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Abstract
The main goal of the paper is to establish the boundedness of the fractional type
Marcinkiewicz integralMβ ,ρ ,q on non-homogeneous metric measure space which
includes the upper doubling and the geometrically doubling conditions. Under the
assumption that the kernel satisfies a certain Hörmander-type condition, the authors
prove thatMβ ,ρ ,q is bounded from Lebesgue space L1(μ) into the weak Lebesgue
space L1,∞(μ), from the Lebesgue space L∞(μ) into the space RBLO(μ), and from the
atomic Hardy space H1(μ) into the Lebesgue space L1(μ). Moreover, the authors also
get a corollary, that is,Mβ ,ρ ,q is bounded on Lp(μ) with 1 < p <∞.
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1 Introduction
In , Hytönen in [] first introduced a new class of metric measure spaces which sat-
isfy the so-called upper doubling and the geometrically doubling conditions (see also Def-
initions . and . below, respectively), for convenience, the new spaces are called non-
homogeneous metric measure spaces. As special cases, the new spaces not only contain
the homogeneous type spaces (see []), but also they include metric spaces endowed with
measures satisfying the polynomial growth condition (see, for example, [–]). Further,
it is meaningful to pay much attention to a study of the properties of some classical op-
erators, commutators, and function spaces on non-homogeneous metric measure spaces;
see [–]. In addition, we know that the harmonic analysis has important applications
in many fields including geometrical analysis, functional analysis, partial differential equa-
tions, and fuzzy fractional differential equations, we refer the reader to [–] and the
references therein.

In the present paper, let (X , d,μ) be a non-homogeneous metric measure space in the
sense of Hytönen []. In , Hu et al. [] obtained the boundedness of the Marcinkiewicz
with non-doubling measure. Besides, Lin and Yang [] established some equivalent
boundedness of Marcinkiewicz integral on (X , d,μ). Inspired by this, we will mainly con-
sider the boundedness of the fractional type Marcinkiewicz integrals introduced in []
on (X , d,μ).

© 2016 Lu and Tao. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1203-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1203-0&domain=pdf
mailto:taosp@nwnu.edu.cn


Lu and Tao Journal of Inequalities and Applications  (2016) 2016:259 Page 2 of 15

To state the main consequences of this article, we first of all recall some necessary no-
tions and notation. Hytönen [] originally introduced the following notions of the upper
doubling condition and the geometrically doubling condition.

Definition . ([]) A metric measure space (X , d,μ) is said to be upper doubling if μ is
a Borel measure on X and there exist a dominating function λ : X × (,∞) → (,∞) and
a positive constant Cλ such that, for each x ∈X , r → λ(x, r) is non-decreasing and, for all
x ∈X and r ∈ (,∞),

μ
(
B(x, r)

) ≤ λ(x, r) ≤ Cλλ

(
x,

r


)
. (.)

Hytönen et al. [] have proved that there is another dominating function λ̃ such that
λ̃ ≤ λ, Cλ̃ ≤ Cλ, and

λ̃(x, r) ≤ Cλ̃λ̃(y, r), (.)

where x, y ∈ X and d(x, y) ≤ r. Based on this, we also assume the dominating function λ

that in (.) satisfies (.) in this paper.

Definition . ([]) A metric space (X , d) is said to be geometrically doubling, if there
exists some N ∈ N such that, for any ball B(x, r) ⊂ X , there exists a finite ball covering
{B(xi, r

 )}i of B(x, r) such that the cardinality of this covering is at most N.

Remark . Let (X , d) be a metric space. Hytönen in [] proved the following statements
are mutually equivalent:

() (X , d) is geometrically doubling.
() For any ε ∈ (, ) and any ball B(x, r) ⊂X , there is a finite ball covering {B(xi, εr)}i of

B(x, r) such that the cardinality of this covering is at most Nε
–n, where n := log N.

() For any ε ∈ (, ), any ball B(x, r) ⊂X contains at most Nε
–n centers of disjoint

balls {B(xi, εr)}i.
() There is M ∈N such that any ball B(x, r) ⊂X contains at most M centers {xi}i of

disjoint balls {B(xi, r
 )}M

i=.

Now we recall the definition of coefficient KB,S introduced by Hytönen in [], which is
analogous to the quantity KQ,R introduced in [], that is, for any two balls B ⊂ S in X ,
define

KB,S :=  +
∫

S\B


λ(cB, d(x, cB))

dμ(x), (.)

where cB is the center of the ball B.
Though the measure doubling condition is not assumed uniformly for all balls on

(X , d,μ), it was proved in [] that there still exist many balls satisfying the property of
the (α,η)-doubling, namely, we say that a ball B ⊂ X is (α,η)-doubling if μ(αB) ≤ ημ(B),
for α,η > . In the rest of this paper, unless α and ηα are specified, otherwise, by an (α,ηα)-
doubling ball we mean a (,β)-doubling ball with a fixed number η > max{C log 

λ , n},
where n := log N is viewed as a geometric dimension of the space. Moreover, the smallest
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(,η)-doubling ball of the from jB with j ∈ N is denoted by B̃, and B̃ is simply denoted
by B̃.

