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Abstract
Let T�b and T�b be the commutators in the jth entry and iterated commutators of the
multilinear Calderón-Zygmund operators, respectively. It was well known that the
commutators of linear Calderón-Zygmund operators were not of weak type (1, 1) and
(H1, L1), but they did satisfy certain endpoint L log L type estimates. In this paper, our
aim is to give more natural sharp endpoint results. We show that T�b and T�b are

bounded from the product Hardy space H1 × · · · × H1 to weak L
1
m ,∞ space, whenever

the kernel satisfies a class of Dini type condition. This was done by using a key lemma
given by Christ, a very complex decomposition of the integrand domains, and
carefully splitting the commutators into several terms.

Keywords: commutators; multilinear Calderón-Zygmund operator; C-Z kernel of ω
type; Dini type conditions; Hardy spaces

1 Introduction
1.1 Commutators of classical C-Z operators
In , Coifman, Rochberg, and Weiss [] first introduced and studied the commutator
of classical linear Calderón-Zygmund singular integrals, which was defined by

Tbf = [b, T]f = bT(f ) – T(bf ).

The Lp boundedness of Tb was given in [] for  < p < ∞ when b ∈ BMO(Rn). It is well
known that Tb fails to be of weak type (, ) and is not bounded from H(Rn) to L(Rn).
Counterexamples were given by Pérez [] and Paluszyński []. As an alternative result
of the weak (, ) estimate of Tb, Pérez [] obtained the following L(log L) type endpoint
estimate:

∣
∣
{

x ∈R
n :

∣
∣Tbf (x)

∣
∣ > λ

}∣
∣ ≤ C

∫

Rn

|f (x)|
λ

(

 + log+
( |f (x)|

λ

))

dx, λ > .

Moreover, alternative results of the (H, L) boundedness were also considered in the work
of Alvarez [], Pérez [], and Liang, Ky, and Yang [], which concerned with the bound-
edness of Tb on the subspace of atomic Hardy spaces, or concerned with the (H

w, L
w)
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boundedness of Tb if b belongs to a subspace of BMO which is associated to the weight
function w.

On the other hand, another more reasonable and alternative result of weak type (, )
and (H, L) estimate was given by Liu and Lu [] in . The authors [] showed that
Tb is bounded from H(Rn) to L,∞(Rn) if b ∈ BMO(Rn). We note that Tb also fails to be
bounded from Hp(Rn) to Lp,∞(Rn) for  < p <  by the generalized interpolation theorem
[], pp.. Therefore, the (H, L,∞) boundedness of Tb becomes a sharp endpoint esti-
mate. Moreover, always L(log L)(Sn–) � H(Sn–) if f vanishes on the unit sphere. How-
ever, there is no such inclusion relationship on R

n. Moreover, the inverse including rela-
tionship is still not true, since the following example shows that H(Rn) � L(log L)(Rn).

Example . Let

f (x) =
χ[– 

 , 
 ]

x log+ε



|x|

for some ε > ,

aj(x) =
f (x)

f ( 
j+ )

{χ[– 
j ,– 

j+ ] + χ[ 
j+ , 

j ]} × j, λj =
f ( 

j+ )
j .

Thus, f (x) =
∑∞

j= λjaj(x), and it is easy to verify that each aj is a (,∞, )-atom. Notice that

∞
∑

j=

|λj| =
∞

∑

j=

|f ( 
j+ )|
j ≤

∞
∑

j=


j · 


j+ log+ε

 j+
= 

∞
∑

j=


(j + )+ε

< ∞,

then we have f ∈ H(Rn). Obviously, f /∈ L(log L)(Rn).

Thus, the (H, L,∞) boundedness and the L log L type estimate of Tb are independent in
the sense that one cannot cover the results of the other.

1.2 Commutators of multilinear operators
In recent years, the theory of multilinear Calderón-Zygmund operators with standard ker-
nels have been developed very quickly and a lot of work has been done. Among such
achievements is the celebrated work of Coifman and Meyer [–], Christ and Journé
[], Kenig and Stein [], Grafakos and Torres [, ], and Lerner et al. []. In order to
state some well-known results, we need to introduce some definitions.

Definition . (C-Z kernel of ω type [, ]) Let ω(t) be a non-negative and non-
decreasing function onR

+. Let K(x, y, . . . , ym) be a locally integrable function defined away
from the diagonal x = y = · · · = ym in (Rn)m+. Denote (x, �y) = (x, y, . . . , ym), we say K is an
m-linear Calderón-Zygmund kernel of ω type, if there exists a positive constant C such
that

∣
∣K(x, �y)

∣
∣ ≤ C

(
∑m

j= |x – yj|)mn , (.)

∣
∣K(x, �y) – K

(

x′, �y)∣∣ ≤ C

(
∑m

j= |x – yj|)mn ω

( |x – x′|
∑m

j= |x – yj|
)

, (.)
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whenever |x – x′| ≤ 
 max≤j≤m |x – yj|, and

∣
∣K(x, y, . . . , yi, . . . , ym) – K

(

x, y, . . . , y′
i, . . . , ym

)∣
∣

≤ C

(
∑m

j= |x – yj|)mn ω

( |yi – y′
i|

∑m
j= |x – yj|

)

, (.)

whenever |yi – y′
i| ≤ 

 max≤j≤m |x – yj|.

Definition . (Multilinear C-Z singular integral operators [, ]) Let K(x, �y) be a C-
Z kernel of ω type. For any �f = (f, . . . , fm) ∈ S (Rn) × S (Rn) × · · · × S (Rn) and all x /∈
⋂m

j= supp fj, we define the multilinear Calderón-Zygmund singular integral operators as
follows:

T(�f )(x) =
∫

(Rn)m
K(x, y, . . . , ym)f(y), . . . , fm(ym) dy · · · dym.

