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Abstract
In this paper, based on the modified Hermitian and skew-Hermitian splitting (MHSS)
iteration method, the nonlinear MHSS-like iteration method is presented to solve a
class of the weakly absolute value equations (AVE). By using a smoothing
approximate function, the convergence properties of the nonlinear MHSS-like
iteration method are presented. Numerical experiments are reported to illustrate the
feasibility, robustness, and effectiveness of the proposed method.
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1 Introduction
Consider the following weakly absolute value equations (AVE):

Ax – |x| = b, (.)

where b ∈R
n, | · | denotes the componentwise absolute value, A = W + iT where W ∈R

n×n

is a symmetric positive definite matrix and T ∈R
n×n is a symmetric positive semidefinite

matrix, and i =
√

– denotes the imaginary unit. A general form of AVE (.)

Ax + B|x| = b, (.)

was first introduced in [] and investigated in []. The AVE (.) is a class of the important
nonlinear linear systems, and it often comes from the fact that linear programs, quadratic
programs, and bimatrix games can all be reduced to a linear complementarity problem
(LCP) [–]. This fact implies that the AVE (.) is equivalent to the LCP [] and turns out
to be NP-hard; see [].

In recent years, some efficient methods have been proposed to solve the AVE (.), such
as the smoothing Newton method [], the generalized Newton method [–], the sign
accord method []. For other forms of the iteration method, one can see [–] for more
details.
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When the involved matrix A in (.) is a non-Hermitian positive definite matrix, based
on the Hermitian and skew-Hermitian splitting (HSS) iteration method [], the Picard-
HSS iteration method for solving the AVE (.) has been proposed in []. Numerical re-
sults show that the Picard-HSS iteration method outperforms the Picard and generalized
Newton methods under certain conditions. Although the Picard-HSS iteration method is
efficient and competitive, the numbers of the inner HSS iteration steps are often problem-
dependent and difficult to be obtained in actual computations. To overcome this disad-
vantage and improve the convergence of the Picard-HSS iteration method, the nonlin-
ear HSS-like iteration method in [] has been presented and its convergent conditions
are established. Numerical experiments demonstrate that the nonlinear HSS-like itera-
tion method is feasible and robust.

When the involved matrix A in (.) is A = W + iT , the convergent rate of the aforemen-
tioned Picard-HSS and nonlinear HSS-like methods maybe reduce. This is reason that
each step of Picard-HSS and HSS-like iterations needs to solve two linear subsystems with
the symmetric positive definite matrix αI +W and the shifted skew-Hermitian matrix αI +
iT . It is well known that the solution of the linear system with the coefficient matrix αI + iT
is not easy to obtain []. To overcome this defect, based on MHSS iteration method [],
we will establish the nonlinear MHSS-like iteration method to solve the AVE (.). Com-
pared with the nonlinear HSS-like iteration method, the potential advantage of the nonlin-
ear MHSS-like iteration method is that only two linear subsystems with coefficient matri-
ces αI +W and αI +T , both being real and symmetric positive definite, need to be solved at
each step. This shows that the nonlinear MHSS-like iteration method can avoid a shifted
skew-Hermitian linear subsystem with coefficient matrix αI + iT . Therefore, in this case,
these two linear subsystems can be solved either exactly by a sparse Cholesky factorization
or inexactly by conjugated gradient scheme. The convergent conditions of the nonlinear
MHSS-like iteration method are obtained by using a smoothing approximate function.

The remainder of the paper is organized as follows. In Section , the MHSS iteration
method is briefly reviewed. The nonlinear MHSS-like iteration method is discussed in
Section . Numerical experiments are reported in Section . Finally, in Section  we draw
some conclusions.

2 The MHSS iteration method
To establish the nonlinear MHSS-like iteration method for solving the AVE (.), a brief
review of MHSS iteration is needed.

From (.), when B is a zero matrix, the generalized AVE (.) reduces to the system of
linear equations

Ax = b, (.)

where A = W + iT with symmetric positive definite matrix W ∈R
n×n and symmetric pos-

itive semidefinite matrix T ∈R
n×n. In fact, the matrices W and iT are the Hermitian and

skew-Hermitian parts of the complex symmetric matrix A, respectively.
Obviously, the linear system (.) can be rewritten in the following two equivalent forms:

(αI + W )x = (αI – iT)x + b, (.)

(αI + T)x = (αI + iW )x – ib. (.)
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Combining (.) with (.), Bai et al. in [] skillfully designed a modified HSS (MHSS)
method to solve the complex symmetric linear system (.) below.

