Abyar and Ghaemi Journal of Inequalities and Applications (2016) 2016:266 ® Journal of |nequa|ities and Applications

DOI 10.1186/513660-016-1206-x

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Hausdorff measure of noncompactness of
matrix operators on some new difference
sequence spaces

Elahe Abyar and Mohammad Bagher Ghaemi’

“Correspondence:
mghaemi@iust.ac.ir

Islamic Azad University, Karaj
Branch, Moazen, Alborz, Iran

@ Springer

Abstract

The new sequence spaces X(r,s,t; A) for X € {lo, ¢, co} have been defined by using
generalized means and difference operator. In this work, we establish identities or
estimates for the operator norms and the Hausdorff measure of noncompactness of
certain matrix operators on some new difference sequence spaces X(r, s, t; A) where
X € {loo,C.Co,Ip} (1 < p < 00),as derived by using generalized means. Further, we find
the necessary and sufficient conditions for such operators to be compact by applying
the Hausdorff measure of noncompactness. Finally, as applications we characterize
some classes of compact operators between these new difference sequence spaces
and some other BK-spaces.

Keywords: sequence space; difference operators; matrix transformation; generalized
means; compact operators; Hausdorff measure of noncompactness

1 Preliminaries and background

The study of sequence spaces has been very useful in many branches of analysis. Recently,
some new sequence spaces have been defined by using matrix domain of a suitable matrix.
Beside this, the Hausdorff measure of noncompactness is very useful in the classification
of compact operators between Banach spaces.

The difference sequence spaces were introduced for the first time by Kizmaz in [1]. Af-
terwards, many authors have introduced and studied some new sequence spaces defined
by using the difference operator. For example, in [2] Ahmad and Mursaleen, in [3] Colak
and Et, in [4] Basar and Altay, in [5] Orhan, in [6] Polat and Altay, in [7] Aydin and Basar,
and in [8] Basar and Altay have introduced and studied some new sequence spaces de-
fined by using a difference operator. Some authors like Malkowsky and Savas [9], Altay
and Basar [10], Mursaleen and Noman [11] and Basarir and Kara [12] have defined the se-
quence spaces by using the generalized weighted means. For the first time, in 2011 Polat et
al. [13] have introduced the new sequence spaces by combining both the weighted means
and the difference operator. Then in 2015 Manna et al. [14] have introduced new sequence
spaces defined by using both the generalized means and the difference operator.

In this paper we obtain some identities or estimates for the operator norms and the
Hausdorff measure of noncompactness of certain matrix operators on new difference se-
quence spaces defined by Manna et al. Further, we find the necessary and sufficient condi-
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tions for such operators to be compact and we consider some matrix mappings between
the spaces of the generalized means (these have been defined in [15]) and difference se-
quence spaces derived by using the generalized means. Finally, as applications we charac-
terize some classes of compact operators between these new difference sequence spaces
and some other BK-spaces.

In this section, we give some related definitions and preliminary results.

We shall write w for the set of all complex sequences x = (x¢)7°,. Any vector subspace
of w is called a sequence space. Let [, ¢, and ¢y denote the sets of all bounded, con-
vergent and null sequences, respectively, and [, = {x € w: > po( [x[P < 00,1 < p < 00}.
For an infinite matrix A and a sequence space X, the matrix domain of A is defined by
X4 ={xew:Ax € X}. By e and ¢" (n € N), we denote the sequences such that e; =1
for k= 0,1,... and € =1 and e; =0 (k # n). Let bs and cs be the sequence spaces of
all bounded and convergent series, respectively. A sequence (,) in a normed linear space
(X, II-11) is called a Schauder basis for X if for every x € X, there is a unique sequence (5,)52,
of scalars such that x = Y > 8,b,. For definitions of K-space, FK-space, BK-space and
AK-property we refer the reader to [16].

Throughout, the matrices are infinite matrices of complex number. Let A = (a,x),x be
an infinite matrix with real or complex entries a,x. We write A, as the sequence of the
nth row of A, that is, A, = (@)« for every n. In addition, if x = (xx) € w then we define the
A-transform of x as the sequence Ax = (4,(x))52,, that is,

Ay®) =Y amxr (neN), M
k=0

provided the series on the right converges for each #n € N. For any two sequence spaces X
and Y, we denote by (X, Y) the class of all infinite matrices A that map X into Y. As is well
known the $-dual a subset X of w is defined by

XP = {a:(ak) e w:ax = (arxy) € cs for all x = (xz) GX}.