Definition . (Commutators of multilinear C-Z operators) Let bj ∈ BMO(Rn) and T be
the operator defined in Definition .. The commutators in the jth entry and the iterated
commutators of T are defined by

T�b(�f )(x) =
m

∑

j=

Tj
�b(�f )(x)

=
m

∑

j=

[

bj(x)T(f, . . . , fj, . . . , fm)(x) – T(f, . . . , bjfj, . . . , fm)(x)
]

(.)

and

T�b(�f ) =
[

b,
[

b, . . .
[

bm–, [bm, T]m,
]

m– · · · ]

]

(�f )

=
∫

(Rn)m

m
∏

j=

(

bj(x) – bj(yj)
)

K(x, y, . . . , ym)f(y) · · · fm(ym) d�y. (.)

Remark . Obviously, in the special case, ω(t) = tε for some ε > , then the operator T
defined in Definition . coincides with the standard multilinear Calderón-Zygmund oper-
ator defined and studied by Grafakos and Torres []. Moreover, if ω(t) = tε , the weighted
strong and L(log L) type endpoint estimates for T�b(f, . . . , fm)(x) =

∑m
j= Tj

�b(�f ) and T�b have
already been studied in [] and [], respectively.

Definition . (Dini(a) type conditions) Let ω(t) be a non-negative and non-decreasing
function on R

+. ω is said to satisfy the Dini(a) condition if

∫ 



ωa(t)
t

dt < ∞.

ω is said to satisfy the log-Dini(a) condition if the following inequality holds:

∫ 



ωa(t)
t

(

 + log

t

)

dt < ∞. (.)
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Remark . It is easy to see that the log-Dini(a) condition is stronger than the Dini(a)
condition and if  < a < a, then Dini(a) ⊂ Dini(a).

In , Maldonado and Naibo [] showed that, when ω is concave and ω ∈ Dini(/),
the bilinear Calderón-Zygmund operator of ω type is bounded from L × L to L 

 ,∞. In
, Lu and Zhang [] improved the results in [] by removing the hypothesis that ω is
concave and reducing the condition ω ∈ Dini(/) to the weaker condition ω ∈ Dini(). Lu
and Zhang [] also extended the weighted strong and L(log L) type endpoint estimates to
the commutators defined in (.) whenever ω satisfies the log-Dini() condition, which is
stronger than Dini() condition but it is much weaker than the standard kernel ω(t) = tε .
More previous work on the commutators of multilinear operators with ω(t) = tε can be
found in [–] and [].

1.3 Main results
In this paper, we will consider the sharp endpoint estimates for both the commutator in the
jth entry defined in (.) and the iterated commutators defined in (.) with a C-Z kernel
of ω type. We show that they are bounded from a product Hardy space H × · · · × H to
a weak L 

m ,∞ space, whenever the kernel satisfies a class of Dini type condition. However,
the proof is very difficult and complex. In particular, in the case of iterated commutators,
we need to control six summations and three integrals at the same time even for m = .
We formulate our main results as follows.

Theorem . Let T be a multilinear Calderón-Zygmund operators with a C-Z kernel of ω

type and T�b be the commutators of the jth entries defined in (.) with �b ∈ BMOm. If ω(t)
satisfies the log-Dini() condition, then there exists a constant C > , such that the following
inequality holds:

∣
∣
{

x ∈R
n :

∣
∣T�b(�f )(x)

∣
∣ > λ

}∣
∣ ≤ C‖�b‖BMOm λ– 

m

m
∏

j=

‖fj‖

m
H(Rn). (.)

With a stronger condition assumed on the function ω(t) than in Theorem ., but a
weaker condition than the standard kernel ω(t) = tε , we obtain the following theorem for
the iterated commutators.

Theorem . Let ω(t) be a doubling function, satisfying the log-Dini(/m) condition, that
is,

∫ 


ω(t)


m t–

(

 + log

t

)

dt < ∞.

Let T be a multilinear Calderón-Zygmund operators with a C-Z kernel of ω type and T�b

be the iterated commutators defined in (.) with �b ∈ BMOm. Then there exists a constant
C > , such that the following inequality holds:

∣
∣
{

x ∈R
n :

∣
∣T�b(�f )(x)

∣
∣ > λ

}∣
∣ ≤ C‖�b‖BMOm λ– 

m

m
∏

j=

‖fj‖

m
H(Rn). (.)
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This article is organized as follows. In Section , the proof of Theorem . will be given.
Section  will be devoted to the proof of Theorem ..

2 Proofs of Theorem 1.1
To prove Theorem ., we need the following key lemma given by Chirst [], which pro-
vides a foundation for our analysis.

Lemma . ([]) For any α >  and any finite collection of dyadic cubes Q and associated
positive scalars λQ, there exists a collection of pairwise disjoint dyadic cubes S such that

()
∑

Q⊂S λQ ≤ nα|S|, for all S;
()

∑ |S| ≤ α– ∑
λQ;

() ‖∑

Q� any S λQ|Q|–χQ‖L∞(Rn) ≤ α.

Proof of Theorem . For simplicity, we only consider the case for m = , because there is
no essential difference for the general case.

Since T�b is bounded from L(Rn) × L(Rn) into L(Rn) [], and finite sums of atoms are
dense in H(Rn), we will work with such sums and will obtain desired estimates which is
independent of the number of terms in each sum. Thus, for any given fj ∈ H(Rn) (j = , ),
we may assume that fj =

∑

kj
λkj akj is a finite sum of H-atoms, where each akj is a (,∞, )

atom, with
∑

kj
|λkj | ≤ C‖fj‖H(Rn). Set C = ‖T�b‖L×L→L,∞ and C = ‖T‖

L×L→L

 ,∞ . By

linearity, it is sufficient to consider the commutator of T with only one symbol, that is, for
�b = b ∈ BMO(Rn), we will consider the operator

Tb(f, f)(x) = b(x)T(f, f)(x) – T(bf, f)(x).