The MHSS method. Let x() ∈C
n be an arbitrary initial point. For k = , , , . . . , compute

the next iterate x(k+) according to the following procedure:

{
(αI + W )x(k+ 

 ) = (αI – iT)x(k) + b,
(αI + T)x(k+) = (αI + iW )x(k+ 

 ) – ib,
(.)

where α is a given positive constant and I is the identity matrix.
In matrix-vector form, the MHSS iteration (.) can be equivalently rewritten as

x(k+) = Mαx(k) + Gαb = Mk+
α x() +

k∑
j=

Mj
αGαb, k = , , . . . ,

where

Mα = (αI + T)–(αI + iW )(αI + W )–(αI – iT),

Gα = ( – i)α(αI + T)–(αI + W )–.

Here, Mα is the iteration matrix of the MHSS method.
Theoretical analysis in [] shows that the MHSS method converges unconditionally

to the unique solution of the complex symmetric linear system (.) when W ∈ R
n×n is

symmetric positive definite and T ∈R
n×n is symmetric positive semidefinite.

3 The nonlinear MHSS-like iteration method
In this section, we will establish the MHSS-like iteration method for solving the AVE (.).
Using the techniques in [], the AVE (.) can be rewritten as the system of the nonlinear
fixed-point equations

(αI + W )x = (αI – iT)x + |x| + b, (.)

(αI + T)x = (αI + iW )x – i|x| – ib. (.)

In the following, we establish the following MHSS-like iteration method for solving the
AVE (.) by alternately iterating between two systems of the nonlinear fixed-point equa-
tions (.) and (.).

The nonlinear MHSS-like method. Let x() ∈ C
n be an arbitrary initial point. For k =

, , , . . . , compute the next iterate x(k+) according to the following procedure:

{
(αI + W )x(k+ 

 ) = (αI – iT)x(k) + |x(k)| + b,
(αI + T)x(k+) = (αI + iW )x(k+ 

 ) – i|x(k+ 
 )| – ib,

(.)

where α is a given positive constant and I is the identity matrix.
Evidently, each step of the nonlinear MHSS-like iteration alternates between two real

symmetric positive definite matrices αI + W and αI + T . Hence, these two linear subsys-
tems involved in each step of the nonlinear MHSS-like iteration can be solved effectively
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by exactly using the Cholesky factorization. On the other hand, in the Picard-HSS and
nonlinear HSS-like methods, a shifted skew-Hermitian linear subsystem with coefficient
matrix αI + iT needs to be solved at every iterative step.

Let{
U(x) = (αI + W )–((αI – iT)x + |x| + b),
V (x) = (αI + T)–((αI + iW )x – i|x| – ib),

(.)

and

ψ(x) = V ◦ U(x) = V
(
U(x)

)
. (.)

Then, from (.) and (.), the nonlinear MHSS-like iteration scheme can be equivalently
rewritten as

x(k+) = ψ
(
x(k)), k = , , , . . . . (.)

Definition . ([]) Let G : D⊂R
n →R

n. Then x∗ is a point of attraction of the iteration

xk+ = Gxk , k = , , , . . . ,

if there is an open neighborhood S of x∗ such that S ⊂ D and, for any x ∈ S, the iterates
{xk} all lie in D and converge to x∗.

Lemma . (Ostrowski theorem []) Suppose that G : D ⊂ R
n → R

n has a fixed point
x∗ ∈ int(D) and is F-differentiable at x∗. If the spectral radius of G′(x∗) is less than , then
x∗ is a point of attraction of the iteration xk+ = Gxk , k = , , , . . . .

We note that we cannot directly use the Ostrowski theorem (Theorem .. in []) to
give a local convergence theory for the iteration (.). It is reason that the nonlinear term
|x|+ b is non-differentiable. To overcome this defect, based on the smoothing approximate
function introduced in [], we can establish the following local convergence theory for
nonlinear MHSS-like iteration method.

Define φ : D ⊂C
n →C

n by

φ(x) =
√

x + ε =
(√

x
 + ε, . . . ,

√
x

n + ε
)T

, ε > , x ∈ D.

It is easy to see that φ(x) is a smoothing function of |x|. Based on the results in [], the
following properties of φ(x) can easily be given.

Lemma . φ(x) is a uniformly smoothing approximation function of |x|, i.e.,

∥∥φ(x) – |x|∥∥ ≤ √
nε.

