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tions for such operators to be compact and we consider some matrix mappings between
the spaces of the generalized means (these have been de�ned in [��]) and di�erence se-
quence spaces derived by using the generalized means. Finally, as applications we charac-
terize some classes of compact operators between these new di�erence sequence spaces
and some other BK-spaces.
In this section, we give some related de�nitions and preliminary results.
We shall write w for the set of all complex sequences x = (xk)∞k=�. Any vector subspace

of w is called a sequence space. Let l∞, c, and c� denote the sets of all bounded, con-
vergent and null sequences, respectively, and lp = {x ∈ w :

∑∞
k=� |xk|p < ∞, � ≤ p < ∞}.

For an in�nite matrix A and a sequence space X, the matrix domain of A is de�ned by
XA = {x ∈ w : Ax ∈ X}. By e and en (n ∈ N), we denote the sequences such that ek = �
for k = �, �, . . . and e(n)n = � and en

k = � (k �= n). Let bs and csbe the sequence spaces of
all bounded and convergent series, respectively. A sequence (bn) in a normed linear space
(X,‖·‖) is called a Schauder basis forX if for every x ∈ X, there is a unique sequence (δn)∞n=�
of scalars such that x =

∑∞
n=� δnbn. For de�nitions of K-space, FK-space, BK-space and

AK -property we refer the reader to [��].
Throughout, the matrices are in�nite matrices of complex number. Let A = (ank)n,k be

an in�nite matrix with real or complex entries ank. We write An as the sequence of the
nth row of A, that is, An = (ank)k for every n. In addition, if x = (xk) ∈ w then we de�ne the
A-transform of x as the sequence Ax = (An(x))∞n=�, that is,

An(x) =
∞∑

k=�

ankxk (n ∈N), (�)

provided the series on the right converges for each n ∈N. For any two sequence spaces X
and Y, we denote by (X,Y) the class of all in�nite matrices A that map X into Y. As is well
known the β-dual a subset X of w is de�ned by

Xβ =
{
a = (ak) ∈ w : ax= (akxk) ∈ csfor all x = (xk) ∈ X

}
.

Thus A ∈ (X,Y) if and only if An ∈ Xβ for all n ∈ N and Ax ∈ Y for all x ∈ X. An in�nite
matrix T = (tnk) is said to be triangle if tnk = � for k > n and tnn �= �, n ∈ N� (where N� =
{�, �, �, . . .}).
If X ⊃ φ is a BK-space and a = (ank) ∈ w, then we write

‖a‖∗
X = sup

x∈SX

∣
∣
∣
∣
∣

∞∑

k=�

akxk

∣
∣
∣
∣
∣
, (�)

provided the expression on the right is de�ned and �nite which is the case whenever a ∈
Xβ [�	].

2 The Hausdorff measure of noncompactness
As is well known, one of the best methods in the characterization of compact operators
between the Banach spaces depends on applying the Hausdor� measure of noncompact-
ness. Therefore, many authors like Kara and Basarir in [�
, ��], Basarir and Kara in [��,
��], Kara et al. in [��] and Alotaibi et al. in [��] characterized some classes of compact op-
erators on the spaces in their papers by using the Hausdor� measure of noncompactness.
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Let Sand M be subsets of a metric space (X,d) and ε > �. We say that Sis an ε-net of M

if for every x ∈ M there exists s∈ Ssuch that d(x,s) < ε. The ε-net Sof M is a �nite ε-net
if S is a �nite set.
We denote by MX the collection of all bounded subsets of a metric space (X,d). If Q ∈

MX , we denote by χ (Q) the Hausdor�measure of noncompactness of the set Q and de�ne
it by

χ (Q) = inf{ε > � : Q has a �nite ε-net in X}.

The function χ : MX → [�,∞) is called the Hausdor� measure of noncompactness [��].
We can �nd the basic properties of the Hausdor� measure of noncompactness in [��].
We give an estimate for the Hausdor� measure of noncompactness in Banach spaces

with a Schauder basis with the following theorem.