To prove inequality (.), without loss of generality, we may assume that ‖fj‖H(Rn) =  for
j = , . For fix λ > , we only need to show that there is a constant C > , independent on
the variables and fj (j = , ), such that

∣
∣
{

x ∈R
n :

∣
∣Tb(f, f)(x)

∣
∣ > λ

}∣
∣ ≤ C(C + C + C)/λ–/. (.)

Let γ be a positive number to be determined later. Take the finite collection of dyadic cubes
Qj,kj , which is associated with the positive scalars λQj,kj

in the given atomic decomposition
of fj. Now, we take α = (γ λ)/ in Lemma .. Then there exists a collection of pairwise
disjoint dyadic cubes Sj,lj , such that

(I)
∑

Qj,kj ⊂Sj,lj

λQj,kj
≤ n(γ λ)/|Sj,lj |, for all Sj,lj ;

(II)
∑

Sj,lj

|Sj,lj | ≤ (γ λ)–/
∑

Qj,kj ⊂Sj,lj

λQj,kj
;

(III)
∥
∥
∥
∥

∑

Qj,kj� any Sj,lj

λQj,kj
|Qj,kj |–χQj,kj

∥
∥
∥
∥

L∞(Rn)
≤ (γ λ)/.
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Denote S∗
j,lj = 

√
nSj,lj , S∗

j =
⋃

lj S∗
j,lj for j = , , and S∗ =

⋃
j= S∗

j . Set

hj =
∑

Sj,lj

∑

Qj,kj ⊂Sj,lj

λQj,kj
aQj,kj

and gj(x) = fj(x) – hj(x).

By the definition of gj and hj, (III), and the properties of the (, ∞, ) atoms, we have

‖gj‖L∞(Rn) ≤ (γ λ)/; ‖gj‖L(Rn) ≤
∑

Qj,kj� any Sj,lj

|λQj,kj
| ≤

∑

kj

|λkj | ≤ C‖fj‖H(Rn);

‖hj‖L(Rn) ≤
∑

Sj,lj

∑

Qj,kj ⊂Sj,lj

|λQj,kj
|
∫

Rn
|aQj,kj

|dx ≤
∑

kj

|λkj | ≤ C‖fj‖H(Rn).

Now, we introduce some more notations as follows:

E =
{

x ∈R
n :

∣
∣Tb(g, g)(x)

∣
∣ > λ/

}

; E =
{

x ∈ R
n\S∗ :

∣
∣Tb(h, g)(x)

∣
∣ > λ/

}

;

E =
{

x ∈R
n\S∗ :

∣
∣Tb(g, h)(x)

∣
∣ > λ/

}

; E =
{

x ∈R
n\S∗ :

∣
∣Tb(h, h)(x)

∣
∣ > λ/

}

.

By (II), it follows that

∣
∣S∗∣∣ ≤


∑

j=

∣
∣S∗

j
∣
∣ ≤


∑

j=

∑

Sj,lj

∣
∣S∗

j,lj

∣
∣ ≤ C(γ λ)–/


∑

j=

∑

Qj,lj ⊂Sj,lj

λQj,lj
≤ C(γ λ)–/. (.)

From the L × L → L,∞ boundedness of T�b, the Chebyshev inequality, and ‖gj‖L∞(Rn) ≤
(γ λ)/, one may obtain

|E| ≤ Cλ
–‖g‖L(Rn)‖g‖L(Rn) ≤ Cλ

–(γ λ)

 ‖g‖



L(Rn)‖g‖



L(Rn)

≤ CCγ

 λ–‖f‖



H(Rn)‖f‖



H(Rn) = CCγ


 λ– 

 . (.)

Therefore, we get

∣
∣
{

x ∈R
n :

∣
∣Tb(�f )(x)

∣
∣ > λ

}∣
∣ ≤


∑

s=

|Es| + C
∣
∣S∗∣∣

≤


∑

s=

|Es| + C(γ λ)–/ + CCγ

 λ– 

 . (.)

Hence, to finish the proof of Theorem ., we only need to consider the contributions of
each |Es| for  ≤ s ≤ , separately.

• Estimate for |E|. By the definition of gj and hj, the moment condition of H-atoms,
and employing the linearity of Tb, it now follows that

Tb(h, g)(x)

=
∑

S,l

∑

Q,k ⊂S,l

λQ,k

∫∫

(Rn)

(

b(x) – bQ,k

)(

K(x, y, y) – K(x, c,k , y)
)
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× aQ,k
(y)g(y) d�y

+
∑

S,l

∑

Q,k ⊂S,l

λQ,k

∫∫

(Rn)

(

bQ,k
– b(y)

)

K(x, y, y)aQ,k
(y)g(y) d�y

=: I,(x) + I,(x). (.)

Therefore, we have

|E| ≤
∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

:= |E,| + |E,|.

Thus, to show the contributions of E, we only need to consider the contributions of E,

and E,, respectively.
To estimate |E,|, we fix k and denote R i

,k
= (i+√nQ,k )\(i+√nQ,k ), i = , , . . . .

Then it is obvious that Rn\S∗ ⊂R
n\Q∗

,k
⊂ ⋃∞

i= R i
,k

. Let c,k be the center of cube Q,k ,
lQ,k

be the side length of cube Q,k Then, for any y ∈ Q,k and x ∈ R i
,k

, we have

|y – c,k | ≤


√

nlQ,k
and |x – c,k | ≥ i–√nlQ,k

. (.)

By the Chebychev inequality and (.), it follows that

|E,| ≤ C

λ
‖g‖L∞

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
∫

Rn\S∗

∫

Rn

∫

Rn

∣
∣b(x) – bQ,k

∣
∣

× |a,k (y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx. (.)