Next, we recall the following definition of RBMO(μ) from [].

Definition . ([]) Let κ >  be a fixed constant. A function f ∈ L
loc(μ) is said to be in the

space RBMO(μ) if there exist a positive constant C and, for any ball B, a number fB such
that


μ(κB)

∫

B

∣∣f (y) – fB
∣∣dμ(y) ≤ C

and

|fB – fR| ≤ CKB,R

for any two balls B and R such that B ⊂ R. Moreover, the RBMO(μ) norm of f is defined
to be the minimal constant C as above and denoted by ‖f ‖RBMO(μ).

From [], Hytönen showed that the space RBMO(μ) is not dependent on the choice of κ .
Lin and Yang [] introduced the following definition of the space RBLO(μ) and proved
that RBLO(μ) ⊂ RBMO(μ).

Definition . ([]) A function f ∈ L
loc(μ) is said to belong to the space RBLO(μ) if there

exists a positive constant C such that. for any (,β)-doubling ball B,


μ(σB)

∫

B

[
f (y) – ess inf

B̃
f
]

dμ(y) ≤ C

and

ess inf
B

f – ess inf
S

f ≤ CKB,S

for any two (,β)-doubling balls B ⊂ S. The minimal constant C above is defined to be
the norm of f in RBLO(μ) and denoted by ‖f ‖RBLO(μ).

Now we give the notion of the fractional type Marcinkiewicz integral slightly changed
from [].

Definition . Let 
 = {(x, x) : x ∈ X }. A stand kernel is a mapping K : X × X \ 
 → C

for which there exist positive constants δ ∈ (, ], β ≥ , and C such that, for x, y ∈X with
x 	= y,

∣∣K(x, y)
∣∣ ≤ C

[d(x, y)]+β

λ(x, d(x, y))
, (.)

and for all x, x̃, y ∈X with d(x, y) ≥ d(x, x̃),

∣
∣K(x, y) – K(x̃, y)

∣
∣ +

∣
∣K(y, x) – K(y, x̃)

∣
∣ ≤ C

[d(x, x̃)]δ++β

[d(x, y)]δλ(x, d(x, y))
. (.)
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The fractional type Marcinkiewicz integral Mβ ,ρ,q(f ) related to the above kernel K(x, y)
is formally defined by

Mβ ,ρ,q(f )(x) :=
(∫ ∞



∣
∣∣
∣


tβ+ρ

∫

d(x,y)<t

K(x, y)
[d(x, y)]–ρ

f (y) dμ(y)
∣
∣∣
∣

q dt
t

) 
q

, (.)

where x ∈X , ρ > , β ≥ , and q > .
Recently, many authors have studied the properties of the fractional type Marcinkiewicz

integrals; see [–]. To the fractional type Marcinkiewicz integral operator Mβ ,ρ,q as
in (.), one can return to the Marcinkiewicz integrals on different function spaces when
the indices are replaced by some fixed numbers; see the following remark.

Remark .
() When ρ = , β = , and q = , the operator Mβ ,ρ,q(f ) as in (.) is just the

Marcinkiewicz integral on (X , d,μ) in [].
() If we take (X , d,μ) = (Rn, | · |,μ), ρ = , β = , and q = , the operator Mβ ,ρ,q(f ) as in

(.) is just the Marcinkiewicz integral with non-doubling measures (see []).
() If we take (X , d,μ) = (Rn, | · |, dx), K(x, y) = �(x–y)

|x–y|n– , ρ = , β = , and q = , then the
operator Mβ ,ρ,q(f ) as in (.) is just the classical Marcinkiewicz integral introduced
in [] and its form is as follows:

M�(f )(x) :=
(∫ ∞



∣
∣∣
∣

∫

|x–y|≤t

�(x – y)
|x – y|n– f (y) dy

∣
∣∣
∣

 dt
t

) 


, x ∈R
n;

for more about behaviors of the M�, see [–].

Further, we recall the notion of the atomic Hardy spaces given in [].

Definition . ([]) Let ζ ∈ (,∞) and p > . A function b ∈ L
loc(μ) is called a (p, )τ -

atomic block if
() there exists a ball S such that supp b ⊂ S;
()

∫
X b(x) dμ(x) = ;

() for any i ∈ {, }, there exists a function ai supported on a ball Bi ⊂ S and τi ∈C

such that b = τa + τa and

‖ai‖Lp(μ) ≤ [
μ(ζBi)

] 
p –K–

Bi ,S. (.)

Moreover, let

|b|H,p
atb(μ) := |τ| + |τ|.

We say that a function f ∈ L(μ) belongs to the atomic Hardy space H,p
atb(μ), if there ex-

ist (p, )τ -atomic blocks {bi}∞i= such that f =
∑∞

i=bi in L(μ) and
∑∞

i=|bi|H,p
atb(μ) < ∞. The

norm of f in H,p
atb(μ) is defined by ‖f ‖H,p

atb(μ) := inf{∑i|bi|H,p
atb(μ)}, where the infimum is taken

over all the possible decompositions of f as above.
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Also, in [], Hytönen et al. proved that, for each p ∈ (,∞], the atomic Hardy space
H,p

atb(μ) is independent of the choice of ζ and that the spaces H,p
atb(μ) and H,∞

atb (μ) have the
same norms for all p ∈ (,∞]. Thus, we always denote H,p

atb(μ) simply by H(μ).
Finally, we state the main results of this article.