Theorem . ([��]) Let X be a Banach space with a Schauder basis(bk)∞k=�, Pn : X → X

(n ∈N) be the projector onto the linear span of{b�,b�, . . . ,bn} and Q∈ MX . Then we have

�
a

· lim sup
(

sup
x∈Q

∥
∥(I � Pn)(x)

∥
∥
)

≤ χ (Q)≤ lim sup
(

sup
x∈Q

∥
∥(I �Pn)(x)

∥
∥
)
,

where a= lim supn→∞ ‖I �Pn‖ and I denotes the identity operator on X.

Now, we show how to compute the Hausdor�measure of noncompactness in the spaces
c� and lp (� ≤ p < ∞).

Theorem . ([��]) Let Q be a bounded subset of the normed space X and X is c�

or lp (� ≤ p < ∞). If Pn : X → X (n ∈ N) is the operator de“ned by Pn(x) = x[n] =
(x�,x�, . . . ,xn, �, �, �, . . .) for all x = (xk)∞k=� ∈ X, then

χ (Q) = lim
n→∞

(
sup
x∈Q

∥
∥(I � Pn)(x)

∥
∥
)
.

We have the following result concerning with the Hausdor� measure of noncompact-
ness in the matrix domain of triangles in normed sequence spaces.

Theorem . ([�	]) Let X be a normed sequence space, T a triangle, and χT and χ denote

the Hausdor� measure of noncompactness on MXT and MX . ThenχT (Q) = χ (T (Q)) for all

Q ∈ MXT .

Let X and Y be Banach spaces and L ∈ B(X,Y). Then we denote by ‖L‖χ the Hausdor�
measure of noncompactness of L and de�ne it by

‖L‖χ = χ
(
L(SX)

)
= χ

(
L(BX)

)
, (�)

where SX = {x ∈ X : ‖x‖ = �} is the unit sphere and BX = {x ∈ X : ‖x‖ ≤ �} is the unit ball in
X, and

L is compact if and only if ‖L‖χ = � [�	]. (�)
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3 The sequence spaces X(r, s, t;�) for X ∈ {l∞, c, c0, lp} (1 ≤ p < ∞)
In this subsection we �rst introduce the generalized means that given by Mursaleen and
Noman in [��].
We �rst de�ne the sets � and �� as follows:

� =
{
u = (un)∞n=� ∈ w : un �= � ∀n

}
,

�� =
{
u = (un)∞n=� ∈ w : u� �= �

}
.

Let r = (rn) ∈�, t = (tn) ∈�, and s= (sn) ∈��. For any sequence x = (xn) ∈ w, we de�ne the
sequence y= (yn) of generalized means of x by:

yn =
�
rn

n∑

k=�

sn�ktkxk (n ∈N�). (�)

Further, we de�ne the in�nite matrix A(r ,s, t) of generalized means by

(
A(r ,s, t)nk

)
=

{
sn�ktk/rn, � ≤ k ≤ n,
�, k > n

for all n,k ∈ N. By using the notation (�) and (�), we see that y is the A(r ,s, t)-transform of
x, that is, y= (A(r ,s, t))x for all x ∈ w. Let D(s)

� = �
s�
and

D(s)
n =

�
sn+�
�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

s� s� � � · · · �
s� s� s� � · · · �
...

...
...

... · · · ...
sn�� sn�� sn�� sn�� · · · s�
sn sn�� sn�� sn�� · · · s�

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(n = �, �, �, . . .),

so the inverse of A(r ,s, t) is the triangle B= (bnk)nk, which is de�ned by

bnk =

{
(��)n�k D(s)

n�k
tn

rk, � ≤ k ≤ n,
�, k > n.

We now ready to introduce the sequence space X(r ,s, t ;�) where X ∈ {l∞,c,c�} as the
matrix domain of triangle A(r ,s, t ;�) as follows:

X(r ,s, t ;�) =

{

x = (xn) ∈ w :

(
�
rn

n∑

k=�

sn�ktk�xk

)

n

∈ X

}

,

which is a combination of the generalizedmeans and the di�erence operator�(�xk = xk �
xk��,x�� = �) and by using notation (�) we have X(r ,s, t ;�) = XA(r ,s,t ;�) where A(r ,s, t ;�) =
A(r ,s, t) · �. It is clear that if X is a sequence space, then X(r ,s, t ;�) is a sequence
space too and we call that the di�erence sequence space derived by using generalized
means.
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Lemma . ([��]) The sequence spaces X(r ,s, t ;�)where X∈ {l∞,c,c�} are BK-spaces with
the norm given by

‖x‖X(r ,s,t ;�) = sup
n

∣
∣
∣
∣
∣

�
rn

n∑

k=�

sn�ktk�xk

∣
∣
∣
∣
∣

= sup
n

∣
∣
(
A(r ,s, t ;�)x

)
n

∣
∣

and so they are linearly isomorphic to the spaces X∈ {l∞,c,c�}, respectively.