Since R
n\S∗ ⊂ ⋃∞

i= R i
,k

and ω is non-decreasing, together with (.) and noticing that
a,k ∈ L(Rn), one obtains

∫

Rn\S∗

∫

Rn

∫

Rn

∣
∣b(x) – bQ,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

≤
∞

∑

i=

∫

Ri
,k

∫

Rn

∫

Rn

∣
∣b(x) – bQ,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y|

)

dy dy dx

≤ C
∞

∑

i=

ω
(

–i)
∫

Ri
,k

∫

Rn

∣
∣b(x) – bQ,k

∣
∣
|aQ,k

(y)|
|x – y|n dy dx

≤ C
∞

∑

i=

ω
(

–i) 
|i+Q,k |

∫

i+Q,k

∣
∣b(x) – bQ,k

∣
∣dx

≤ C
∞

∑

i=

iω
(

–i)‖�b‖∗ ≤ C.

Putting the above estimate into (.) and noticing the fact that ‖gj‖L∞(Rn) ≤ (γ λ)/, we
have

|E,| ≤ CC

λ
(γ λ)



∑

S,l

∑

Q,k ⊂S,l

|λQ,k
| ≤ CCγ


 λ– 

 . (.)
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Now, we are in the position to estimate |E,|. The L × L → L 
 ,∞ boundedness of T

implies that

|E,| ≤ CC



 λ– 

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|∥∥(

b(x) – bQ,k

)

aQ,k

∥
∥



L(Rn)‖g‖



L(Rn)

≤ CC



 λ– 

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
(


|Q,k |

∫

Q,k

∣
∣b(y) – bQ,k

∣
∣dy

) 
 ‖f‖



H(Rn)

≤ CC



 ‖�b‖ 
∗ λ– 



≤ CC



 λ– 
 . (.)

Therefore in all, combining (.) and the above estimate, we conclude that

|E| ≤ C
(

Cγ

 λ– 

 + C



 λ– 

)

.

• Estimate for |E|. The estimate of |E| is similar to |E|. In fact,

Tb(g, h)(x)

=
∑

S,l

∑

Q,k ⊂S,l

λQ,k

∫∫

(Rn)

(

b(x) – bQ,k

)(

K(x, y, y) – K(x, y, c,k )
)

× g(y)aQ,k
(y) d�y

+
∑

S,l

∑

Q,k ⊂S,l

λQ,k

∫∫

(Rn)

(

bQ,k
– b(y)

)

K(x, y, y)g(y)aQ,k
(y) d�y

=: I,(x) + I,(x).

Repeating the same steps as we have done for |E|, we may obtain

|E| ≤ C
(

Cγ

 λ– 

 + C



 λ– 

)

.

• Estimate for |E|. First, we split Tb(h, h) in the form as follows:

Tb(h, h)(x)

=
∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

∫∫

(Rn)

(

b(x) – bQ,k

)(

K(x, y, y) – K(x, c,k , y)
)

× λQ,k
aQ,k

(y)λQ,k
aQ,k

(y) d�y

+
∑

S,l

∑

Q,k ⊂S,l

∫∫

(Rn)

(

bQ,k
– b(y)

)

K(x, y, y)λQ,k
aQ,k

(y)h(y) d�y

=: I,(x) + I,(x).

Hence, we have

|E| ≤
∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈ R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣. (.)
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For fixed k, denote Rh
,k

= (h+√nQ,k )\(h+√nQ,k ), h = , , . . . . Recalling the defini-
tion of R i

,k
, it is easy to check

(

S∗)c := R
n\S∗ ⊂R

n\
(

Q∗
,k ∪ Q∗

,k

)

⊂
∞
⋃

h=

∞
⋃

i=

(

R i
,k ∩ Rh

,k

)

.

Therefore, one may obtain

(

S∗)c =
(

S∗)c ∩
( ∞

⋃

h=

∞
⋃

i=

(

R i
,k ∩ Rh

,k

)
)

=
∞
⋃

h=

∞
⋃

i=

((

S∗)c ∩
(

R i
,k ∩ Rh

,k

))

. (.)

By the Chebychev inequality, (.), and (.), it follows that

∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

≤ C

λ

∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

∫

Rn\S∗

∫∫

(Rn)

∣
∣b(x) – bQ,k

∣
∣

× |λQ,k
||aQ,k

(y)||λQ,k
||aQ,k

(y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx. (.)

Moreover, by (.), the integrals in the above summations can be controlled by

∞
∑

i=

∞
∑

h=

∫

(S∗)c∩Ri
,k

∩Rh
,k

∫∫

(Rn)

∣
∣b(x) – bQ,k

∣
∣

× |λQ,k
||aQ,k

(y)||λQ,k
||aQ,k

(y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y|

)

dy dy dx

≤
∞

∑

i=

∞
∑

h=

ω
(

–i)
∫

(S∗)c∩Ri
,k

∩Rh
,k

∫∫

(Rn)

∣
∣b(x) – bQ,k

∣
∣

× |λQ,k
|∣∣aQ,k

(y)
∣
∣|λQ,k

|∣∣aQ,k
(y)

∣
∣

× sup
y,y∈S


(|x – y| + |x – y|)n dy dy dx. (.)

For fixed x ∈ (S∗)c, and any y, y ∈ S, we have

inf
y∈S

|x – y| ≈ |x – y|, inf
y∈S

|x – y| ≈ |x – y|.

This implies that

sup
y,y∈S


(|x – y| + |x – y|)n =


(infy∈S |x – y| + infy∈S |x – y|)n

≈ 
(|x – y| + |x – y|)n . (.)

Note that {Sj,lj}lj are pairwise disjoint dyadic cubes, by (I) and (.), it now follows that
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∑

S,l

∑

Q,k ⊂S,l

∫

Rn
|λQ,k

|∣∣aQ,k
(y)

∣
∣ sup

y,y∈S


(|x – y| + |x – y|)n dy

=
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
| sup

y,y∈S


(|x – y| + |x – y|)n

∫

Rn

∣
∣aQ,k

(y)
∣
∣dy

≤ C
∑

S,l

(
∑

Q,k ⊂S,l

|λQ,k
|
)

sup
y,y∈S


(|x – y| + |x – y|)n

≤
∑

S,l

n(γ λ)/|S,l | sup
y,y∈S


(|x – y| + |x – y|)n

≤ C(γ λ)/
∑

S,l

∫

S,l


(|x – y| + |x – y|)n dy

≤ C(γ λ)/ 
|x – y|n . (.)