Lemma . For any ε > , the Jacobian of φ(x) at x ∈C
n is

D = φ′(x) = diag

(
xi√

x
i + ε

, i = , , . . . , n
)

. (.)
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Using the smoothing approximate function φ(x) instead of |x| in (.), we have

{
Û(x) = (αI + W )–((αI – iT)x + φ(x) + b),
V̂ (x) = (αI + T)–((αI + iW )x – iφ(x) – ib),

(.)

and

ψ̂(x) = V̂ ◦ Û(x) = V̂
(
Û(x)

)
. (.)

Then, from (.) and (.), the smoothing nonlinear MHSS-like iteration scheme can be
equivalently rewritten as

x̂(k+) = ψ̂
(
x(k)), k = , , , . . . . (.)

Theorem . If the AVE (.) is weakly absolute, then the AVE (.) has a unique solution.

Proof In fact, if the AVE (.) is weakly absolute, then the linear term Ax is strongly dom-
inant over the nonlinear term |x| in certain consistent matrix norm []. Here, according
to the equivalence property of norm, we take the -norm and have

‖Ax‖ >
∥∥|x|∥∥ ⇔ xT AT Ax > xT x ⇔ xT(

AT A – I
)
x > .

This shows that, when the AVE (.) is weakly absolute, the matrix AT A – I is symmetric
positive definite. Based on Theorem . in [], the result in Theorem . holds. �

To obtain the convergence conditions of the nonlinear MHSS-like method, we define a
matrix norm ‖X‖ = ‖(αI + T)X(αI + T)–‖ for any X ∈ C

n×n. Let θ (α) = ‖Mα‖. For α > ,
we have

θ (α) = ‖Mα‖ =
∥∥(αI + iW )(αI + W )–(αI – iT)(αI + T)–∥∥



≤ ∥∥(αI + iW )(αI + W )–∥∥


∥∥(αI – iT)(αI + T)–∥∥


≤ ∥∥(αI + iW )(αI + W )–∥∥
 < ;

see [] for details.

Theorem . Let φ =
√

x + ε (ε > ) be F-differentiable at a point x∗ ∈ D with Ax∗ =
φ(x∗) + b, and A = W + iT where W is symmetric positive definite and T is symmetric
positive semidefinite. Let

Mα,x∗ = (αI + T)–(αI + iW – iφ′(x∗))(αI + W )–(αI – iT + φ′(x∗)),

δ = max
{∥∥(αI + W )–∥∥

,
∥∥(αI + T)–∥∥



}
, θ (α) = ‖Mα‖.

If

δ <
√

 – θ (α) – , (.)
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then ρ(Mα,x∗ ) < , which implies that x∗ ∈ D is a point of attraction of the smoothing non-
linear MHSS-like iteration (.).

Proof Since

Û ′(x∗) = (αI +W )–((αI –iT)+φ
(
x∗)) and V̂ ′(x∗) = (αI +T)–((αI +iW )–iφ

(
x∗)),

it is easy to obtain ψ̂ ′(x∗) = Mα,x∗ .
By direct computations, we have

∥∥φ′(x∗)∥∥
 = ‖D‖ < ,

∥∥(αI – iT)(αI + T)–∥∥
 ≤ ,∥∥(αI + iW )(αI + W )–∥∥

 < .
(.)

Then from (.), we have

‖Mα,x∗‖ =
∥∥(αI + T)Mα,x∗ (αI + T)–∥∥



≤ ∥∥(αI + T)Mα(αI + T)–∥∥
 +

∥∥(αI + iW )(αI + W )–φ′(x∗)(αI + T)–∥∥


+
∥∥φ′(x∗)(αI + W )–(αI – iT)(αI + T)–∥∥



+
∥∥φ′(x∗)(αI + W )–φ′(x∗)(αI + T)–∥∥



≤ ‖Mα‖ +
∥∥(αI + iW )(αI + W )–∥∥



∥∥φ′(x∗)(αI + T)–∥∥


+
∥∥φ′(x∗)(αI + W )–∥∥



∥∥(αI – iT)(αI + T)–∥∥


+
∥∥φ′(x∗)(αI + W )–∥∥



∥∥φ′(x∗)(αI + T)–∥∥


≤ ‖Mα‖ +
∥∥(αI + iW )(αI + W )–∥∥



∥∥(αI + T)–∥∥


+
∥∥(αI + W )–∥∥



∥∥(αI – iT)(αI + T)–∥∥
 +

∥∥(αI + W )–∥∥


∥∥(αI + T)–∥∥


≤ θ (α) + δ + δ.