Thus A € (X, Y) if and only if A,, € X” for all # € N and Ax € Y for all x € X. An infinite
matrix T = (¢u) is said to be triangle if £,x = 0 for k > n and ¢,, # 0, n € Ny (where Ng =
{0,1,2,...}).

If X D ¢ is a BK-space and a = (a,x) € w, then we write

oo
2 ausk

k=0

, (2)

llallx = sup
xeSx

provided the expression on the right is defined and finite which is the case whenever a €
XA [17].

2 The Hausdorff measure of noncompactness

As is well known, one of the best methods in the characterization of compact operators
between the Banach spaces depends on applying the Hausdorff measure of noncompact-
ness. Therefore, many authors like Kara and Basarir in [18, 19], Basarir and Kara in [20,
21], Kara et al. in [22] and Alotaibi et al. in [23] characterized some classes of compact op-
erators on the spaces in their papers by using the Hausdorff measure of noncompactness.
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Let S and M be subsets of a metric space (X,d) and € > 0. We say that S is an €-net of M
if for every x € M there exists s € S such that d(x,s) < €. The e-net S of M is a finite e-net
if S is a finite set.

We denote by My the collection of all bounded subsets of a metric space (X,d). If Q €
My, we denote by x (Q) the Hausdorff measure of noncompactness of the set Q and define
it by

x(Q) = inf{e > 0: Q has a finite e-net in X}.

The function x : Mx — [0, 00) is called the Hausdorff measure of noncompactness [24].
We can find the basic properties of the Hausdorff measure of noncompactness in [25].

We give an estimate for the Hausdorff measure of noncompactness in Banach spaces
with a Schauder basis with the following theorem.

Theorem 2.1 ([25]) Let X be a Banach space with a Schauder basis (by)3y, Py: X — X
(n € N) be the projector onto the linear span of {by, by,...,b,} and Q € Mx. Then we have

):

where a =limsup,_, . |{ — P,|| and I denotes the identity operator on X.

l -limsup(supH (I-P,)(x) ||) < x(Q) < limsup <supH 04 —P,,)(x)|
a xeQ xeQ

Now, we show how to compute the Hausdorff measure of noncompactness in the spaces

cpand [, (1 <p<oo).

Theorem 2.2 ([26]) Let Q be a bounded subset of the normed space X and X is co
orl, (1 <p<oo)lIfP,: X — X (neN) is the operator defined by P,(x) = al =
(%0, %15...,%4,0,0,0,...) for all x = (x¢)32, € X, then

X(Q = lim (sup (= P)@)]]).
n— 00 x€Q

We have the following result concerning with the Hausdorff measure of noncompact-

ness in the matrix domain of triangles in normed sequence spaces.

Theorem 2.3 ([27]) Let X be a normed sequence space, T a triangle, and x and x denote
the Hausdor(f measure of noncompactness on My, and Mx. Then x1(Q) = x(T(Q)) for all
Q (S MXT .

Let X and Y be Banach spaces and L € B(X, Y). Then we denote by ||L||, the Hausdorff
measure of noncompactness of L and define it by

Ll = x (L(Sx)) = x (L(Bx)), 3)

where Sy = {x € X : ||x|| = 1} is the unit sphere and By = {x € X : ||x|| <1} is the unit ball in
X, and

L is compact if and only if |[L||, =0 [27]. (4)
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3 The sequence spaces X(r, s, t; A) for X € {l, ¢, co,Ip} (1 < p < 00)
In this subsection we first introduce the generalized means that given by Mursaleen and
Noman in [15].

We first define the sets U and Uy as follows:

Uz{u:(un);ﬁoew:un#o\?’n},
Uoz{uz(u,,)flioew:uo 7!0}.