Combining (.), (.), and (.), we obtain

∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

ω
(

–i)
∫

(S∗)c∩Ri
,k

∩Rh
,k

∫

Rn

∣
∣b(x) – bQ,k

∣
∣

× |λQ,k
||aQ,k

(y)|
|x – y|n dy dx

≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

ω
(

–i)
∫

Ri
,k

∫

Rn

∣
∣b(x) – bQ,k

∣
∣

× |λQ,k
||aQ,k

(y)|
|x – y|n dy dx

≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i) 
|i+Q,k |

∫

i+Q,k

∣
∣b(x) – bQ,k

∣
∣dx

≤ CC‖�b‖∗γ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)i

≤ CCγ

 λ– 

 . (.)

The estimate of |{x ∈ R
n\S∗ : |I,(x)| > λ/}| is similar to (.). In fact, we only need to

replace g by h in (.), and noting that ‖h‖L ≤ C‖f‖H , we have

∣
∣
{

x ∈R
n\S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ ≤ CC




 λ– 
 . (.)

Putting (.) and (.) into (.), it yields

|E| ≤ C
(

Cγ

 λ– 

 + C



 λ– 

)

.
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Thus, we have proved that

|Es| ≤ C
(

Cγ

 λ– 

 + C



 λ– 

)

for s = , , . (.)

Set γ = (C + C + C)–, by (.) and (.), we have

∣
∣
{

x ∈R
n :

∣
∣Tb(�f )(x)

∣
∣ > λ

}∣
∣ ≤


∑

s=

|Es| + C(γ λ)–/ + CCγ

 λ– 



≤ C(C + C + C)/λ–/.

The proof of (.) is finished. Since we have reduced the proof of Theorem . to (.), the
proof of Theorem . is completed. �

3 Proof of Theorem 1.2

Proof of Theorem . Since there is no essential difference for the general case, we will
also only consider Theorem . for the case m = . Thus, it is sufficient to consider the
following operator:

Tπb(f, f)(x) =
[

b, [b, T],
]

(f, f)

=
∫

(Rn)m


∏

j=

(

bj(x) – bj(yj)
)

K(x, y, y)f(y)f(y) dy dy,

where fj ∈ H(Rn) (j = , ) with ‖fj‖H(Rn) =  for j = , . Since Tπb(f, f)(x) is bounded
from L(Rn) × L(Rn) into L(Rn) [], we may set C′

 = ‖Tπb‖L×L→L,∞ . Recall C =
‖T‖

L×L→L

 ,∞ , following the same argument as in the proof of Theorem ., it is also

sufficient to show that

∣
∣
{

x ∈R
n :

∣
∣Tπb(f, f)(x)

∣
∣ > λ

}∣
∣ ≤ C

(

C + C′
 + C

)/
λ–/. (.)

The same decomposition for fj ∈ H(Rn) (j = , ) as in Theorem . yields

hj =
∑

Sj,lj

∑

Qj,kj ⊂Sj,lj

λQj,kj
aQj,kj

, fj(x) = gj(x) + hj(x), (.)

where gj and hj enjoy the same properties as in Theorem ..
With abuse of notations, we may still set

E =
{

x ∈R
n :

∣
∣Tπb(g, g)(x)

∣
∣ > λ/

}

;

E =
{

x ∈ R
n\S∗ :

∣
∣Tπb(h, g)(x)

∣
∣ > λ/

}

;

E =
{

x ∈R
n\S∗ :

∣
∣Tπb(g, h)(x)

∣
∣ > λ/

}

;

E =
{

x ∈R
n\S∗ :

∣
∣Tπb(h, h)(x)

∣
∣ > λ/

}

.
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Then (.) still gives

∣
∣S∗∣∣ ≤ C(γ λ)–/.

Note that C′
 = ‖Tπb‖L×L→L,∞ , repeating the arguments as in the estimates of (.), we

may obtain

|E| ≤ CC′
γ


 λ– 

 .

Therefore,

∣
∣
{

x ∈R
n :

∣
∣Tπb(�f )(x)

∣
∣ > λ

}∣
∣ ≤


∑

s=

|Es| + C
∣
∣S∗∣∣ ≤


∑

s=

|Es| + C(γ λ)–/ + CCγ

 λ– 

 .

Thus, to show Theorem . is true, we only have to show that

|Es| ≤ C
(

Cγ

 λ– 

 + C– 


 λ– 

)

, for s = , , . (.)

In fact, let γ = (C + C′
 + C)– 

 , it is easy to check that the inequality (.) is true.
• Estimate for |E|. Employing the linearity of Tπb and the atomic decomposition of h,

we may get

Tπb(h, g)(x)

=
∫

(Rn)m


∏

j=

(

bj(x) – bj(yj)
)

K(x, y, y)h(y)g(y) dy dy

=
∑

S,l

∑

Q,k ⊂S,l

λQ,k

(

b(x)b(x)T(aQ,k
, g)(x) – b(x)T(baQ,k

, g)(x)

– b(x)T(aQ,k
, bg)(x) + T(baQ,k

, bg)(x)
)

=
∑

S,l

∑

Q,k ⊂S,l

λQ,k

(

b(x) – b,Q,k

)(

b(x) – b,Q,k

)

T(aQ,k
, g)(x)

–
∑

S,l

∑

Q,k ⊂S,l

λQ,k

(

b(x) – b,Q,k

)

T
(

(b – b,Q,k
)aQ,k

, g
)

(x)

–
∑

S,l

∑

Q,k ⊂S,l

λQ,k

(

b(x) – b,Q,k

)

T
(

aQ,k
, (b – b,Q,k

)g
)

(x)

+
∑

S,l

∑

Q,k ⊂S,l

λQ,k
T

(

(b – b,Q,k
)aQ,k

, (b – b,Q,k
)g

)

(x)

=: I,(x) + I,(x) + I,(x) + I,(x).