Obviously, under the condition (.), we have ρ(Mα,x∗ ) ≤ ‖Mα,x∗‖ < . Based on Lem-
ma . (Ostrowski theorem), the results in Theorem . hold. �

Observe that the matrices W and T are strongly dominant over the matrix φ′(x∗) in cer-
tain norm (i.e., ‖W‖ � ‖φ′(x∗)‖ and ‖T‖ � ‖φ′(x∗)‖ for certain matrix norm). Therefore,
matrix A satisfies the condition (.) with W be symmetric positive definite and T be sym-
metric positive semidefinite. In fact, in this case, the matrix Mα,x∗ can be approximated by
the matrix Mα and the condition (.) reduces to ρ(Mα) < . Clearly, ρ(Mα) ≤ θ (α) < .

Theorem . Let the condition of Theorem . be satisfied. For any initial point x() ∈
D ⊂ C

n, the iteration sequence {x(k)}∞k= generated by the nonlinear MHSS-like iteration
(.) can be approximated by the sequence produced by its smoothed scheme (.), i.e.,

∥∥ψ
(
x(k)) – ψ̂

(
x(k))∥∥ < ε, for any ε > ,

provided

ε <
‖(αI + T)‖ε√

n( + ‖(αI + W )–‖)
. (.)
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Proof Based on (.) and (.), combining with (.) with Lemma ., we have

∥∥x(k+) – x̂(k+)∥∥ =
∥∥ψ

(
x(k)) – ψ̂

(
x(k))∥∥

≤ ∥∥(αI + T)–(αI + iW )(αI + W )–(φ(
xk) –

∣∣xk∣∣)∥∥
+

∥∥(αI + T)–(φ(
Û

(
xk)) –

∣∣U(
xk)∣∣)∥∥

≤ ∥∥(αI + T)–(αI + iW )(αI + W )–(φ(
xk) –

∣∣xk∣∣)∥∥
+

∥∥(αI + T)–(φ(
Û

(
xk)) –

∣∣Û(
xk)∣∣ +

∣∣Û(
xk)∣∣ –

∣∣U(
xk)∣∣)∥∥

≤ ∥∥(αI + T)–(αI + iW )(αI + W )–∥∥ · ∥∥(
φ
(
xk) –

∣∣xk∣∣)∥∥
+

∥∥(αI + T)–∥∥ · ∥∥φ
(
Û

(
xk)) –

∣∣Û(
xk)∣∣∥∥

+
∥∥(αI + T)–∥∥ · ∥∥(αI + W )–∥∥ · ∥∥φ

(
xk) –

∣∣xk∣∣∥∥
≤ √

nε
∥∥(αI + T)–∥∥(

 +
∥∥(αI + W )–∥∥)

.

For any ε > , under the condition (.), ‖x(k+) – x̂(k+)‖ < ε. This implies that the results
in Theorem . hold. �

Under the condition of Theorem .,

∥∥x(k+) – x̂(k+)∥∥ ≤√
nεδ( + δ) ≤ √

nε.

This implies that, if we choose ε such that
√

nε < ε, the results in Theorem . hold as
well.

Theorem . Suppose that the condition of Theorem . is satisfied. Let

δ = max
{∥∥(αI + W )–∥∥

,
∥∥(αI + T)–∥∥



}
, θ (α) = ‖Mα‖,

Mα,x∗ = (αI + T)–(αI + iW – iD)(αI + W )–(αI – iT + D),

where D is the Jacobian of φ(x) at x∗ ∈ N ⊂ D ⊂ C
n defined in (.), and N(x∗) is an open

neighborhood of x∗. Then ρ(Mα,x∗ ) < . Furthermore, if

δ <
√

 – θ (α) – , (.)

then, for any initial point x() ∈ D ⊂ C
n, the iteration sequence {x(k)}∞k= generated by the

nonlinear MHSS-like iteration method (.) converges to x∗.

Proof Since

∥∥x(k+) – x∗∥∥ ≤ ∥∥x(k+) – x̂(k+)∥∥ +
∥∥x̂(k+) – x∗∥∥ =

∥∥ψ
(
x(k)) – ψ̂

(
x(k))∥∥ +

∥∥ψ̂
(
x(k)) – x∗∥∥,

then, for any ε > , one just needs to prove

∥∥ψ
(
x(k)) – ψ̂

(
x(k))∥∥ +

∥∥ψ̂
(
x(k)) – x∗∥∥ < ε. (.)
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From (.), we just prove

∥∥ψ
(
x(k)) – ψ̂

(
x(k))∥∥ < ε and

∥∥ψ̂
(
x(k)) – x∗∥∥ < ε.