Letr=(r,) € U,t=(t,) € U,and s = (s,) € Uy. For any sequence x = (x,,) € w, we define the

sequence ¥y = (y,) of generalized means of x by:
1 n
In=— sustixi (n€No). 5)
" k=0

Further, we define the infinite matrix A(r,s, t) of generalized means by

Su-ktk/tn, 0 <k<mn,
A(r,s, t =
( ( )nk) 0, k>n
for all #, k € N. By using the notation (1) and (3), we see that y is the A(r, s, t)-transform of
x, that is, y = (A(r,s, £))x for all x € w. Let Dg) = % and

S1 So 0 0 s 0

S S1 So 0 cee 0
1

(s) _ _
Dn Sy[+1 (I’l = 1,2,3,...),

0

Sn-1 Sp-2 Sn-3 Sn-4 - S0

Sn Sp-1 Sp-2  Su-3 - $1

so the inverse of A(r, s, £) is the triangle B = (b,)ux, which is defined by

o
bt = i (-1 =k, 0<k<n,
nK — n

0, k> n.

We now ready to introduce the sequence space X(7,s,£; A) where X € {lw,c¢,¢o} as the

matrix domain of triangle A(r, s, £; A) as follows:

1 n
X(r,s,t;A) = Ix =(x,) EwW: (— E sn_ktkAxk> € X},
Iy
k=0 n

which is a combination of the generalized means and the difference operator A(Axy = x; —
xk-1,%_1 = 0) and by using notation (1) we have X(r,s,t; A) = Xu(rs;,a) Where A(r, s, A) =
A(r,s,t) - A. It is clear that if X is a sequence space, then X(r,s,t; A) is a sequence
space too and we call that the difference sequence space derived by using generalized

means.
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Lemma 3.1 ([14]) The sequence spaces X (r,s, t; A) where X € {l,c,co} are BK-spaces with
the norm given by

11 x(r,s,50) = SUP
n

1 n
— an—ktkAxk
n o

= sup|(A(r,s, L A)x)n|

and so they are linearly isomorphic to the spaces X € {l«, ¢, co}, respectively.
We mention the following basic lemmas, which will be used in proving our results.

Lemma 3.2 Let X be a BK-space with AK or X = los and AX = X(r,s,t; A). Ifa=(ax) €
(AX)B, then a = (ax) € XP and we have

oo oo
D axie= @
k=0 k=0

(6)
which holds for every x = (xx) € X(r,s,t; A) with y = A(r, s, t) Ax where
n n-j D(S)
g = Z Z(_nk - ’j air; (keN). (7)
j=0 k=0 ke
Proof It is immediate by the same technique as ([11], Theorem 4.5). O
Lemma 3.3 Let X be a BK-space with AK property or X = lo, and AX = X(r,s,t; A). Then
we have

iy = lall g

forall a = (ay) € (AX)P, where a = (ay) is the sequence defined by (7).

Proof Leta = (a;) € (AX)?. By applying Lemma 3.2 we have a = (@) € X? and equality (6)

holds for all sequences x = (x;) € AX and y = (yx) € X. Further, it follows by the equality
in Lemma 3.1 that x € S5 if and only if y € Sx. So, we derive from (2) and (6) that

o0
:E::lelﬁxk

k=0

>

k=0

* p—
lallig = sup

xeSﬁ

= sup
yESX

= llallxs.

This completes the proof. O

Throughout this paper we assume A = (a,x) is an infinite matrix and A = (@) is the
associated matrix which is defined by

n

n—j (s)
- D
k=Y Y (—l)k;"janm (mkeN), (8)
j=0 k=0 *
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and provided the series on the right converge for all #,k € N. Then we have the follow-

ing.

Lemma 3.4 Let X be a BK-space with AK property or X = lo, and AX = X(r,s,5A), Y
be any sequence space and A = (a,y) be an infinite matrix. If A € (AX,Y), then A € (X,Y)
such that Ax = zzly for all x € X and connected sequence y = A(r, s, t) - Ax, where A = (@) is
the associated matrix defined by (8).