Theorem . Let K(x, y) satisfy (.) and (.), and Mβ ,ρ,q be as in (.), where ρ > ,
β ≥ , and q > . If Mβ ,ρ,q is bounded on L(μ), then it is also bounded from L(μ) into
L,∞(μ), that is, there exists a positive constant C such that, for all t >  and f ∈ L(μ),

μ
({

x ∈X : Mβ ,ρ,q(f )(x) > t
}) ≤ C

‖f ‖L(μ)

t
. (.)

Theorem . Let K (x, y) satisfy (.) and (.), ρ > , β ≥ , and q > . Suppose that
Mβ ,ρ,q is as in (.) and bounded on L(μ). Then for f ∈ L∞(μ), Mβ ,ρ,q is either infinite
everywhere or finite μ-finite almost everywhere; more precisely, if Mβ ,ρ,q is finite at some
point x ∈X , then Mβ ,ρ,q is μ-almost everywhere and

∥
∥Mβ ,ρ,q(f )

∥
∥

RBLO(μ) ≤ C‖f ‖L∞(μ),

where the positive constant C is not dependent on f .

By Theorem ., Theorem ., and Theorem . in [], it is easy to obtain the following
corollary.

Corollary . Under the assumption of Theorem ., then Mβ ,ρ,q is bounded on Lp(μ)
for any p ∈ (,∞).

Theorem . Let K(x, y) satisfy (.) and (.), and Mβ ,ρ,q be as in (.). If Mβ ,ρ,q is
bounded on L(μ), then it is also bounded from H(μ) into L(μ).

Throughout the paper, C represents for a positive constant which is independent of the
main parameters involved, but it may be different from line to line. For a μ-measurable set
E, χE denotes its characteristic function. For any p ∈ [,∞], we denote by p′ its conjugate
index, that is, 

p + 
p′ = .

2 Preliminaries
In this section, in order to prove our main theorems, we need some lemmas. First, we
recall some useful properties of KB,S as in (.) (see []).

Lemma . ([])
() For all balls B ⊂ R ⊂ S, it holds true that KB,R ≤ KB,S .
() For any ξ ∈ [,∞), there exists a positive constant Cξ , depending on ξ , such that, for

all balls B ⊂ S with rS ≤ ξrB, KB,S ≤ Cξ .
() For any � ∈ (,∞), there exists a positive constant C� , depending on �, such that, for

all balls B, KB,B̃� ≤ C� .
() There is a positive constant c such that, for all balls B ⊂ R ⊂ S, KB,S ≤ KB,R + cKR,S . In

particular, if B and R are concentric, then c = .
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() There exists a positive constant c̃ such that, for all balls B ⊂ R ⊂ S, KB,R ≤ c̃KB,S ;
moreover, if B and R are concentric, then KR,S ≤ KB,S .

Next, we recall the Calderón-Zygmund decomposition theorem from [] as follows. Let
γ be a fixed non-negative constant and satisfy γ > max{C log 

λ , n}, where Cλ is as in
(.) and n as in Remark ..

Lemma . ([]) Let p ∈ [,∞), f ∈ Lp(μ), and t ∈ (,∞) (t > γ‖f ‖Lp(μ)
μ(X ) when μ(X ) < ∞).

Then:
() There exists a family of finite overlapping balls {Bi}i such that {Bi}i is pairwise

disjoint,


μ(Bi)

∫

Bi

∣
∣f (x)

∣
∣p dμ(x) >

tp

γ
for all i, (.)


μ(υBi)

∫

υBi

∣∣f (x)
∣∣p dμ(x) ≤ tp

γ
for all i and all υ ∈ (,∞),

and

∣
∣f (x)

∣
∣ ≤ t for μ-almost every x ∈X

∖ (⋃

i

Bi

)
. (.)

() For each i, let Si be the smallest ( × , Clog(×)+
λ )-doubling ball of the family

{( × )kBi}k∈N, and ωi = χBi /(
∑

kχBk ). Then there exist a family {ϕi}i of functions
that, for each i, supp(ϕi) ⊂ Si, ϕi has a constant sign on Si and

∫

X
ϕi(x) dμ(x) =

∫

Bi

f (x)ωi(x) dμ(x), (.)

∑

i

∣
∣ϕi(x)

∣
∣ ≤ γ t for μ-almost every x ∈X , (.)

where γ is some positive constant depending only on (X ,μ), and there exists a
positive constant C, independent of f , t, and i, such that, if p = , then

‖ϕi‖L∞(μ)μ(Si) ≤ C
∫

X

∣
∣f (x)ωi(x)

∣
∣dμ(x), (.)

and if p ∈ (,∞),

(∫

Si

∣∣ϕi(x)
∣∣p dμ(x)

) 
p [

μ(Si)
] 

p′ ≤ C
tp–

∫

X

∣∣f (x)ωi(x)
∣∣p dμ(x). (.)

