strict minimizer of order m for (P), let fi(x), i ∈ P, be Lipschitz
at x̄ of rank Ki, for all t ∈ T , let the functions gt(x) be Lipschitz at x̄. If the generalized
Guignard constraint qualification holds at x̄ and fi(x), i ∈ P, are strictly differentiable at x̄
or the generalized Abadie constraint qualification holds at x̄, then the system

⎧⎪⎪⎨
⎪⎪⎩

〈ξ , z〉 <  for at least one i ∈ P and for all ξ ∈ ∂fi(x̄),

〈ξ , z〉 ≤  for all ξ ∈ ⋃p
i= ∂fi(x̄),

〈ζ , z〉 ≤  for all ζ ∈ ∂gt(x̄), t ∈ T̂(x̄),

(.)

has no solution z ∈R
n.

Proof Suppose to the contrary that (.) has a solution z. Then z =  and z ∈ C(x̄). Without
loss of generality, we can assume that

〈ξ , z〉 <  for all ξ ∈ ∂f(x̄),

〈ξ , z〉 ≤  for all ξ ∈
p⋃

i=

∂fi(x̄).

By our generalized Guignard constraint qualification assumption, z ∈ cl[co(T(Q; x̄))], and
hence there exists a sequence {zm}∞m= ⊂ co(T(Q; x̄)) such that

lim
m→∞ zm = z. (.)

For each zm, m = , , . . . , there exist numbers Lm and λml ≥ , and zml ∈ T(�; x̄), zml = ,
l = , , . . . , Lm, such that

Lm∑
l=

λml = ,
Lm∑
l=

λmlzml = zm. (.)
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Since, for each m = , , . . . and l = , , . . . , Lm, zml ∈ T(Q; x̄), there exist sequences
{xmln}∞n= ⊂ Q and {tmln}∞n= ⊂R, with tmln >  for all n, such that

lim
n→∞ xmln = x̄, lim

n→∞ tmln
(
xmln – x̄

)
= zml. (.)

Noticing that xmln ∈ Q for all n, we have xmln ∈ � and fi(xmln) ≤ fi(x̄) + ci‖xmln – x̄‖m for
i = , , . . . , p.

Since x̄ is a semi-strict minimizer of order m for (P), for all n we may assume

f
(
xmln) ≥ f(x̄) + c

∥∥xmln – x̄
∥∥m. (.)

Since zml = , for each m = , , . . . and l = , , . . . , Lm, we must have tmln → +∞ as n →
+∞, and hence xmln – 

tmln
zml → x̄ as n → +∞. Therefore,

f 

(
x̄; zml) = lim sup

y→x̄
t↓

f(y + tzml) – f(y)
t

≥ lim sup
n→∞

f(xmln – 
tmln

zml + 
tmln

zml) – f(xmln – 
tmln

zml)


tmln

≥ lim sup
n→∞

f(xmln) – f(x̄) + f(x̄) – f(xmln – 
tmln

zml)


tmln

≥ lim sup
n→∞

f(xmln) – f(x̄)


tmln

– lim sup
n→∞

|f(x̄) – f(xmln – 
tmln

zml)|


tmln

≥ lim sup
n→∞

c‖xmln – x̄‖m


tmln

– lim sup
n→∞

|f(x̄) – f(xmln – 
tmln

zml)|


tmln

(by (.))

≥ – lim sup
n→∞

|f(x̄) – f(xmln – 
tmln

zml)|


tmln

≥ – lim sup
n→∞

tmlnK

∣∣∣∣x̄ – xmln +


tmln
zml

∣∣∣∣
(by the Lipschitz continuity of f)

= – lim sup
n→∞

K
∣∣tmln

(
x̄ – xmln) + zml∣∣

=  (by (.)). (.)