From Theorems . and ., obviously, ‖x(k+) – x∗‖ < ε. This completes the proof. �

In fact, under the condition of Theorem ., the solution of Ax = |x| + b can be approx-
imated by x∗, which is such that Ax∗ = φ(x∗) + b. It is the reason that, when Ax∗ = |x∗| + b,
we have

∥∥φ
(
x∗) –

∣∣x∗∣∣∥∥ ≤ √
nε, for any ε > .

The convergent speed of the nonlinear MHSS-like method (.) may depend on two
factors: () the nonlinear term |x| + b; () finding the optimal parameters to guarantee
that the spectral radius ρ(Mα) of the iteration matrix Mα is less than . As the former is
problem-independent, the latter can be estimated. Based on Corollary . in [], the op-
timal parameter α∗ =

√
λmaxλmin is obtained to minimize the upper bound on the spectral

radius ρ(Mα) of the MHSS iteration matrix Mα , where λmax and λmin are the extreme eigen-
values of the symmetric positive definite matrix W , respectively. It is noted that, although
one usually cannot expect to minimize the spectral radius ρ(Mα) of the corresponding
iteration matrix Mα with the optimal parameter α∗, it is still helpful for us to choose an
effective parameter for the nonlinear MHSS-like method.

4 Numerical experiments
In this section, we give some numerical experiments to demonstrate the performance of
the nonlinear MHSS-like method for solving the AVE (.). Since the numerical results
in [] show that the nonlinear HSS-like method outperforms the Picard and Picard-HSS
methods under certain conditions, here we compare the nonlinear MHSS-like method
with the nonlinear HSS-like method [] from the point of view of the number of itera-
tions (denoted IT) and CPU times (denoted CPU) to show the advantage of the nonlinear
MHSS-like method. All the tests are performed in MATLAB ..

Example  We consider the following AVE:

Ax – |x| = b, (.)

with A = W + iT ,

T = I ⊗ V + V ⊗ I and W = (I ⊗ Vc + Vc ⊗ I) + 
(
eeT

m + emeT

) ⊗ I,

where V = tridag(–, , –) ∈ R
m×m, Vc = V – eeT

m – emeT
 ∈ R

m×m, e and em are the first
and the last unit vectors in R

m, respectively. Here T and W correspond to the five-point
centered difference matrices approximating the negative Laplacian operator with homo-
geneous Dirichlet boundary conditions and periodic boundary conditions, respectively,
on a uniform mesh in the unit square [, ] × [, ] with the mesh-size h = 

m+ . The right-
hand side vector b is taken to be b = (A – I), with  being the vector of all entries equal
to .
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Table 1 The optimal parameters α for MHSS-like and MHSS-like methods

m 8 × 8 16 × 16 32 × 32 48 × 48

MHSS-like 3.66 2.09 1.22 0.87
HSS-like 9.55 5.32 3.01 2.21

Table 2 CPU and IT for the MHSS-like and HSS-like methods

m 8 × 8 16 × 16 32 × 32 48 × 48

MHSS IT 155 55 66 165
CPU 0.062 0.078 0.563 3.875

PMHSS IT 353 133 154 231
CPU 0.203 0.313 1.969 7.953

In our implementations, the initial point is chosen to be the zero vector and the stopping
criterion for the nonlinear MHSS-like and HSS-like methods is

‖b + |x(k)| – Ax(k)‖

‖b‖
≤ –.

In the implementations of the nonlinear MHSS-like and HSS-like methods, the optimal
parameters have been obtained experimentally to yield the least CPU times and iteration
numbers for both iteration methods. Specifically, see Table .

In Table , we list the iteration numbers and CPU times for the nonlinear MHSS-like
and HSS-like methods by using the optimal parameters in Table .

From Table , the iteration numbers and CPU times of the nonlinear MHSS-like method
for solving the AVE (.) are less than that of the nonlinear HSS-like method. The pre-
sented results in Table  show that in all cases the nonlinear MHSS-like method is supe-
rior to the nonlinear HSS-like method in terms of the iteration numbers and CPU times.
Comparing with the nonlinear HSS-like method, the nonlinear MHSS-like method for
solving the AVE (.) may be given priority under certain conditions.

5 Conclusions
In this paper, the nonlinear MHSS-like method has been established for solving the weakly
absolute value equations (AVE). In the proposed method, two real linear subsystems with
symmetric positive definite matrices αI +W and αI +T are solved at each step. In contrast,
in the nonlinear HSS-like method a shifted skew-Hermitian linear subsystem with the
matrix αI + iT is solved at each iteration. By using a smoothing approximate function, the
local convergence of the proposed method has been analyzed. Numerical experiments
have shown that the nonlinear MHSS-like method is feasible, robust, and efficient.
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