Finally, we recall the following characterizations of RBLO(μ) given in [].

Lemma . ([]) If f ∈ L
loc(μ) is said to be in the space RBLO(μ), then there exists a

non-negative constant C satisfying that, for all (,β)-doubling balls B,


μ(B)

∫

B

[
f (y) – ess inf

B
f
]

dμ(y) ≤ C
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and, for all (,β)-doubling balls B ⊂ S,

mB(f ) – mS(f ) ≤ CKB,S, (.)

in this paper, mB(f ) represents the mean of f over B, that is,

mB(f ) :=


μ(B)

∫

B
f (y) dμ(y).

Moreover, the minimal constant C above equals ‖f ‖RBLO(μ).

3 Proofs of the main theorems
Proof of Theorem . Without loss of generality, by homogeneity, we can assume that
‖f ‖L(μ) = . It is easy to see that the conclusion of Theorem . automatically holds true
if t ≤ η‖f ‖L(μ)/μ(X ) when μ(X ) < ∞. Therefore, we only need consider the case t >
η‖f ‖L(μ)/μ(X ). For any given f ∈ L(μ) and t > η‖f ‖L(μ)/μ(X ), applying Lemma . to f
and t, and letting Si be as in Lemma ., we may write f = g +h, where g := f χX \⋃i Bi +

∑
iϕi

and h :=
∑

i(ωif – ϕi) =:
∑

ihi. By applying (.), (.), and the assumption ‖f ‖L(μ) = , we
easily obtain ‖g‖L∞(μ) ≤ Ct and ‖g‖L(μ) ≤ C. Thus, by the L(μ)-boundedness of Mβ ,ρ,q,
we conclude that

μ
({

x ∈X : Mβ ,ρ,q(g)(x) > t
}) ≤ Ct–∥∥Mβ ,ρ,q(g)

∥
∥

L(μ) ≤ Ct–‖g‖L(μ) ≤ Ct–.

On the other hand, by (.) with p = , and the fact that {Bi}i is a sequence of pairwise
disjoint balls, we have

μ

(⋃

i

Bi

)
≤

∑

i
μ

(
Bi

) ≤ Ct–
∑

i

∫

Bi

∣∣f (x)
∣∣dμ(x) ≤ Ct–,

and therefore, the proof of Theorem . can be reduced to proving

μ

({
x ∈X

∖ ⋃

i

(
Bi

)
: Mβ ,ρ,q(h)(x) > t

})
≤ Ct–. (.)

Notice that

μ

({
x ∈X

∖ ⋃

i

(
Bi

)
: Mβ ,ρ,q(h)(x) > t

})

≤ t–
∑

i

∫

X \Si

Mβ ,ρ,q(hi)(x) dμ(x) + t–
∑

i

∫

Si\Bi

Mβ ,ρ,q(hi)(x) dμ(x)

=: E + E.

For E. Let Si be as in Lemma .. Denote its center and radius by cSi and rSi , respectively.
Write

∫

X \Si

Mβ ,ρ,q(hi)(x) dμ(x)

≤
∫

X \Si

(∫ d(x,cSi )+rSi



∣∣
∣∣


tβ+ρ

∫

d(x,y)<t

K(x, y)
[d(x, y)]–ρ

hi(y) dμ(y)
∣∣
∣∣

q dt
t

) 
q

dμ(x)
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+
∫

X \Si

(∫ ∞

d(x,cSi )+rSi

∣
∣∣∣


tβ+ρ

∫

d(x,y)<t

K(x, y)
[d(x, y)]–ρ

hi(y) dμ(y)
∣
∣∣∣

q dt
t

) 
q

dμ(x)

=: F + F.

Applying the Minkowski inequality and (.), we have

F ≤
∫

X \Si

∫

X

|hi(y)|[d(x, y)]+β

λ(x, d(x, y))[d(x, y)]–ρ

(∫ d(x,cSi )+rSi

d(x,y)

dt
tq(β+ρ)+

) 
q

dμ(y) dμ(x)

≤ C
∫

X \Si

∫

X

|hi(y)|[d(x, y)]ρ+β

λ(x, d(x, y))

×
(


[d(x, y)]q(β+ρ) –


[d(x, cSi ) + rSi ]q(β+ρ)

) 
q

dμ(y) dμ(x)

≤ C
∫

X \Si

∫

X

|hi(y)|[d(x, y)]ρ+β

λ(x, d(x, y))
(rSi )


q (β+ρ)

[d(x, y)](β+ρ)[d(x, cSi ) + rSi ]

q (β+ρ)

dμ(y) dμ(x)

≤ C(rSi )

q (β+ρ)

∫

X

∣
∣hi(y)

∣
∣dμ(y)

∫

X \Si

dμ(x)

λ(x, d(x, cSi ))[d(x, cSi ) + rSi ]

q (β+ρ)

≤ C
∫

X

∣
∣hi(y)

∣
∣dμ(y)

∑∞
k=

–k 
q (β+ρ)

∫

k+Si\k Si

dμ(x)
λ(x, d(x, cSi ))

≤ C‖hi‖L(μ).