Proof Let x € AX and y € Y be connected by equation (5) and A € (AX, Y). By applying
Lemma 3.3, we have A, € X for all # € N and the equality Ax = Ay holds, hence Ay e Y.
Because every y € Y is the associated sequence of some x € AX, we conclude that Ae
(X, Y). This completes the proof. O

Theorem 3.1 Let AX = X(r,s,t; A) where X be a BK-space with AK or X = I, A = (@)
is an infinite matrix and A = (@,) is the associated matrix. If A is in any of the classes
(AX, ), (AX,c), or (AX, cy), then we have

ILall = 1Al &% 1) = sup [ Anlx < 00
n

Proof By using Lemma 3.1 we know that the spaces AX and X are linearly isomorphic.

Now by combining ([16], Remark 1.2(a)), and Lemma 3.3 the proof is complete. |

Theorem 3.2 Let X be a BK-space with AK or X = lo, and AX = X(r,s,t; A). If A is in
(AX, 1), then

Al axn) < ILall < 4 - Al ax )

where

*

< OoQ.
X

2 A

neN

||A||(ﬂ,11) = sup

NeF

Proof By using Lemma 3.1 we know the spaces AX and X are linearly isomorphic. Now

by combining ([16], Remark 1.2(b)) and Lemma 3.3 the proof is complete. |
Theorem 3.3 Let Al = i(r,s,t; A) and 1 < p < 00. If A € (AL, lp), then
1
o0 r
ILall = 1Al a7, = sgp(Z |2¢nk|f’> < o0,
n=0

Proof By using [14] and [11] we deduce A € (Al l,) if and only if the expression on the
right of (8) converges and

(o]
sup(z Iénk|p> <00
k

n=0
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and
sup( max |a k|) <oo (VmeN),
0<k<m
where
e, DY
“ka = Z(—l)k p k. ayr; (0<k<m,meN). .
j=0 k=0 ke+j

By using Theorem 3.2, we immediate obtain the following result.

Corollary 3.1 Let Alp =L(rs,t; A)(1<p<oo)and A € (Al l1). Then we have

< ILall <4 1AIGZ.

>‘1 (reN).

Proof Let X =1, in Theorem 3.2. O

AN

where

(r)
A& = (}:

k=0

2k

neN

Now, as a consequence of Corollary 3.1 we have the following lemma.
Lemma 3.5 Let Al = [(r,s,t; A) and 1 <p<oo.IfA € (lp,A_ll), then

(r) (r)
I 5 < ILall < 4- 141 o,

where

1

)q (reN),

Proof Because the sequence spaces A/; and /; are norm-isomorphic,

Dk

neN

(r) _
Al 55 = mm(}j

k=0

and ay is defined by (8).

Ae(ly, Ah) = Ae(lyh).

Now this is a special case of ([16], Remark 1.2(b)) when X = [,.
This completes the proof. O

4 Compact operators on the spaces X(r,s, t; A) for X € {l.., ¢, co, Ip} (1 < p < o0)

In this section, we apply our results to obtaining some identities or estimates for the Haus-
dorff measure of noncompactness of certain matrix operators on the spaces X(r,s,t; A)
(where X € {lw,c,co, Ly} (1 < p < 00)). Also, we consider the necessary and sufficient con-
ditions for such operators to be compact.
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Lemma 4.1 ([28]) Let X D ¢ be a BK-space. Then we have:
(@) IfA € (X,lx), then

0 <|lLall, <limsupl|lA,ll}.
n—00

(b) IfA € (X, co), then

ILally = limsup||Ayll.
n—oo

(c) IfX has AK or X = loo and A € (X, ¢), then

1 . .
5 -limsup |4, — |y < [[Lall, <limsup|lA, — k.
2 n— 00 n— 00

where a = (o) with o = 1im,,_, o ayk for all k € N.
Now, by combining Lemmas 3.3, 3.4, and 4.1 we have the next result.