Because f(x) is strictly differentiable at x̄, we know f 
 (x; v) = 〈Dsf(x̄), v〉. By Propo-

sition .. in [], we also know that ∂f(x̄) = {Dsf(x̄)}. In view of (.) we obtain
〈Dsf(x̄), zm〉 = f 

 (x̄; zm) ≥ , which further gives us 〈Dsf(x̄), z〉 = f 
 (x̄; z) ≥  because of

(.), contradicting the assumption that z is a solution of the system (.). Therefore, un-
der the assumption that the generalized Guignard constraint qualification holds and fi(x),
i ∈ P, are strictly differentiable at x̄, (.) has no solution z ∈R

n.
Now let us show that (.) has no solution z ∈ R

n under the generalized Abadie con-
straint qualification. Suppose to the contrary that (.) has a solution z. Then z =  and



Yu Journal of Inequalities and Applications  (2016) 2016:263 Page 9 of 13

z ∈ C(x̄). By the generalized Abadie constraint qualification, without loss of general-
ity we may assume that z ∈ T(Q; x̄), and hence there exist sequences {xn}∞n= ⊂ Q and
{tn}∞n= ⊂R, with tn >  for all n, such that

lim
n→∞ xn = x̄, lim

n→∞ tn
(
xn – x̄

)
= z.

Replacing tmln by tn, xmln by xn, and zml by z in (.), we arrive at f 
 (x̄; z) ≥ . By Propo-

sition .. in [], we know that there is a ξ ∈ ∂f(x̄) such that 〈ξ , z〉 = f 
 (x̄; z) ≥ , con-

tradicting the assumption that z is a solution of the system (.). Therefore, (.) has no
solution z ∈ R

n. �

Now we are ready to prove the following necessary optimality condition for (P).

Theorem . Let x̄ ∈ � and let the functions fi(x) for i ∈ P and gt(x) for t ∈ T be Lips-
chitz at x̄. If x̄ is a semi-strict minimizer of order m for (P), if the generalized Guignard
constraint qualification holds at x̄ and fi(x) for each i ∈ P is strictly differentiable at x̄
(or the generalized Abadie constraint qualification holds at x̄), and if for each i ∈ P,
the set cone({ζ ∈ ∂gt(x̄) : t ∈ T̂(x̄)} ∪ {ξ ∈ ∂fi(x̄) : i ∈ P, i = i}) is closed, then there exist
u∗ ∈ U ≡ {u ∈R

p : u > ,
∑p

i= ui = }, integers ν∗, with  ≤ ν∗ ≤ n + , such that there exist
tm ∈ T̂(x̄) and v∗

m > , m ∈ {, , . . . ,ν∗}, with the property that

 ∈
p∑

i=

u∗
i ∂fi(x̄) +

ν∗∑
m=

v∗
m∂gtm (x̄). (.)

Proof In Lemma ., set

Ai = ∂fi(x̄), i ∈ P,

B =
⋃

t∈T̂(x̄)

∂gt(x̄).

By Proposition .. in [], we know that Ai is a compact convex set. According to
Lemma ., the system (.) has no solution and, therefore, by Lemma ., there exist
u∗ ∈ U , ai ∈ ∂fi(x) for i ∈ P, integers ν∗ with  ≤ ν∗ ≤ n + , such that there exist ν∗ points
tm ∈ T̂(x̄) and ν∗ positive numbers v∗

m > , m ∈ {, , . . . ,ν∗}, such that (.) holds. �

Remark . If we modify the definition of Qi(x̄) as follows:

Qi(x̄) :=
{

x ∈R
n : fk(x) < fk(x̄) + ck‖x – x̄‖, k ∈ P and k = i

} ∩ �,

and define the generalized Guignard constraint qualification and generalized Abadie con-
straint qualification accordingly, we can prove a similar necessary result for x̄ to be a strict
minimizer of order m for (P).

4 Sufficient conditions
In this section we discuss sufficient optimality results under various generalized higher-
order strong convexity (introduced in Section ) hypotheses imposed on the involved
functions.
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Theorem . (Sufficient optimality conditions I) Let x̄ ∈ � and T̂(x̄) = ∅. Suppose that
there exist scalars αi ≥ , i = , , . . . , p with

∑p
i= αi = , and βt ≥ , t ∈ T̂(x̄) with βt =  for

finitely many indices t, such that

 ∈
p∑

i=

αi∂fi(x̄) +
∑

t∈T̂(x̄)

βt∂gt(x̄). (.)