For x ∈X \ Si and y ∈ Si, it holds true that d(x, y) < d(x, cSi ) + rSi . Thus, by the vanishing
moment of hi and (.), we can conclude

F =
∫

X \Si

(∫ ∞

d(x,cSi )+rSi

∣∣
∣∣


tβ+ρ

∫

X

[
K(x, y)

[d(x, y)]–ρ
–

K(x, cSi )
[d(x, cSi )]–ρ

]

× hi(y) dμ(y)
∣∣
∣∣

q dt
t

) 
q

dμ(x)

≤
∫

X \Si

(∫ ∞

d(x,cSi )+rSi

∣∣
∣∣


tβ+ρ

∫

X

[
K(x, y)

[d(x, y)]–ρ
–

K(x, y)
[d(x, cSi )]–ρ

]

× hi(y) dμ(y)
∣
∣∣
∣

q dt
t

) 
q

dμ(x)

+
∫

X \Si

(∫ ∞

d(x,cSi )+rSi

∣
∣∣
∣


tβ+ρ

∫

X

[
K(x, y)

[d(x, y)]–ρ
–

K(x, cSi )
[d(x, y)]–ρ

]

× hi(y) dμ(y)
∣
∣∣∣

q dt
t

) 
q

dμ(x)

= : F + F.

For F. By applying the Minkowski inequality, (.), and (.), we have

F ≤
∫

X \Si

∫

X

∣∣hi(y)
∣∣
∣
∣∣
∣

K(x, y)
[d(x, y)]–ρ

–
K(x, y)

[d(x, cSi )]–ρ

∣
∣∣
∣

×
(∫ ∞

d(x,cSi )+rSi

dt
tq(β+ρ)+

) 
q

dμ(y) dμ(x)
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≤ C
∫

X \Si

∫

X

∣
∣hi(y)

∣
∣
∣∣
∣∣

K(x, y)
[d(x, y)]–ρ

–
K(x, y)

[d(x, cSi )]–ρ

∣∣
∣∣


[d(x, cSi ) + rSi ]β+ρ

dμ(y) dμ(x)

≤ CrSi

∫

X \Si

∫

X

|hi(y)|[d(x, y)]ρ+β–

λ(x, d(x, y))


[d(x, cSi ) + rSi ]β+ρ
dμ(y) dμ(x)

≤ CrSi

∫

X \Si

∫

X

|hi(y)|
λ(x, d(x, cSi ))

dμ(y) dμ(x)
d(x, cSi )

≤ CrSi

∫

X

∣
∣hi(y)

∣
∣dμ(y)

∑∞
k=

∫

k+Si\k Si

dμ(x)
λ(x, d(x, cSi ))d(x, cSi )

≤ C
∫

X

∣∣hi(y)
∣∣dμ(y)

∑∞
k=

–k
∫

k+Si\k Si

dμ(x)
λ(cSi , d(x, cSi ))

≤ C‖hi‖L(μ).

Next we estimate F. By the Minkowski inequality and (.), we deduce that

F ≤ C
∫

X \Si

∫

X

∣∣hi(y)
∣∣
∣
∣∣
∣

K(x, y)
[d(x, y)]–ρ

–
K(x, cSi )

[d(x, y)]–ρ

∣
∣∣
∣

×
(∫ ∞

d(x,cSi )+rSi

dt
tq(β+ρ)+

) 
q

dμ(y) dμ(x)

≤ C
∫

X \Si

∫

X

∣∣hi(y)
∣∣∣∣K(x, y) – K(x, cSi )

∣∣ 
[d(x, y)]β+ dμ(y) dμ(x)

≤ C
∫

X \Si

∫

X

∣
∣hi(y)

∣
∣ [d(cSi , y)]δ+β+

[d(x, y)]δλ(x, d(x, y))


[d(x, y)]β+ dμ(y) dμ(x)

≤ C
∫

X \Si

∫

X

∣
∣hi(y)

∣
∣ rδ+β+

Si

[d(x, y)]δ+β+λ(x, d(x, cSi ))
dμ(y) dμ(x)

≤ C
∫

X

∣∣hi(y)
∣∣dμ(y)

(∑∞
k=

–k(δ+β+)
∫

k+Si\k Si

dμ(x)
λ(x, d(x, cSi ))

)

≤ C‖hi‖L(μ).