Thus

|E| =
∣
∣
{

x ∈R
n :

∣
∣Tπb(g, h)(x)

∣
∣ > λ/

}∣
∣

≤ ∣
∣
{

x ∈R
n :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈R
n :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣
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+
∣
∣
{

x ∈R
n :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈R
n :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

=: |E,| + |E,| + |E,| + |E,|.

By the definition of I, and the moment condition of H-atoms, we have

I,(x) =
∑

S,l

∑

Q,k ⊂S,l

λQ,k

(

b(x) – b,Q,k

)(

b(x) – b,Q,k

)

×
∫∫

(Rn)

(

K(x, y, y) – K(x, c,k , y)
)

aQ,k
(y)g(y) dy dy.

Putting the above identity into the definition of |E,| and noting that ‖g‖L∞(Rn) ≤ (γ λ)/,
R

n\S∗ ⊂ ⋃∞
i= R i

,k
, together with the Chebyshev inequality and condition (.), we have

|E,| ≤ 
λ

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
∫

(S∗)c

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣
∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣K(x, y, y) – K(x, c,k , y)

∣
∣
∣
∣aQ,k

(y)
∣
∣
∣
∣g(y)

∣
∣dy dy dx

≤ CCλ
/γ –/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

Ri
,k

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣

|a,k (y)|
(|x – y| + |x – y|)n ω

×
( |y – c,k |

|x – y| + |x – y|
)

dy dy dx. (.)

By (.) and the non-decreasing property of ω, we have

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

Ri
,k

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣

|a,k (y)|
(|x – y| + |x – y|)n ω

(

–i)dy dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣
|a,k (y)|
|x – y|n ω

(

–i)dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣

|a,k (y)|
|i+√nQ,k |

ω
(

–i)dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i) 
|i+√nQ,k |

×
∫

Ri
,k

∣
∣b(x) – b,Q,k

∣
∣
∣
∣b(x) – b,Q,k

∣
∣dx. (.)
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By the Hölder inequality, one obtains


|i+√nQ,k |

∫

Ri
,k

∣
∣b(x) – b,Q,k

∣
∣
∣
∣b(x) – b,Q,k

∣
∣dx

≤
(


|i+√nQ,k |

∫

i+√
nQ,k

∣
∣b(x) – b,Q,k

∣
∣
 dx

)/

×
(


|i+√nQ,k |

∫

i+√
nQ,k

∣
∣b(x) – b,Q,k

∣
∣
 dx

)/

≤ Ci‖b‖∗. (.)

Combining (.) and (.), we get

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)i ≤ CCγ
/λ–/.

Now we begin to estimate |E,|.
Similarly to our dealing with |E,|, and together with the size condition of H-atoms, it

follows that

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫∫

(Rn)

∣
∣b(y) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

Rn

∣
∣b(y) – b,Q,k

∣
∣

× ∣
∣b(x) – b,Q,k

∣
∣


(|x – y|)n|Q,k |

ω
(

–i)dy dx

≤ CCγ
/λ–/‖b‖∗

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i) 
(|i+Q,k |)n

×
∫

(S∗)c∩Ri
,k

∣
∣b(x) – b,Q,k

∣
∣dx

≤ CCγ
/λ–/‖b‖∗‖b‖∗

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)i

≤ CCγ
/λ–/.

The estimate for |E,| is more complicated, and we need to split the domain of the vari-
able y. First, similar to our dealing with |E,| in (.) and (.), we may get

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx.
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Denote Rh
,k

= (h+√nQ,k )\(h+√nQ,k ) and recall that Q∗
,k

= 
√

nQ,k , then

y ∈ R
n ⊂

( ∞
⋃

h=

Rh
,k

)

∪ Q∗
,k .

Thus |E,| can be controlled by

CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

⋃∞
i= Rh

,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

+ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

Q∗
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)||

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

=:
∣
∣E

,
∣
∣ +

∣
∣E

,
∣
∣.

For any h ∈N, if y ∈ Rh
,k

, note that y ∈ Q,k , then

|x – y| + |x – y| ≥ |y – y| ∼ |y – c,k | ∼ lh+Q,k
.

On the other hand, for any i ∈N, if x ∈ R i
,k

and y ∈ Q,k , then

|x – y| + |x – y| ≥ |x – y| ∼ li+Q,k
. (.)

By the geometric properties of y, y, x above, we may obtain

∣
∣E

,
∣
∣

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∞
∑

h=

∫

(S∗)c∩Ri
,k

∫

Rh
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∞
∑

h=

∫

(S∗)c∩Ri
,k

∫

Rh
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

|i+Q,k ||h+Q,k |
ω

(

–i)/
ω

(

–h)/ dy dy dx. (.)

It is easy to see that

∞
∑

h=

ω
(

–h)/
∫

Rh
,k

|b(y) – b,Q,k
|

|h+Q,k |
dy ≤ C

∞
∑

h=

ω
(

–h)/h‖b‖∗ ≤ C. (.)
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Since a(y) ∈ L(Rn), putting the above estimate into (.), we have

∣
∣E

,
∣
∣ ≤ CCγ

/λ–/
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)/
∫

i+Q,k

|b(x) – b,Q,k
|

|i+Q,k |
dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)/i‖b‖∗

≤ CCγ
/λ–/.

If y ∈ Q∗
,k

, note that x ∈ (
√

nQ,k )c, then

|x – y| + |x – y| ≥ |x – y| ≥ ClQ,k
.

