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Abstract
In the paper, we establish a Lyapunov inequality and two Lyapunov-type inequalities
for a higher-order fractional boundary value problem with a controllable nonlinear
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1 Introduction
For the following boundary value problem (BVP for short):

{
y′′(t) + q(t)y(t) = , a < t < b,
y(a) = y(b) = ,

(.)

where q is a real and continuous function, Lyapunov [] proved that if (.) has a nontrivial
solution, then

∫ b

a

∣∣q(s)
∣∣ds >


b – a

. (.)

The expression in (.) is called the Lyapunov inequality. The Lyapunov inequality proved
to be very useful in various problems related with differential equations. Many improve-
ments and generalizations of the inequality (.) for integer-order BVP have appeared in
the literature, and here we omit these detailed conclusions but only refer the reader to a
summary reference [] given by Tiryaki in , in which research results about Lyapunov
inequality were summarized. After that, new results for the integer-order boundary value
problem appeared continuously; see [–].

Only in recent years, the research of Lyapunov inequality for fractional BVP has begun in
which a fractional derivative (Riemann-Liouville derivative and Caputo derivative) is used
instead of the classical ordinary derivative in differential equation. We refer the reader to
Ferreira [–], Jleli and Samet [], Rong and Bai [], Arifi et al. [], and so on.
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About the basics for fractional calculus, we refer the reader to [–] and the references
therein.

Most of the above cited work deals with lower-order fractional BVP. Then in ,
O’Regan and Samet gave the following result for a higher-order fractional BVP.

Theorem . ([]) If the fractional BVP

{
(R
aDvy)(t) + q(t)y(t) = , a < t < b,  < v ≤ ,

y(a) = y′(a) = y′′(a) = y′′(b) = ,

has a nontrivial solution, where R
aDv is the Riemann-Liouville derivative of order v, then the

following Lyapunov inequality holds:

∫ b

a

∣∣q(s)
∣∣ds >

�(v)(v – )v–

(v – )v–(b – a)v– .

In a recent paper [] in , Cabrera, Sadarangani, and Samet gave the following result
for a higher-order fractional BVP.

Theorem . ([]) If the fractional BVP

{
(R
aDvy)(t) + q(t)y(t) = , a < t < b,  < v ≤ ,

y(a) = y′(a) = , y′(b) = βy′(ξ ),

has a nontrivial solution, where R
aDv is the Riemann-Liouville derivative of order v, then the

following Lyapunov inequality holds:

∫ b

a

∣∣q(s)
∣∣ds >

�(v)(v – )v–

(v – )v–(b – a)v–( + β(b–a)v–

(v–)(b–a)v––β(ξ–a)v– )
.

Whether for lower-order fractional BVP in [–], or for higher-order fractional BVP
in [, ], we see the BVP of concern is all with a linear term q(t)y(t). The BVP in []
is with a half-linear term q(t)|y(t)|p–y(t). In a recent paper [], Chidouh and Torres ex-
tended the linear term q(t)y(t) to a nonlinear term q(t)f (y(t)). The following result has
been established.

Theorem . ([]) Let q be a real nontrival Lebesgue integral function. Assume that f ∈
C(R+,R+) is a concave and nondecreasing function. If the fractional BVP

{
(R
aDvy)(t) + q(t)f (y(t)) = , a < t < b,  < v ≤ ,

y(a) = y(b) = ,

has a nontrivial solution y ∈ C[a, b], where R
a Dv is the Riemann-Liouville derivative of or-

der v, then the following Lyapunov inequality holds:

∫ b

a

∣∣q(s)
∣∣ds >

v–�(v)η
(b – a)v–f (η)

,

where η = maxt∈[a,b] y(t).
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But it is obvious that the Lyapunov inequality above is not controllable because a dummy
variable η appears.

Motivated by [–] and [–], this paper aims to study the Lyapunov inequality and
Lyapunov-type inequality for the following higher-order fractional BVP with a nonlinear
term q(t)f (y(t)):

{
(C
a Dvy)(t) + q(t)f (y) = , a < t < b,  < v ≤ ,

y(a) = y(b) = y′′(a) = ,
(.)

where C
a Dv is the Caputo derivative of order v, q : [a, b] → R

+ = {x ∈R|x ≥ } is a Lebesgue
integrable function, f : R+ → R

+ is continuous.
The paper is organized as follows. In Section , we present some preliminary conclu-

sions. In Section , assuming that f is controllable, we obtain the Lyapunov inequality
and Lyapunov-type inequality for (.). Applications of these inequalities to an eigenvalue
problem and to a Mittag-Leffler function are given in Section .

2 Preliminaries
We first give the concepts of the Riemann-Liouville fractional integral and the Caputo
fractional derivative.