We mention the following basic lemmas, which will be used in proving our results.

Lemma . Let X be a BK-space with AK or X= l∞ and �X = X(r ,s, t ;�). If a = (ak) ∈
(�X)β , then ã = (ãk) ∈ Xβ and we have

∞∑

k=�

akxk =
∞∑

k=�

ãkyk, (�)

which holds for every x= (xk) ∈ X(r ,s, t ;�) with y = A(r ,s, t)�x where

ãk =
n∑

j=�

n�j∑

k=�

(��)k
D(s)

k

tk+j
ajrj (k ∈N). (	)

Proof It is immediate by the same technique as ([��], Theorem �.�). �

Lemma . Let X be a BK-space with AK property or X= l∞ and �X = X(r ,s, t ;�). Then
we have

‖a‖∗
�X = ‖ã‖Xβ

for all a = (ak) ∈ (�X)β , whereã = (ãk) is the sequence de“ned by(	).

Proof Let a = (ak) ∈ (�X)β . By applying Lemma �.� we have ã = (ãk) ∈ Xβ and equality (�)
holds for all sequences x = (xk) ∈ �X and y = (yk) ∈ X. Further, it follows by the equality
in Lemma �.� that x ∈ S�X if and only if y ∈ SX . So, we derive from (�) and (�) that

‖a‖∗
�X = sup

x∈S
�X

∣
∣
∣
∣
∣

∞∑

k=�

ak�xk

∣
∣
∣
∣
∣

= sup
y∈SX

∣
∣
∣
∣
∣

∞∑

k=�

ãkyk

∣
∣
∣
∣
∣

= ‖ã‖Xβ .

This completes the proof. �

Throughout this paper we assume A = (ank) is an in�nite matrix and Ã = (ãnk) is the
associated matrix which is de�ned by

ãnk =
n∑

j=�

n�j∑

k=�

(��)k
D(s)

k

tk+j
anjrj (n,k ∈ N), (
)
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and provided the series on the right converge for all n,k ∈ N. Then we have the follow-
ing.

Lemma . Let X be a BK-space with AK property or X= l∞ and �X = X(r ,s, t ;�), Y

be any sequence space and A= (ank) be an in“nite matrix . If A ∈ (�X,Y), then Ã ∈ (X,Y)
such that Ax= Ãy for all x ∈ X and connected sequence y= A(r ,s, t) ·�x, whereÃ = (ãnk) is

the associated matrix de“ned by(
).

Proof Let x ∈ �X and y ∈ Y be connected by equation (�) and A ∈ (�X,Y). By applying
Lemma �.�, we have Ãn ∈ Xβ for all n ∈ N and the equality Ax = Ãy holds, hence Ãy ∈ Y.
Because every y ∈ Y is the associated sequence of some x ∈ �X, we conclude that Ã ∈
(X,Y). This completes the proof. �

Theorem . Let �X = X(r ,s, t ;�) where X be a BK-space with AK or X= l∞, A = (ank)
is an in“nite matrix and Ã = (ãnk) is the associated matrix. If A is in any of the classes

(�X, l∞), (�X,c), or (�X,c�), then we have

‖LA‖ = ‖A‖(�X,l∞) = sup
n

‖Ãn‖∗
X < ∞.

Proof By using Lemma �.� we know that the spaces �X and X are linearly isomorphic.
Now by combining ([��], Remark �.�(a)), and Lemma �.� the proof is complete. �

Theorem . Let X be a BK-space with AK or X= l∞ and �X = X(r ,s, t ;�). If A is in

(�X, l�), then

‖A‖(�X,l�) ≤ ‖LA‖ ≤ � · ‖A‖(�X,l�),

where

‖A‖(�X,l�) = sup
N∈F

∥
∥
∥
∥

∑

n∈N

Ãn

∥
∥
∥
∥

∗

X
< ∞.