By the definition of |E
,| and (.), we have

∣
∣E

,
∣
∣ ≤ CCγ

/λ–/
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

Q∗
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

|i+Q,k ||Q∗
,k

|ω
(

–i)dy dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

i+Q,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× |aQ,k
(y)|

|i+Q,k |
ω

(

–i)dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i) 
|i+Q,k |

×
∫

i+Q,k

∣
∣b(x) – b,Q,k

∣
∣dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i)i‖b‖∗

≤ CCγ
/λ–/.

Hence, we obtain

|E,| ≤
∣
∣E

,
∣
∣ +

∣
∣E

,
∣
∣ ≤ CCγ

/λ–/.

Now we begin to consider |E,|. Similarly,

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫∫

(Rn)

∣
∣b(y) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx.
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Repeating the same steps as in the estimate of |E,|, we have

|E,| ≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

⋃∞
i= Rh

,k

∫

Rn

∣
∣b(y) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

+ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

(S∗)c∩Ri
,k

∫

Q∗
,k

∫

Rn

∣
∣b(y) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

=:
∣
∣E

,
∣
∣ +

∣
∣E

,
∣
∣.

By the definition of |E
,|, one may obtain

∣
∣E

,
∣
∣ ≤ CCγ

/λ–/
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∞
∑

h=

∫

(S∗)c∩Ri
,k

∫

Rh
,k

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× ∣
∣b(y) – b,Q,k

∣
∣

|aQ,k
(y)|

|x – y|n|h+Q,k |
ω

(
y – c,k

|x – y|
)/

ω
(

–h)/ dy dy dx.

By (.), and taking the integral for x first, we have

∣
∣E

,
∣
∣ ≤ CCγ

/λ–/
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

∫

Ri
,k

∫

Q,k

|b(y) – b,Q,k
|

|Q,k ||x – y|n

× ω

(
y – c,k

|x – y|
)/

dy dx

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
∫

Q,k

|b(y) – b,Q,k
|

|Q,k |
dy

≤ CCγ
/λ–/

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|‖b‖∗

≤ CCγ
/λ–/.

The estimate for |E
,| is quite similar to |E

,|, we may get |E
,| ≤ CCγ

/λ–/.
• Estimate for |E|. Since |E| is a symmetrical case of |E|, we can obtain

|E| ≤ CCγ
/λ–/.

• Estimate for |E|.

T�b(h, h) =
[

b, [b, T],
]

(h, h)

=
∫

(Rn)m


∏

j=

(

bj(x) – bj(yj)
)

K(x, y, y)h(y)h(y) dy dy
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=
∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

λQ,k
λQ,k

(

b(x) – b,Q,k

)(

b(x) – b,Q,k

)

× T(aQ,k
, aQ,k

)(x)

–
∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

λQ,k
λQ,k

(

b(x) – b,Q,k

)

× T
(

(b – b,Q,k
)aQ,k

, aQ,k

)

(x)

–
∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

λQ,k
λQ,k

(

b(x) – b,Q,k

)

× T
(

aQ,k
, (b – b,Q,k

)aQ,k

)

(x)

+
∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

λQ,k
λQ,k

× T
(

(b – b,Q,k
)aQ,k

, (b – b,Q,k
)aQ,k

)

(x)

=: I,(x) + I,(x) + I,(x) + I,(x).

Thus, we obtain

|E| =
∣
∣
{

x ∈R
n/S∗ :

∣
∣Tπb(h, h)(x)

∣
∣ > λ/

}∣
∣

≤ ∣
∣
{

x ∈R
n/S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈R
n/S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

+
∣
∣
{

x ∈R
n/S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣ +

∣
∣
{

x ∈R
n/S∗ :

∣
∣I,(x)

∣
∣ > λ/

}∣
∣

=: |E,| + |E,| + |E,| + |E,|.

Now we begin considering |E,|. By the definition of I,(x), we can write

∣
∣I,(x)

∣
∣ ≤

∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

|λQ,k
||λQ,k

|
∣
∣
∣
∣

∫∫

(Rn)

(

b(x) – b,Q,k

)

× (

b(x) – b,Q,k

)

K(x, y, y)aQ,k
(y)aQ,k

(y) dy dy

∣
∣
∣
∣
.

Fix for a moment k, k and assume, without loss of generality, that l(Q,k ) ≤ l(Q,k ). By
the moment condition of H-atoms and the regularity condition (.) of the kernel K , we
have

∣
∣
∣
∣

∫

Rn
K(x, y, y)a,k (y) dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Rn

(

K(x, y, y) – K(x, c,k , y)
)

a,k (y) dy

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Rn

C

(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

aQ,k
(y) dy

∣
∣
∣
∣
.

Recalling the definition of R i
,k

, Rh
,k

, and note that y ∈ Q,k , y ∈ Q,k , it is obvious that,
for any fixed i, h, k, k, if x ∈ (S∗)c ∩ R i

,k
∩ Rh

,k
, then we have

|x – y| ∼ ilQ,k
, |x – y| ∼ hlQ,k

.



Li and Xue Journal of Inequalities and Applications  (2016) 2016:252 Page 19 of 22

This and the non-decreasing property of ω give

ω( |y–c,k |
|x–y|+|x–y| )




(|x – y| + |x – y|)n ≤
ω(

lQ,k
|x–y|+|x–y| )




(|x – y| + |x – y|)n �


∏

i=

ω(
lQi,ki
|x–yi| )




|x – yi| n


� ω(–i) 
 ω(–h) 



(ilQ,k
hlQ,k

) n


.

By (.), the Chebychev inequality and the estimate above, we control |E,| by

CC

λ

∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

|λQ,k
||λQ,k

|
∫

(S∗)c∩Ri
,k

∩Rh
,k

×
∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣
∣
∣b(x) – b,Q,k

∣
∣
|aQ,k

(y)||aQ,k
(y)|

(|x – y| + |x – y|)n

× ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx

≤ CC

λ

∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

ω
(

–i) 
 ω

(

–h) 
 |λQ,k

||λQ,k
|

×
∫

(S∗)c∩Ri
,k

∩Rh
,k

|b(x) – b,Q,k
|

(ilQ,k
hlQ,k

) n


(∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× |aQ,k
(y)||aQ,k

(y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 


dy dy

)

dx. (.)