Combining the estimates for F, F, F, and the fact that

‖hi‖L(μ) ≤
∫

X

∣
∣f (y)ωi(y)

∣
∣dμ(y),

we have E ≤ Ct–.
Now we turn to an estimate of E. Let N be the positive integer satisfying Si = ( ×

)N Bi. By hi := ωif – ϕi, (.), the Minkowski inequality, the Hölder inequality, and (.)
together with the L(μ)-boundedness of Mβ ,ρ,q, we get

E ≤ t–
∑

i

∫

Si\Bi

∣∣Mβ ,ρ,q(ωif )(x)
∣∣dμ(x) + t–

∑

i

∫

Si\Bi

∣∣Mβ ,ρ,q(ϕi)(x)
∣∣dμ(x)

≤ Ct–
∑

i

∫

Si\Bi

∫

X

[d(x, y)]ρ+β

λ(x, d(x, y))
∣∣f (y)ωi(y)

∣∣
(∫ ∞

d(x,y)

dt
tq(β+ρ)+

) 
q

dμ(y) dμ(x)

+ Ct–
∑

i

(∫

Si

∣∣Mβ ,ρ,q(ϕi)(x)
∣∣ dμ(x)

) 

μ(Si)
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≤ Ct–
∑

i

∫

Si\Bi

∫

X

|f (y)ωi(y)|
λ(x, d(x, y))

dμ(y) dμ(x) + Ct–
∑

i
‖ϕi‖L(μ)μ(Si)




≤ Ct–
∑

i

∫

X

∣
∣f (y)ωi(y)

∣
∣dμ(y)

∑N+

k=

μ(( × )kBi)
λ(cBi , ( × )krBi )

+ Ct–
∑

i
‖ϕi‖L∞(μ)μ(Si)

≤ Ct–
∫

X

∣∣f (y)
∣∣dμ(y) ≤ Ct–.

Combining the estimates for E and E, we obtain (.) and hence the proof of Theo-
rem . is finished. �

Proof of Theorem . We first claim that there exists a positive constant C such that, for
any f ∈ L∞(μ) and (,β)-doubling ball B,


μ(B)

∫

B
Mβ ,ρ,q(f )(y) dμ(y) ≤ C‖f ‖L∞(μ) + infy∈BMβ ,ρ,q(f )(y). (.)

In order to prove (.), for each fixed ball B, we assume that Q is the smallest ball which
includes B and has the same center as B, so Q ⊂ B. Decompose f as

f (x) = f χQ(x) + f χX \Q(x) =: f(x) + f(x).

By applying Hölder inequality and the L(μ)-boundedness of Mβ ,ρ,q, we have


μ(B)

∫

B
Mβ ,ρ,q(f)(y) dμ(y)

≤ 
μ(B)

(∫

B

[
Mβ ,ρ,q(f)(y)

] dμ(y)
) 


μ(B)




≤ 
[μ(B)] 


‖f‖L(μ) ≤ C‖f ‖L∞(μ)

[μ(B)] 


[μ(B)] 


≤ C‖f ‖L∞(μ). (.)

Let rQ be the radius of the ball Q. Noticing that d(y, z) ≥ rQ for any y ∈ B, and z ∈X \Q,
by the Minkowski inequality, (.), and (.), we can deduce

Mβ ,ρ,q(f)(y) ≤
(∫ ∞

rQ

∣∣
∣∣


tβ+ρ

∫

d(y,z)<t

K(y, z)
[d(y, z)]–ρ

f (z) dμ(z)
∣∣
∣∣

q dt
t

) 
q

+
(∫ ∞

rQ

∣
∣∣
∣


tβ+ρ

∫

d(y,z)<t

K(y, z)
[d(y, z)]–ρ

f(z) dμ(z)
∣
∣∣
∣

q dt
t

) 
q

≤ Mβ ,ρ,q(f )(y) +
(∫ ∞

rQ

∣∣∣
∣


tβ+ρ

∫

d(y,z)<rQ

K(y, z)
[d(y, z)]–ρ

f(z) dμ(z)
∣∣∣
∣

q dt
t

) 
q

≤ Mβ ,ρ,q(f )(y) + C
∫

Q

|K(y, z)|
[d(y, z)]–ρ

∣
∣f(z)

∣
∣
(∫ ∞

rQ

dt
tq(β+ρ)+

) 
q

dμ(z)
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≤ Mβ ,ρ,q(f )(y) + C
∫

Q

[d(y, z)]+β

λ(y, d(y, z))


[d(y, z)]–ρ


rβ+ρ

Q

∣
∣f (z)

∣
∣dμ(z)

≤ Mβ ,ρ,q(f )(y) + C‖f ‖L∞(μ)

∫

Q


λ(cB, d(cB, z))

dμ(z)

≤ Mβ ,ρ,q(f )(y) + C‖f ‖L∞(μ). (.)

Therefore, the estimate for (.) can be reduced to proving

∣
∣Mβ ,ρ,q(f)(x) – Mβ ,ρ,q(f)(y)

∣
∣ ≤ C‖f ‖L∞(μ). (.)