Proof By using Lemma �.� we know the spaces �X and X are linearly isomorphic. Now
by combining ([��], Remark �.�(b)) and Lemma �.� the proof is complete. �

Theorem . Let�l� = l�(r ,s, t ;�) and � ≤ p < ∞. If A ∈ (�l�, lp), then

‖LA‖ = ‖A‖(�l�,lp) = sup
k

( ∞∑

n=�

|ãnk|p
) �

p

< ∞.

Proof By using [��] and [��] we deduce A ∈ (�l�, lp) if and only if the expression on the
right of (
) converges and

sup
k

( ∞∑

n=�

|ãnk|p
)

< ∞
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and

sup
k

(
max
�≤k≤m

∣
∣a(n)

mk

∣
∣
)
< ∞ (∀n ∈N),

where

a(n)
mk =

n∑

j=�

n�j∑

k=�

(��)k
D(s)

k

tk+j
anjrj (�≤ k ≤ m,m ∈N).

�

By using Theorem �.�, we immediate obtain the following result.

Corollary . Let�lp = lp(r ,s, t ;�) (�≤ p <∞) and A ∈ (�lp, l�). Then we have

‖A‖(r)
(�lp,l�)

≤ ‖LA‖ ≤ � · ‖A‖(r)
(�lp,l�)

,

where

‖A‖(r)
(�lp,l�)

= sup
N∈Fr

( ∞∑

k=�

∣
∣
∣
∣

∑

n∈N

ãnk

∣
∣
∣
∣

q
) �

q

(r ∈N).

Proof Let X = lp in Theorem �.�. �

Now, as a consequence of Corollary �.� we have the following lemma.

Lemma . Let�l� = l�(r ,s, t ;�) and � ≤ p <∞. If A ∈ (lp,�l�), then

‖A‖(r)
(lp,�l�)

≤ ‖LA‖ ≤ � · ‖A‖(r)
(lp,�l�)

,

where

‖A‖(r)
(lp,�l�)

= sup
N∈Fr

( ∞∑

k=�

∣
∣
∣
∣

∑

n∈N

ãnk

∣
∣
∣
∣

q
) �

q

(r ∈N),

and ãnk is de“ned by(
).

Proof Because the sequence spaces �l� and l� are norm-isomorphic,

A ∈ (lp,�l�) ∼= A ∈ (lp, l�).

Now this is a special case of ([��], Remark �.�(b)) when X = lp.
This completes the proof. �

4 Compact operators on the spaces X(r, s, t;�) for X ∈ {l∞, c, c0, lp} (1 ≤ p < ∞)
In this section, we apply our results to obtaining some identities or estimates for theHaus-
dor� measure of noncompactness of certain matrix operators on the spaces X(r ,s, t ;�)
(where X ∈ {l∞,c,c�, lp} (� ≤ p < ∞)). Also, we consider the necessary and su
cient con-
ditions for such operators to be compact.
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Lemma . ([�
]) Let X ⊃ φ be a BK-space. Then we have:
(a) If A ∈ (X, l∞), then

�≤ ‖LA‖χ ≤ lim sup
n→∞

‖An‖∗
X .

(b) If A ∈ (X,c�), then

‖LA‖χ = lim sup
n→∞

‖An‖∗
X .

(c) If X has AK or X = l∞ and A ∈ (X,c), then

�
�

· lim sup
n→∞

‖An � α‖∗
X ≤ ‖LA‖χ ≤ lim sup

n→∞
‖An � α‖∗

X ,

where α = (αk) with αk = limn→∞ ank for all k ∈N.

Now, by combining Lemmas �.�, �.�, and �.� we have the next result.