Theorem 4.1 Let X be a BK-space with AK or X = lo, and AX = X(r,s,t; A). Then we
have:
(a) IfA € (AX,ly), then

0 < ||Lally < hmsup(Z |An|), ©)
Hn—0oQ n
and
L, is compact if lim (Z |A,,|) =0. (10)
n—0o0

n

(b) IfA € (AX,cp), then

Lall, = 1imsup(2 |An|), (11)

n—oo
n

and
Ly is compact if and only if lim (Z |An|> =0. (12)
n—0o0
(c) IfA € (AX,c), then

1 ~ -
5 ~1imsup(; A, —&|> <ILall, < liﬁsogp@j A, —64) (13)

n—00

and
Ly is compact if and only if 1im (Z |An — &|) =0, (14)
n—00

where & = (0x) with & = limy_, oo duk for all k € N.
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Proof 1t is clear that (10), (12), and (14) are, respectively, obtained from (9), (11), and (13)
by using (4). So, to prove (9), (11), and (13) we have the following.
Because AX is a BK-space, hence by combining Lemma 3.3 and parts (a) and (b) of
Lemma 4.1 we obtain (9) and (11).
To prove (13), if A € (AX,c), then by Lemma 3.4 we have A e (X,¢). So, by part (c) of
Lemma 4.1 we have
% : h;gscgp(; A, - 64) <Lzl < h}gsg(? A, —&|), (15)

where & = (@) and @ = lim,,_, o, @, for all k € N. Now, we write S = Sx and AS = S for
short. Then we obtain by (3) and ([16], Remark 1.2(c))

ILall, = x (La(AS)) = x(AAS) (16)
and
IL;1l, = x (L5(9)) = x (AS). 17)

Also, by using the equality in Lemma 3.1 we have x € AS if and only if y € S, and since
Ax = Ay by Lemma 3.4, we derive that AAS = AS. This result together (16) and (17) leads
to ILall, = IL51l,. So, we get (13) from (15). This completes the proof. O

The following example will show that it is possible for L4 in (10) to be compact but
lim, (3", 1A4,)) # 0. Hence, in general, we have just ‘if” in (10) of Theorem 4.1(a).

Example 4.1 Let AX = X(r,s,t; A) where X € {lo, ¢, ¢o}. Then let for n = 1 the sequence
s =(sy) =0 and for every n #1, s = (s,,) = 1. Also, let the sequences r = (r,) =1, t = (¢,) = 1
are constant. Define the matrix A = (a,4) by

Then, for every x = (x,) € AX, we have Ax = [%xoe(o) + %xle(l) + %xze(z)]. So A e
(AX, o). It is clear that Ly is of finite rank so is compact. By using (8) we obtain
A, =1, for all n € N. Thus, we have that > |A,| =1 for all n € N, which implies that
lim, 00 Y, 14,1 =1 #0.

Let F, (r € N) be the subcollection of F consisting of all nonempty and finite subsets of
N with elements that are greater than r, that is,

F,={NeF:n>rforalne N} (reN).

Lemma 4.2 ([11]) Let X D ¢ be a BK-space. If A € (X, 1,), then

) )

neN

*

Ap

)5 IZally 54-r1§§o(sup >

lim (sup
=0 \NeF, X NeFrll, 2N
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By using Lemma 4.2, we have the next result.

Theorem 4.2 Let X be a BK-space with AK and AX = X(r,s,t; A). IfA € (AX, 1), then

: (r) : (r)
Tim A, < ILall, <4+ lim JAI0, (18)
where
(r) s
IAIZ = sup A (reN)
VRN HEZN " ¥
and
Ly is compact if and only if lim ||A||(1 =0. (19)
r—00 (AX,h)

Proof By combining Lemma 3.3 and Lemma 4.2 we obtain (18). By using (4), we get (19)
from (18). O

By using the previous results we have the next result.

Theorem 4.3 Let Aly = l(r,s,t; A) and 1 < p < co. IfA e (AlL,1,), then

= ;
ILall, = lim (sl;p(z |Zznk|f’) ) (20)

n=r

and
1
o r
Ly is compact if and only if lim (sup (Z |Zznk|l’> ) =0. (21)
r—00 k —
Proof It can be similarly proved by the same technique as Theorem 3.9 in [15]. O

In the following example we show that there exist matrix operators in the class B(Al}, 1,)
which are not compact (1 < p < 00), that is, the limit in (20) may not be zero.

Example 4.2 Let A = (a,) be the infinite matrix defined by

Su—ktkltn, 0=<k<1,
Apk =
0, k>2,

where s =(s,) =1if n=0and s=(s,) =0 for every n #0 and r = (r,) =1 =t = (¢,). Then
A € (AL}, I) because Al is the matrix domain of A in /; and hence A € (AL, l) (1 <p<o0).
Further, it is easy to show that the associated matrix A is the identity matrix, that is, &, = 1
and g, = 0 for k # n (n € N). Now, let r € N be given. Then we have, for every k € N,

o0
. 1, k=,
Z|ank|p:
0, k<r.