Let us first consider the inside integrals, by the Hölder inequality, we may have

∫

(S∗)c∩Ri
,k

∩Rh
,k

|b(x) – b,Q,k
|

(ilQ,k
hlQ,k

) n


(∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× |aQ,k
(y)||aQ,k

(y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 


dy dy

)

dx

≤
(


(hlQ,k

)n

∫

Rh
,k

∣
∣b(x) – b,Q,k

∣
∣
 dx

) 


×
(


(ilQ,k

)n

∫

(S∗)c∩Ri
,k

∣
∣
∣
∣

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣

× |aQ,k
(y)||aQ,k

(y)|
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 


dy dy

∣
∣
∣
∣



dx
) 


. (.)

Note that a,k (y) ∈ L(Rn), a similar argument to (.) yields

(.) ≤ h

 ‖b‖


∗
[


(ilQ,k

)n

∫

(S∗)c∩Ri
,k

∣
∣
∣
∣

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

× sup
y,y∈S

(


(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 

)

∣
∣aQ,k

(y)
∣
∣dy

∣
∣
∣
∣



dx
] 


.

Note that the integrals in the above inequality are independent of S,l and Q,k and ω is
doubling, similar to what we have done with (.), for fixed x ∈ (S∗)c and any y, y ∈ S,
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we have

sup
y,y∈S

(


(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 

)

≈ 
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 


. (.)

Recalling (I) in Theorem . and putting the inequality above into (.), we may get

|E,| ≤ CC

λ

∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

ω
(

–i) 
 ω

(

–h) 
 h


 |λQ,k

|
(


(ilQ,k

)n

×
∫

(S∗)c∩Ri
,k

∣
∣
∣
∣

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

(
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
)

× sup
y,y∈S

(


(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 

)

∣
∣aQ,k

(y)
∣
∣dy

∣
∣
∣
∣



dx
) 



≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

ω
(

–i) 
 ω

(

–h) 
 h


 |λQ,k

|
(


(ilQ,k

)n

×
∫

(S∗)c∩Ri
,k

∣
∣
∣
∣

∫

Rn

∣
∣b(x) – b,Q,k

∣
∣

(
∑

S,l

∫

S,l


(|x – y| + |x – y|)n

× ω

( |y – c,k |
|x – y| + |x – y|

) 


dy

)
∣
∣aQ,k

(y)
∣
∣dy

∣
∣
∣
∣



dx
) 



≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

∞
∑

h=

ω
(

–i) 
 ω

(

–h) 
 h


 |λQ,k

|

×
(


(ilQ,k

)n

∫

(S∗)c∩Ri
,k

∣
∣b(x) – b,Q,k

∣
∣

(∫

Rn

∣
∣aQ,k

(y)
∣
∣dy

)

dx
) 



≤ CCγ

 λ– 



∞
∑

i=

∞
∑

h=

ω
(

–i) 
 ω

(

–h) 
 h


 i




≤ CCγ

 λ– 

 .

Now we begin with the estimate for |E,|.
Recalling the definition of I,(x), the moment condition of H-atoms and smoothness

condition (.). Similar to the estimates in (.), we may obtain

|E,| ≤ CC

λ

∑

S,l

∑

Q,k ⊂S,l

∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

|λQ,k
||λQ,k

|

×
∫

(S∗)c∩Ri
,k

∫∫

(Rn)

∣
∣b(x) – b,Q,k

∣
∣
∣
∣b(y) – b,Q,k

∣
∣
|aQ,k

(y)||aQ,k
(y)|

|x – y|n

× 
(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)

dy dy dx. (.)
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First, we consider the following summation.

∑

S,l

∑

Q,k ⊂S,l

∫

Rn

∣
∣b(y) – b,Q,k

∣
∣

|λQ,k
||aQ,k

(y)|
(|x – y| + |x – y|)n

× ω

( |y – c,k |
|x – y| + |x – y|

)

dy. (.)

Property (I) in Theorem ., inequality (.), and the size condition of H-atoms, that is,
‖aQ,k

‖L∞ ≤ |Q,k |–, together with the Hölder inequality, enable us to obtain

(.) ≤
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|
(∫

Rn

∣
∣b(y) – b,Q,k

∣
∣
∣
∣aQ,k

(y)
∣
∣dy

) 


×
(∫

Rn


(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

)
∣
∣aQ,k

(y)
∣
∣dy

) 


≤ ω
(

–i)
∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|‖b‖


∗ sup

y,y∈S

(


(|x – y| + |x – y|)n

× ω

( |y – c,k |
|x – y| + |x – y|

) 

)

≤ C(γ λ)

 ω

(

–i) 

∑

S,l

∫

S,l


(|x – y| + |x – y|)n ω

( |y – c,k |
|x – y| + |x – y|

) 


dy

≤ C(γ λ)

 ω

(

–i) 
 .

Therefore, by (.) and noting that aQ,k
(y) ∈ L(Rn), we have

|E,| ≤ CCγ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

∞
∑

i=

ω
(

–i) 
 |λQ,k

|
∫

(S∗)c∩Ri
,k

∫

Rn


|x – y|

× ∣
∣b(x) – b,Q,k

∣
∣
∣
∣aQ,k

(y)
∣
∣dy dx

≤ CC‖b‖∗γ

 λ– 


∑

S,l

∑

Q,k ⊂S,l

|λQ,k
|

∞
∑

i=

ω
(

–i) 
 i


 ≤ CCγ


 λ– 

 .

Since |E,| is a symmetrical case of |E,| we may also obtain

|E,| ≤ CCγ

 λ– 

 .

A similar argument still works as in (.), we may have

|E,| ≤ CC



 λ– 
 .

This completes the estimate for |E|. Thus, we have proved inequality (.) and the proof
of Theorem . is finished. �
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