Write

∣∣Mβ ,ρ,q(f)(x) – Mβ ,ρ,q(f)(y)
∣∣

≤
(∫ ∞



∣
∣∣∣

∫

d(x,z)<t

K(x, z)
[d(x, z)]–ρ

f(z) dμ(z)

–
∫

d(y,z)<t

K(y, z)
[d(y, z)]–ρ

f(z) dμ(z)
∣∣
∣∣

q dt
tq(β+ρ)+

) 
q

≤
(∫ ∞



[∫

d(x,z)<t≤d(y,z)

|K(x, z)|
[d(x, z)]–ρ

∣∣f(z)
∣∣dμ(z)

]q dt
tq(β+ρ)+

) 
q

+
(∫ ∞



[∫

d(y,z)<t≤d(x,z)

|K(y, z)|
[d(y, z)]–ρ

∣
∣f(z)

∣
∣dμ(z)

]q dt
tq(β+ρ)+

) 
q

+
(∫ ∞



[∫

d(y,z)<td(x,z)<t

∣
∣∣∣

K(x, z)
[d(x, z)]–ρ

–
K(y, z)

[d(y, z)]–ρ

∣
∣∣∣
∣∣f(z)

∣∣dμ(z)
]q dt

tq(β+ρ)+

) 
q

=: I + I + I.

For any x, y ∈ B, applying the Minkowski inequality, (.), and (.), we have

I ≤ C
∫

X

[d(y, z)]β+ρ

λ(y, d(y, z))
∣
∣f(z)

∣
∣
(∫ d(y,z)

d(x,z)

dt
tq(β+ρ)+

) 
q

dμ(z)

≤ C
∫

X

[d(y, z)]β+ρ

λ(y, d(y, z))
∣∣f(z)

∣∣ [d(x, y)]β+ρ

[d(x, z)]β+ρ[d(y, z)]β+ρ
dμ(z)

≤ Crβ+ρ

B

∫

X \Q

|f (z)|
λ(cB, d(cB, z))


[d(cB, z)]β+ρ

dμ(z)

≤ Crβ+ρ

B

∑∞
i=

∫

i+Q\iQ

|f (z)|
λ(cB, d(cB, z))


[d(cB, z)]β+ρ

dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

i=
–i(β+ρ) μ(i+Q)

λ(cB, irQ)

≤ C‖f ‖L∞(μ).

With a similar argument to that used in the proof of I, it is not difficult to obtain

I ≤ C‖f ‖L∞(μ).
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Now we turn to an estimate of I. Write

I ≤
∫

X

∣
∣∣
∣

K(x, z)
[d(x, z)]–ρ

–
K(y, z)

[d(y, z)]–ρ

∣
∣∣
∣
∣∣f(z)

∣∣
(∫ ∞

d(y,z)

dt
tq(β+ρ)+

) 
q

dμ(z)

≤
∫

X

∣∣
∣∣

K(x, z)
[d(x, z)]–ρ

–
K(y, z)

[d(x, z)]–ρ

∣∣
∣∣
∣
∣f(z)

∣
∣
(∫ ∞

d(y,z)

dt
tq(β+ρ)+

) 
q

dμ(z)

+
∫

X

∣
∣∣
∣

K(y, z)
[d(x, z)]–ρ

–
K(y, z)

[d(y, z)]–ρ

∣
∣∣
∣
∣∣f(z)

∣∣
(∫ ∞

d(y,z)

dt
tq(β+ρ)+

) 
q

dμ(z)

≤ C
∫

X

∣∣K(x, z) – K(y, z)
∣∣∣∣f(z)

∣∣ 
[d(y, z)]β+ dμ(z)

+ C
∫

X

∣∣
∣∣


[d(x, z)]–ρ

–


[d(y, z)]–ρ

∣∣
∣∣

|f(z)|
[d(y, z)]ρ–λ(y, d(y, z))

dμ(z)

=: I + I.

By applying (.), we have

I ≤ C‖f ‖L∞(μ)

∫

X \Q

rδ++β

B
λ(cB, d(cB, z))


[d(cB, z)]δ+β+ dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=

∫

k+Q\k Q

rδ++β

B
λ(cB, d(cB, z))


[d(cB, z)]δ+β+ dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=
–k(+β+δ) μ(k+Q)

λ(cB, kQ)
≤ C‖f ‖L∞(μ).

Now we turn to an estimate of I by two steps:  < ρ <  and ρ ≥ .
As  < ρ < , we get

I ≤ C‖f ‖L∞(μ)

∫

X \Q

rB[d(x, z)]–ρ

[d(x, z)]–ρ


λ(cB, d(cB, z))

dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=

∫

k+Q\k Q

rB

d(x, z)


λ(cB, d(cB, z))
dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=
–k μ(k+Q)

λ(cB, krQ)

≤ C‖f ‖L∞(μ).

As ρ ≥ , we deduce that

I ≤ C‖f ‖L∞(μ)

∫

X \B

rB[d(y, z)]ρ–

[d(y, z)]ρ–


λ(cB, d(cB, z))
dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=

∫

k+Q\k Q

rB

d(cB, z)


λ(cB, d(cB, z))
dμ(z)

≤ C‖f ‖L∞(μ)
∑∞

k=
–k μ(k+Q)

λ(cB, krQ)
≤ C‖f ‖L∞(μ).
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Thus, we have

I ≤ C‖f ‖L∞(μ),

which, together with I and I, implies (.). Therefore, the estimate of (.) is completed.
By (.), it follows that, for f ∈ L∞(μ), if Mβ ,ρ,q(f )(x) < ∞ with some point x ∈ X , we

can get Mβ ,ρ,q(f ) is μ-finite a.e., and in this case, for any (,β)-doubling ball B, we have


μ(B)

∫

B

[
Mβ ,ρ,q(f )(x) – ess inf

B
Mβ ,ρ,q(f )

]
dμ(x) ≤ C‖f ‖L∞(μ).