Abyar and Ghaemi Journal of Inequalities and Applications (2016) 2016:266 Page 11 of 17

This implies that

o0 ’
sup(Zmnm) =1 (reN),
k n=r

which shows that by (20) that ||L4||, =1 # 0 and hence L, is not compact.

By using Lemmas 3.5 and 4.2 we have the following result on the Hausdorff measure of
noncompactness.

Corollary 4.1 Let Al = h(r,s,t; A)and1<p<oo.IfA e (lp,A_ll), then

(r) ()
AN oy < ILall, <4+ WA o (22)

where

o0 @
(r) - a9
1411, a7 = sup (Z i ) (reN)
n=r
and

Ly is compact if and only if lim ||A||(r> — =0. (23)
r—00 (p,Al)

Proof We know the spaces /; and Al; are norm-isomorphic. So, the proof is complete by

Lemmas 3.5 and 4.2. O

5 Some applications

In this section, by applying our results in the previous sections we consider some relations
between the spaces of generalized means and difference sequence spaces derived by using
the generalized means and we characterize some classes of compact operators between
these new difference sequence spaces and some other BK-spaces. Also, we derive some
identities and estimates for the operator norms and the Hausdorff measure of noncom-
pactness on these spaces.

Throughout, X(7,s,£) is the sequence space of the generalized means and for more de-
tails we refer the reader to [11]; further, for an arbitrary BK-space X, we put X = X(r, s, t),
and AX = X(r,s,£; A).

The first result is a consequence of Theorem 3.1 and Theorem 4.1.

Corollary 5.1 Let X be a BK-space with AK or X = l. Then:
If A is in any of the classes (AX, 1), (AX,?), or (AX,Co) then

IZall = 1Al &z ) = Sup 1Akl < 00,
n
where A,, = (ayux) is the associated matrix defined by

dnc =Y (1) DO riaylty (nkeN). (24)
j=k
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Further:
(a) IfA € (AX,ly), then

0 <|lLall, <limsupl|A,|}
n—oQ0

and

Ly is compact if lim ||A,|% = 0.
n— 00
(b) IfA € (AX,¢), then

1 . S . -
—-limsup |4, — &} < [Lall, <limsup |A, —allx
2 n—00 n—00

and

Ly is compact if and only if lim ||A, —&|% =0,
n—0oo

where & = (0x) with & = 1imy,_, o0 dux for all k € N.
(c) IfA € (AX, ), then

ILally = limsup |A,x
n—00

and

Ly is compact if and only if lim A, % =0.
n— 00

Page 12 of 17

Proof We know that the spaces L, ¢, ¢y and Iy, ¢, ¢y are norm-isomorphic, respectively.

Now by Theorems 3.1 and 4.1 the proof is completed.
The next result is a consequence of Theorem 3.2 and Theorem 4.2.

Corollary 5.2 Let X be a BK-space with AK or X = l,. IfA € (AX, 1), then
lAllgxm < ILall <4+ 141 sxm,

where

*

<00,
X

>4

neN

IIA] (AxI;) = Sup

NeF

and A, = () is similarly defined by (24).
Further:
IfA € (AX, 1), then

® ")
”A”(H,E) < ”LA”X < 4 - ”A”(ﬁﬂ)’

O
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where

<OO

AX 11 NeF,

and

Ly is compact if and only lf lim “A”(sz =0.