If the functions fi, i = , , . . . , p, are strongly convex of order m at x̄, and gt for t ∈ T̂(x̄) and
βt = , are strongly quasiconvex of order m at x̄, then x̄ is a strict minimizer of order m
for (P).

Proof Let J(x̄) := {t ∈ T̂(x̄) : βt = }. Because of (.), we derive that there exist ξi ∈ ∂fi(x̄)
for i ∈ {, , . . . , p} and ζt ∈ ∂gt(x̄) for t ∈ J(x̄) such that

p∑
i=

αiξi +
∑

t∈J(x̄)

βtζt = . (.)

Since fi for i ∈ {, , . . . , p} are strongly convex of order m at x̄, we see that there exist c̄i > 
for i ∈ {, , . . . , p} such that

fi(x) – fi(x̄) ≥ 〈ξi, x – x̄〉 + c̄i‖x – x̄‖m for all x ∈ �, ξi ∈ ∂fi(x̄), i = , , . . . , p.

Noticing αi ≥  for i ∈ {, , . . . , p}, we have

p∑
i=

αi
(
fi(x) – fi(x̄)

) ≥
〈 p∑

i=

αiξi, x – x̄

〉
+

p∑
i=

αic̄i‖x – x̄‖m. (.)

On the other hand, gt(x) ≤ gt(x̄) =  for x ∈ �, t ∈ J(x̄). By the strong quasiconvexity of
order m at x̄ for gt with t ∈ J(x̄), we see that there exist c̄t >  for t ∈ J(x̄) such that, for
ζt ∈ ∂gt(x̄),

〈ζt , x – x̄〉 + c̄t‖x – x̄‖m ≤ ,

furthermore, it follows from βt ≥  for t ∈ J(x̄) that

〈 ∑
t∈J(x̄)

βtζt , x – x̄
〉

+
∑

t∈J(x̄)

βt c̄t‖x – x̄‖m ≤ . (.)

Adding (.) to (.), we get

p∑
i=

αi
(
fi(x) – fi(x̄)

)

≥
〈 p∑

i=

αiξi +
∑

t∈J(x̄)

βtζt , x – x̄

〉
+

( p∑
i=

αic̄i +
∑

t∈J(x̄)

βt c̄t

)
· ‖x – x̄‖m. (.)
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It follows from (.) that

p∑
i=

αi
(
fi(x) – fi(x̄)

)
–

( p∑
i=

αic̄i +
∑

t∈J(x̄)

βt c̄t

)
· ‖x – x̄‖m ≥ .

Let c̄ =
∑p

i= αic̄i +
∑

t∈J(x̄) βt c̄t and ci = αic̄. Noticing that
∑p

i= αi = , we obtain

p∑
i=

αi
(
fi(x) – fi(x̄)

) ≥
p∑

i=

αic‖x – x̄‖m.

This implies

〈
α, f (x) – f (x̄) – c‖x – x̄‖m〉 ≥ ,

where c = (c̄, c̄, . . . , c̄) with c̄ > . Since αi ≥  and
∑p

i= αi = , we further see that for all
x ∈ �

f (x) ≮ f (x̄) + c‖x – x̄‖m,

which implies that x̄ is a strict minimizer of order m for (P). �

Theorem . (Sufficient optimality conditions II) Let x̄ ∈ � and T̂(x̄) = ∅. Suppose that
there exist scalars αi ≥ , i = , , . . . , p with

∑p
i= αi = , and βt ≥ , t ∈ T̂(x̄) with βt =  for

finitely many indices t, such that

 ∈
p∑

i=

αi∂fi(x̄) +
∑

t∈T̂(x̄)

βt∂gt(x̄).