To prove that Mβ ,ρ,q(f ) ∈ RBLO(μ), applying Lemma ., it only suffices to prove that
Mβ ,ρ,q(f ) satisfies (.), namely, for any two (,β)-doubling balls B and S with B ⊂ S,

mB
(
Mβ ,ρ,q(f )

)
– mS

(
Mβ ,ρ,q(f )

) ≤ CKB,S. (.)

For any x ∈ B and y ∈ S, write

Mβ ,ρ,q(f )(x) ≤ Mβ ,ρ,q(f χB)(x) + Mβ ,ρ,q(f χS\B)(x)

+
[
Mβ ,ρ,q(f χX \S)(x) – Mβ ,ρ,q(f χX \S)(y)

]
+ Mβ ,ρ,q(f χX \S)(y).

With an argument similar to that used in the proof of Mβ ,ρ,q(f)(y) in (.), we have

Mβ ,ρ,q(f χX \S)(y) ≤Mβ ,ρ,q(f )(y) + C‖f ‖L∞(μ).

By (.), for any x, y ∈ S, it is not difficult to get

∣
∣Mβ ,ρ,q(f χX \S)(x) – Mβ ,ρ,q(f χX \S)(y)

∣
∣ ≤ C‖f ‖L∞(μ).

For any x ∈ B, by the Minkowski inequality and (.), we obtain

Mβ ,ρ,q(f χS\B)(x)

≤ C
∫

X

|f χS\B(y)|[d(x, y)]ρ+β

λ(x, d(x, y))

(∫ ∞

d(x,y)

dt
tq(β+ρ)+

) 
q

dμ(y)

≤ C
∫

S\B

|f (y)|
λ(x, d(x, y))

dμ(y)

≤ C‖f ‖L∞(μ)

∫

S\B


λ(cB, d(cB, y))

dμ(y)

≤ CKB,S‖f ‖L∞(μ).

Thus, for any x ∈ B and y ∈ S, we have

Mβ ,ρ,q(f )(x) ≤Mβ ,ρ,q(f χB)(x) + Mβ ,ρ,q(f )(y) + CKB,S‖f ‖L∞(μ). (.)
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For (.), taking the mean value over B for x and over S for y, it follows that

mB
(
Mβ ,ρ,q(f )

)
– mS

(
Mβ ,ρ,q(f )

) ≤ C
[
mB

(
Mβ ,ρ,q(f χB)

)
+ KB,S‖f ‖L∞(μ)

]

≤ CKB,S‖f ‖L∞(μ),

which, together with (.), we finish the proof of Theorem .. �

Proof of Theorem . Because the definition of H(μ) is independent of the choice of ς ,
thus, for convenience, we assume ζ =  as in (.). By a standard argument, it suffices to
prove that

∥
∥Mβ ,ρ,q(f )

∥
∥

L(μ) ≤ C|b|H(μ) (.)

for any atomic block b with supp b ⊂ S. Write

∫

X

∣
∣Mβ ,ρ,q(b)(x)

∣
∣dμ(x) =

∫

X \S

∣
∣Mβ ,ρ,q(b)(x)

∣
∣dμ(x) +

∫

S

∣
∣Mβ ,ρ,q(b)(x)

∣
∣dμ(x)

=: J + J.

In a way similar to that used in the proof of E in Theorem ., we can obtain

J ≤ C‖b‖L(μ) ≤ C|b|H(μ).

Let b =
∑

iτiai be as in Definition . and we have

J ≤
∑

i
|τi|

∫

Bi

∣
∣Mβ ,ρ,q(bi)(x)

∣
∣dμ(x) +

∑

i
|τi|

∫

S\Bi

∣
∣Mβ ,ρ,q(bi)(x)

∣
∣dμ(x)

=: J + J.

By applying the Hölder inequality, the L(μ)-boundedness of Mβ ,ρ,q, and (.), we have

J ≤
∑

i
|τi|

(∫

Bi

∣∣Mβ ,ρ,q(ai)(x)
∣∣ dμ(x)

) 

μ(Bi)




≤ C
∑

i
|τi|‖ai‖L(μ)μ(Bi)




≤ C
∑

i
|τi|‖ai‖L∞(μ)μ(Bi) ≤ C

∑

i
|τi|.

Now we turn to an estimate of J. Also, in a way similar to E in the proof of Theorem .,
we have

J ≤ C
∑

i
|τi|

∫

S\Bi


λ(cBi , d(x, cBi ))

‖ai‖L(μ)

≤ C
∑

i
|τi|KBi ,S‖ai‖L∞(μ)μ(Bi) ≤ C

∑

i
|τi|.

Combining with the above estimates, this implies (.) and hence the proof of Theo-
rem .. �
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