Proof We know that the spaces /; and /; are norm-isomorphic. Now by Theorems 3.2
and 4.2 the proof is complete. d

Now we have a special case of Theorem 3.3 in [28] in the new spaces AX where X

{loo,c 0}

Corollary 5.3 Let X be a BK-space with AK or X = I, and Y denote any of the spaces lo,,
¢, or ¢g we and let A be an infinite matrix. Then:
IfA € (Y, AX) then we have

IZall = 1Al v 57) = sup(Z |ank|> <00,

k=0

where A, = (Gy) is the associated matrix defined by (8).
Further:
(a) IfA e (o) Alg), then

[o¢]
0<|Lally < nmsup(DZznu)

n—00 k=0

and
o0
Ly is compact LfnlgglO (Z |ﬂnk|) =0
k=0
) IfA € (c, Aly), then

1
5 hmsup(Z |ank—ak|) < |ILally <hmsup<2|ank—ak|>

n—00 n—00
k=0

and
o0
Ly is compact if and only if lim (Z |Gk — &k|> =0,
k=0

where & = (0x) with & = 1imy,_, oo duk for all k € N.
(c) IfA € (c, Alo), then

1Ll = lim sup (Z |5znk|>

n—00 k=0

Page 13 of 17
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and

o0
Ly is compact if and only if lim (Z |Zlnk|> =
n—00

k=0

The spaces bs, c¢s, and csy are BK-spaces with the same norm given by ||x|ps =
sup,, | Y_r_o %«|. Now, by using Theorems 3.1, 4.1 and 3.2, 4.2 we derive the next conse-

quence.

Corollary 5.4 Let X D ¢ be a BK-space and A an infinite matrix. If A is in any of the
classes (AX, csg), (AX, cs), or (AX, bs), then

||LA||—sup||A||(AXb) 3 (25)
where
Y —sup(Z Zm) (neN).
"\ k=0 |m=0

Furthermore, we have:
() IfA € (AX,cso), then

Ll =limsup ANy (26)
and
Ly is compact if and only lf hm ||A|| AX s =0. (27)
(b) IfA € (AX, bs), then
0 < Lally < limsup A1y, (28)
and
Lyis compactzf hm ||A|| AXb =0. (29)
(¢) If X has AK and A € (AX, cs), then
L T~
5 - limsup A&, < ILall, <limsupllA - &2, (30)
where & = (@) with &y = 1imy,—, o Ay for all k € N and
Ly is compact if and only zf hm hm sup |A-& ”(AX bs) =0. (31)

Proof The proof is quite similar to Corollary 5.1 in [16] for the new spaces AX where
X e {ly,ccol. O
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We denote the space of all sequences of bounded variation by bv and define
by = {x = (xk) cw: (xk —xk,l) (S] ll}.

So, the space bv is a BK-space with

oo
ol =Y ok = xxal.
k=0

Now, we have the following result.
Corollary 5.5 Let X D ¢ be a BK-space. If A € (AX, bv), then
Al zx s < ILall =4 - |1All &% pv)

where

IAll &% pv) = SUP (Z

NeF neN

> (A - Ak

k=0

)=

Furthermore:
IfA e (AX, bv), then

AN, < ILall, <4 A

(AX,bv) (AX,bv)’

where

AN, = sup
(AX,bv) NeE Z

" \neN

D (A —Ar)

k=0

><oo (reN)

and
L, is compact if and only zf 11m ”A”(AX b) =0.
Proof We proceed by Theorem 4.4 in [28] and Theorem 4.2. O
We denote bu” for the space of all sequences of p-bounded variation and define it by

b = {x: (xx) € w: (e —xp1) € lp} (1< p<o00).

bu? is a BK-space with its natural norm (cf. [17]). For every a = (ax) € (bv?)?, we have

x
) : (32)

Corollary 5.6 Let X denote any of the spaces ls, or co, and let A be an infinite matrix,
l<p<oo,and q=pl(p-1).IfA € (bv?, AX), then

o0
2%

=k

[e¢]
lally,» = (Z

k=0

1

) (reN).

Z Anj

j=k

ILall = AN 2 sup(Z

k=0
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Further:
(a) IfA € (bv?, Aly,), then

0 <|Lally < lim |A]"
r— 00

(bvP, Alo)
and
. . . (r) _
Ly is compact Lfrlirgo ”A”(bup,m) =0.
(b) IfA € (bv?, Acy), then
ILally = lim A"
L S (b, Alo)
and
) . P )
Ly is compact if and only if rlg(r)lo ”A”(;;URM) =0.

Proof The proof is a special case of ([28], Theorem 3.3) when X = bv?. Then this com-
pletes the proof Lemma 3.1. d
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