Theorem . Let X be a BK-space with AK or X= l∞ and �X = X(r ,s, t ;�). Then we
have:

(a) If A ∈ (�X, l∞), then

�≤ ‖LA‖χ ≤ lim sup
n→∞

(∑

n

|Ãn|
)

, (�)

and

LA is compact if lim
n→∞

(∑

n

|Ãn|
)

= �. (��)

(b) If A ∈ (�X,c�), then

‖LA‖χ = lim sup
n→∞

(∑

n

|Ãn|
)

, (��)

and

LA is compact if and only if lim
n→∞

(∑

n

|Ãn|
)

= �. (��)

(c) If A ∈ (�X,c), then

�
�

· lim sup
n→∞

(∑

n

|Ãn � α̃|
)

≤ ‖LA‖χ ≤ lim sup
n→∞

(∑

n

|Ãn � α̃|
)

(��)

and

LA is compact if and only if lim
n→∞

(∑

n

|Ãn � α̃|
)

= �, (��)

where α̃ = (α̃k) with α̃k = limn→∞ ãnk for all k ∈N.
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Proof It is clear that (��), (��), and (��) are, respectively, obtained from (�), (��), and (��)
by using (�). So, to prove (�), (��), and (��) we have the following.
Because �X is a BK-space, hence by combining Lemma �.� and parts (a) and (b) of

Lemma �.� we obtain (�) and (��).
To prove (��), if A ∈ (�X,c), then by Lemma �.� we have Ã ∈ (X,c). So, by part (c) of

Lemma �.� we have

�
�

· lim sup
n→∞

(∑

n

|Ãn � α̃|
)

≤ ‖LÃ‖χ ≤ lim sup
n→∞

(∑

n

|Ãn � α̃|
)

, (��)

where α̃ = (α̃k) and α̃k = limn→∞ ãnk for all k ∈ N. Now, we write S= SX and �S= S�X for
short. Then we obtain by (�) and ([��], Remark �.�(c))

‖LA‖χ = χ
(
LA(�S)

)
= χ (A�S) (��)

and

‖LÃ‖χ = χ
(
LÃ(S)

)
= χ (ÃS). (�	)

Also, by using the equality in Lemma �.� we have x ∈ �S if and only if y ∈ S, and since
Ax = Ãy by Lemma �.�, we derive that A�S= ÃS. This result together (��) and (�	) leads
to ‖LA‖χ = ‖LÃ‖χ . So, we get (��) from (��). This completes the proof. �

The following example will show that it is possible for LA in (��) to be compact but
limn→∞(

∑
n |Ãn|) �= �. Hence, in general, we have just �if � in (��) of Theorem �.�(a).

Example . Let �X = X(r ,s, t ;�) where X ∈ {l∞,c,c�}. Then let for n = � the sequence
s= (sn) = � and for every n �= �, s= (sn) = �. Also, let the sequences r = (rn) = �, t = (tn) = �
are constant. De�ne the matrix A = (ank) by

ank =

{
sn�ktk

rn
(� ≤ k ≤ �),

� (k ≥ �).

Then, for every x = (xn) ∈ �X, we have Ax = [ s�t�
r�

x�e(�) + s�t�
r�

x�e(�) + s�t�
r�

x�e(�)]. So A ∈
(�X, l∞). It is clear that LA is of �nite rank so is compact. By using (
) we obtain
Ãn = �, for all n ∈ N. Thus, we have that

∑
n |Ãn| = � for all n ∈ N, which implies that

limn→∞
∑

n |Ãn| = � �= �.

Let Fr (r ∈ N) be the subcollection of F consisting of all nonempty and �nite subsets of
N with elements that are greater than r , that is,

Fr = {N ∈ F : n > r for all n ∈ N} (r ∈N).

Lemma . ([��]) Let X ⊃ φ be a BK-space. If A ∈ (X, l�), then

lim
r→∞

(

sup
N∈Fr

∥
∥
∥
∥

∑

n∈N

An

∥
∥
∥
∥

∗

X

)

≤ ‖LA‖χ ≤ � · lim
r→∞

(

sup
N∈Fr

∥
∥
∥
∥

∑

n∈N

An

∥
∥
∥
∥

∗

X

)

.
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By using Lemma �.�, we have the next result.