If the functions fi, i ∈ {, , . . . , p : αi = }, are strongly convex of order m at x̄ and at least one
of them is strictly strong convex of order m at x̄, and gt for t ∈ T̂(x̄) and βt = , are strongly
quasiconvex of order m at x̄, then x̄ is a semi-strict minimizer of order m for (P).

Proof In the proof of Theorem ., we derived that there exist ξi ∈ ∂fi(x̄) for i ∈ {, , . . . , p}
and ζt ∈ ∂gt(x̄) for t ∈ J(x̄), such that

p∑
i=

αiξi +
∑

t∈J(x̄)

βtζt = , (.)

and that there exist c̄t >  for t ∈ J(x̄), such that, for ζt ∈ ∂gt(x̄), we have

〈 ∑
t∈J(x̄)

βtζt , x – x̄
〉

+
∑

t∈J(x̄)

βt c̄t‖x – x̄‖m ≤ . (.)

Since the functions fi for i ∈ {, , . . . , p} are strongly convex of order m at x̄ and there is
at least one i ∈ {, , . . . , p : αi = } such that fi is strictly strong convex of order m at x̄,
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using the same argument as in the proof of Theorem ., we arrive at the conclusion that
there exist c̄i >  for i ∈ {, , . . . , p} such that

p∑
i=

αi
(
fi(x) – fi(x̄)

)
>

〈 p∑
i=

αiξi, x – x̄

〉
+

p∑
i=

αic̄i‖x – x̄‖m.

Adding the above inequality to (.), we obtain

p∑
i=

αi
(
fi(x) – fi(x̄)

)

>

〈 p∑
i=

αiξi +
∑

t∈J(x̄)

βtζt , x – x̄

〉
+

( p∑
i=

αic̄i +
∑

t∈J(x̄)

βt c̄t

)
‖x – x̄‖m. (.)

It follows from (.) that

p∑
i=

αi
(
fi(x) – fi(x̄)

)
–

( p∑
i=

αic̄i +
∑

t∈J(x̄)

βt c̄t

)
‖x – x̄‖m > .

Let c̄ =
∑p

i= αic̄i +
∑

t∈J(x̄) βt c̄t and ci = αic̄. Noticing that
∑p

i= αi = , we get

p∑
i=

αi
(
fi(x) – fi(x̄)

)
>

p∑
i=

αic‖x – x̄‖m.

Hence, with c = (c̄, c̄, . . . , c̄) we have

〈
α, f (x) – f (x̄) – c‖x – x̄‖m〉

> .

Because αi ≥  for i ∈ {, , . . . , p} and
∑p

i= αi = , we know that, for all x ∈ �,

f (x) � f (x̄) + c‖x – x̄‖m,

which implies that x̄ is a semi-strict minimizer of order m for (P). �

Theorem . (Sufficient optimality conditions III) Let x̄ ∈ � and T̂(x̄) = ∅. Suppose that
there exist scalars αi ≥ , i = , , . . . , p with

∑p
i= αi = , and βt ≥ , t ∈ T̂(x̄) with βt =  for

finitely many indices t, such that

 ∈
p∑

i=

αi∂fi(x̄) +
∑

t∈T̂(x̄)

βt∂gt(x̄).

If the functions fi, i = , , . . . , p, are strongly convex of order m at x̄, and
∑

t∈T̂(x̄) βtgt is
strictly strong quasiconvex of order m at x̄, then x̄ is a semi-strict minimizer of order m
for (P).

Proof The proof is similar to that of Theorems . and .. �
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5 Conclusions
We have defined a strict minimizer of higher-order and a semi-strict minimizer of higher-
order for a semi-infinite multi-objective optimization problem in this paper. We have pre-
sented a non-smooth semi-infinite version of the generealized Guignard and Abadie con-
straint qualifications. Under those constraint qualifications, utilizing the method in [,
] we have proved necessary optimality conditions for a semi-strict minimizer of higher-
order and a strict minimizer of higher-order. Three sufficient optimality conditions have
been proved under the assumption of strong convexities.
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