Theorem . Let X be a BK-space with AK and�X = X(r ,s, t ;�). If A ∈ (�X, l�), then

lim
r→∞‖A‖(r)(�X,l�)

≤ ‖LA‖χ ≤ � · lim
r→∞‖A‖(r)(�X,l�)

, (�
)

where

‖A‖(r)(�X,l�)
= sup

N∈Fr

∥
∥
∥
∥

∑

n∈N

Ãn

∥
∥
∥
∥

∗

X
(r ∈N)

and

LA is compact if and only if lim
r→∞‖A‖(r)(�X,l�)

= �. (��)

Proof By combining Lemma �.� and Lemma �.� we obtain (�
). By using (�), we get (��)
from (�
). �

By using the previous results we have the next result.

Theorem . Let�l� = l�(r ,s, t ;�) and � ≤ p ≤ ∞. If A ∈ (�l�, lp), then

‖LA‖χ = lim
r→∞

(

sup
k

( ∞∑

n=r

|ãnk|p
) �

p
)

(��)

and

LA is compact if and only if lim
r→∞

(

sup
k

( ∞∑

n=r

|ãnk|p
) �

p
)

= �. (��)

Proof It can be similarly proved by the same technique as Theorem �.� in [��]. �

In the following example we show that there exist matrix operators in the class B(�l�, lp)
which are not compact (� ≤ p < ∞), that is, the limit in (��) may not be zero.

Example . Let A = (ank) be the in�nite matrix de�ned by

ank =

{
sn�ktk/rn, �≤ k ≤ �,
�, k > �,

where s= (sn) = � if n = � and s= (sn) = � for every n �= � and r = (rn) = � = t = (tn). Then
A ∈ (�l�, l�) because�l� is thematrix domain ofA in l� and henceA ∈ (�l�, lp) (� ≤ p < ∞).
Further, it is easy to show that the associatedmatrix Ã is the identity matrix, that is, ãnn = �
and ãnk = � for k �= n (n ∈N). Now, let r ∈N be given. Then we have, for every k ∈N,

∞∑

n=r

|ãnk|p =
{
�, k ≥ r ,
�, k < r .
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This implies that

sup
k

( ∞∑

n=r

|ãnk|p
) �

p

= � (r ∈N),

which shows that by (��) that ‖LA‖χ = � �= � and hence LA is not compact.

By using Lemmas �.� and �.� we have the following result on the Hausdor� measure of
noncompactness.

Corollary . Let�l� = l�(r ,s, t ;�) and � ≤ p ≤ ∞. If A ∈ (lp,�l�), then

‖A‖(r)
(lp,�l�)

≤ ‖LA‖χ ≤ � · ‖A‖(r)
(lp,�l�)

, (��)

where

‖A‖(r)
(lp,�l�)

= sup
k

( ∞∑

n=r

|ãnk|q
) �

q

(r ∈N)

and

LA is compact if and only if lim
r→∞‖A‖(r)

(lp,�l�)
= �. (��)

Proof We know the spaces l� and �l� are norm-isomorphic. So, the proof is complete by
Lemmas �.� and �.�. �

5 Some applications
In this section, by applying our results in the previous sections we consider some relations
between the spaces of generalized means and di�erence sequence spaces derived by using
the generalized means and we characterize some classes of compact operators between
these new di�erence sequence spaces and some other BK-spaces. Also, we derive some
identities and estimates for the operator norms and the Hausdor� measure of noncom-
pactness on these spaces.
Throughout, X(r ,s, t) is the sequence space of the generalized means and for more de-

tails we refer the reader to [��]; further, for an arbitrary BK-space X, we put X = X(r ,s, t),
and �X = X(r ,s, t ;�).
The �rst result is a consequence of Theorem �.� and Theorem �.�.

Corollary . Let X be a BK-space with AK or X= l∞. Then:
If A is in any of the classes(�X, l∞), (�X,c), or (�X,c�) then

‖LA‖ = ‖A‖(�X,l∞) = sup
n

‖Ãn‖∗
X < ∞,

whereÃn = (ãnk) is the associated matrix de“ned by

ãnk =
∞∑

j=k

(��)j�kD(s)
j�krkanj/tj (n,k ∈N). (��)
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Further:
(a) If A ∈ (�X, l∞), then

�≤ ‖LA‖χ ≤ lim sup
n→∞

‖Ãn‖∗
X

and

LA is compact if lim
n→∞‖Ãn‖∗

X = �.

(b) If A ∈ (�X,c), then

�
�

· lim sup
n→∞

‖Ãn � α̃‖∗
X ≤ ‖LA‖χ ≤ lim sup

n→∞
‖Ãn � α̃‖∗

X

and

LA is compact if and only if lim
n→∞‖Ãn � α̃‖∗

X = �,

where α̃ = (α̃k) with α̃k = limn→∞ ãnk for all k ∈N.
(c) If A ∈ (�X,c�), then

‖LA‖χ = lim sup
n→∞

‖Ãn‖∗
X

and

LA is compact if and only if lim
n→∞‖Ãn‖∗

X = �.

Proof We know that the spaces l∞, c, c� and l∞, c, c� are norm-isomorphic, respectively.
Now by Theorems �.� and �.� the proof is completed. �

The next result is a consequence of Theorem �.� and Theorem �.�.

Corollary . Let X be a BK-space with AK or X= l∞. If A ∈ (�X, l�), then

‖A‖(�X,l�) ≤ ‖LA‖ ≤ � · ‖A‖(�X,l�),

where

‖A‖(�X,l�) = sup
N∈F

∥
∥
∥
∥

∑

n∈N

Ãn

∥
∥
∥
∥

∗

X
< ∞,

and Ãn = (ãnk) is similarly de“ned by(��).
Further:
If A ∈ (�X, l�), then

‖A‖(r)
(�X,l�)

≤ ‖LA‖χ ≤ � · ‖A‖(r)
(�X,l�)

,



Abyar and Ghaemi Journal of Inequalities and Applications  (2016) 2016:266 Page 13 of 17

where

‖A‖(r)
(�X,l�)

= sup
N∈Fr

∥
∥
∥
∑

Ãn

∥
∥
∥

∗
X
< ∞

and

LA is compact if and only if lim
r→∞‖A‖(r)

(�X,l�)
= �.

Proof We know that the spaces l� and l� are norm-isomorphic. Now by Theorems �.�
and �.� the proof is complete. �

Now we have a special case of Theorem �.� in [�
] in the new spaces �X where X ∈
{l∞,c,c�}.

Corollary . Let X be a BK-space with AK or X= l∞ and Y denote any of the spacesl∞,
c, or c� we and let A be an in“nite matrix. Then:

If A ∈ (Y,�X) then we have

‖LA‖ = ‖A‖(Y,�l∞) = sup
n

( ∞∑

k=�

|ãnk|
)

<∞,

whereÃn = (ãnk) is the associated matrix de“ned by(
).
Further:
(a) If A ∈ (l∞,�l∞), then

�≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=�

|ãnk|
)

and

LA is compact if lim
n→∞

( ∞∑

k=�

|ãnk|
)

= �.

(b) If A ∈ (c,�l∞), then

�
�

· lim sup
n→∞

( ∞∑

k=�

|ãnk � α̃k|
)

≤ ‖LA‖χ ≤ lim sup
n→∞

( ∞∑

k=�

|ãnk � α̃k|
)

and

LA is compact if and only if lim
n→∞

( ∞∑

k=�

|ãnk � α̃k|
)

= �,

where α̃ = (α̃k) with α̃k = limn→∞ ãnk for all k ∈N.
(c) If A ∈ (c,�l∞), then

‖LA‖χ = lim sup
n→∞

( ∞∑

k=�

|ãnk|
)
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and

LA is compact if and only if lim
n→∞

( ∞∑

k=�

|ãnk|
)

= �.

The spaces bs, cs, and cs� are BK-spaces with the same norm given by ‖x‖bs =
supn |∑n

k=� xk|. Now, by using Theorems �.�, �.� and �.�, �.� we derive the next conse-
quence.

Corollary . Let X ⊃ φ be a BK-space and A an in“nite matrix. If A is in any of the
classes(�X,cs�), (�X,cs), or (�X,bs), then

‖LA‖ = sup
n

‖Ã‖(n)(�X,bs) < ∞, (��)

where

‖Ã‖(n)(�X,bs) = sup
n

( ∞∑

k=�

∣
∣
∣
∣
∣

n∑

m=�

ãmk

∣
∣
∣
∣
∣

)

(n ∈N).

Furthermore, we have:
(a) If A ∈ (�X,cs�), then

‖LA‖χ = lim sup
n→∞

‖Ã‖(n)(�X,bs) (��)

and

LA is compact if and only if lim
n→∞‖Ã‖(n)(�X,bs) = �. (�	)

(b) If A ∈ (�X,bs), then

�≤ ‖LA‖χ ≤ lim sup
n→∞

‖Ã‖(n)(�X,bs) (�
)

and

LA is compact if lim
n→∞‖Ã‖(n)(�X,bs) = �. (��)

(c) If X has AK and A ∈ (�X,cs), then

�
�

· lim sup
n→∞

‖Ã � α̃‖(n)(�X,bs) ≤ ‖LA‖χ ≤ lim sup
n→∞

‖Ã � α̃‖(n)(�X,bs), (��)

where α̃ = (α̃k) with α̃k = limm→∞ ãmk for all k ∈N and

LA is compact if and only if lim
n→∞ lim sup

n→∞
‖Ã � α̃‖(n)(�X,bs) = �. (��)

Proof The proof is quite similar to Corollary �.� in [��] for the new spaces �X where
X ∈ {l∞,c,c�}. �
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We denote the space of all sequences of bounded variation by bν and de�ne

bν =
{
x = (xk) ∈ w : (xk � xk��) ∈ l�

}
.

So, the space bν is a BK-space with

‖x‖bν =
∞∑

k=�

|xk � xk��|.

Now, we have the following result.

Corollary . Let X ⊃ φ be a BK-space. If A ∈ (�X,bν), then

‖A‖(�X,bν) ≤ ‖LA‖ ≤ � · ‖A‖(�X,bν),

where

‖A‖(�X,bν) = sup
N∈F

(
∑

n∈N

∣
∣
∣
∣
∣

n∑

k=�

(Ãk � Ãk��)

∣
∣
∣
∣
∣

)

< ∞.

Furthermore:
If A ∈ (�X,bν), then

‖A‖(r)(�X,bν) ≤ ‖LA‖χ ≤ � · ‖A‖(r)(�X,bν),

where

‖A‖(r)(�X,bν) = sup
N∈Fr

(
∑

n∈N

∣
∣
∣
∣
∣

n∑

k=�

(Ãk � Ãk��)

∣
∣
∣
∣
∣

)

< ∞ (r ∈N)

and

LA is compact if and only if lim
r→∞‖A‖(r)(�X,bν) = �.

Proof We proceed by Theorem �.� in [�
] and Theorem �.�. �

We denote bυp for the space of all sequences of p-bounded variation and de�ne it by

bυp =
{
x = (xk) ∈ w : (xk � xk��) ∈ lp

}
(� < p <∞).

bυp is a BK-space with its natural norm (cf.[�	]). For every a = (ak) ∈ (bυp)β , we have

‖a‖∗
bυp =

( ∞∑

k=�

∣
∣
∣
∣
∣

∞∑

j=k

aj

∣
∣
∣
∣
∣

q) �
q

. (��)

Corollary . Let X denote any of the spaces l∞ or c�, and let A be an in“nite matrix ,
� < p < ∞, and q= p/(p� �). If A ∈ (bυp,�X), then

‖LA‖ = ‖A‖(r)
(bυp,�l∞)

= sup
n>r

( ∞∑

k=�

∣
∣
∣
∣
∣

∞∑

j=k

ãnj

∣
∣
∣
∣
∣

q) �
q

(r ∈N).
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Further:
(a) If A ∈ (bυp,�l∞), then

�≤ ‖LA‖χ ≤ lim
r→∞‖A‖(r)

(bυp,�l∞)

and

LA is compact if lim
r→∞‖A‖(r)

(bυp,�l∞)
= �.

(b) If A ∈ (bυp,�c�), then

‖LA‖χ = lim
r→∞‖A‖(r)

(bυp,�l∞)

and

LA is compact if and only if lim
r→∞‖A‖(r)

(bυp,�l∞)
= �.

Proof The proof is a special case of ([�
], Theorem �.�) when X = bυp. Then this com-
pletes the proof Lemma �.�. �
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