Definition . Let v ≥  and �(v) be the Gamma function defined by �(v) =
∫ ∞

 tv–e–t dt,
v ≥ . The Riemann-Liouville fractional integral of order v of y(t) is defined by aIy = y and

(
aIvy

)
(t) :=


�(v)

∫ t

a
(t – s)v–y(s) ds, t ∈ [a, b], v > .

Definition . Let v > , n = [v] + , where [v] denotes the integer part of number v. The
Caputo fractional derivative of order v of y(t) is defined by

(C
a Dvy

)
(t) :=

(
aIn–vy(n))(t) =


�(n – v)

∫ t

a

y(n)(s)
(t – s)v+–n ds, t ∈ [a, b].

Lemma . y ∈ C[a, b] is a solution to the problem (.) if and only if y satisfies the integral
equation

y(t) =
∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds,

where G(t, s) is the Green’s function of the problem (.) and

G(t, s) =

{
(t–a)(b–s)v–

�(v)(b–a) – (t–s)v–

�(v) , a ≤ s ≤ t ≤ b,
(t–a)(b–s)v–

�(v)(b–a) , a ≤ t ≤ s ≤ b.
(.)

Proof Suppose y(t) is the solution of (.), then

y(t) =
(

aIvCDv
ay

)
(t) + c(t – a) + c(t – a) + c

= –


�(v)

∫ t

a
(t – s)v–q(s)f

(
y(s)

)
ds + c(t – a) + c(t – a) + c. (.)
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Combining  < v ≤  and y(a) = y(b) = y′′(a) = , we get c = 
(b–a)�(v)

∫ b
a (b – s)v–q(s) ×

f (y(s)) ds and c = c = . Substituting c, c, and c into (.) yields

y(t) =


(b – a)�(v)

∫ b

a
(t – a)(b – s)v–q(s)f

(
y(s)

)
ds –


�(v)

∫ t

a
(t – s)v–q(s)f

(
y(s)

)
ds

=
∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds. �

Lemma . The Green’s function G(t, s) defined in (.) has the following properties.
(i) G(t, s) ≥ , for all a ≤ t, s ≤ b.

(ii) For any s ∈ [a, b],

max
t∈[a,b]

G(t, s) = G(t, s) =
(s – a)(b – s)v–

(b – a)�(v)
+

(v – )(b – s)
(v–)

v–

(v – ) v–
v– (b – a) v–

v– �(v)
,

where t = s + ( (b–s)v–

(b–a)(v–) ) 
v– ∈ [s, b].

(iii) G(t, s) ≥ (t–a)(b–t)
(b–a) G(t, s) for all a ≤ t, s ≤ b.

(iv) maxs∈[a,b] G(t, s) ≤ (b–a)v–

�(v) .

Proof (i) Considering v > , we have t–a
b–a ≥ ( t–a

b–a )v–. We also get ( (t–a)(b–s)
b–a )v– ≥ (t – s)v–

because (t–a)(b–s)
b–a ≥ (t – s). So when s ≤ t, we have

�(v)G(t, s) =
(

t – a
b – a

)
(b – s)v– – (t – s)v–

≥
(

t – a
b – a

)v–

(b – s)v– – (t – s)v–

=
(

(t – a)(b – s)
b – a

)v–

– (t – s)v– ≥ ,

which means G(t, s) ≥ . When s ≥ t, the conclusion holds obviously.
(ii) For any s ∈ [a, b], when t ≥ s, by (.),

�(v)G′
t(t, s) =

(b – s)v–

b – a
– (v – )(t – s)v–

{
≥ , t ≤ t,
≤ , t ≥ t,

where t = s + ( (b–s)v–

(b–a)(v–) ) 
v– ∈ [s, b]. So

max
t∈[s,b]

G(t, s) = G(t, s) =
(s – a)(b – s)v–

(b – a)�(v)
+

(v – )(b – s)
(v–)

v–

(v – ) v–
v– (b – a) v–

v– �(v)
. (.)

When t ≤ s, we easily get by (.)

max
t∈[a,s]

G(t, s) ≤ G(s, s) ≤ G(t, s). (.)

Equations (.) and (.) show that (ii) is correct.
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(iii) For any s ∈ [a, b], when t ≤ s, by (.),

G(t, s) =
(t – a)(b – s)v–

�(v)(b – a)

≥ (t – a)
(b – a)

· (t – a)(b – s)v–

�(v)(b – a)

≥ (t – a)
(b – a)

[
(t – a)(b – s)v–

�(v)(b – a)
–

(t – s)v–

�(v)

]

=
(t – a)
(b – a)

G(t, s) ≥ (t – a)(b – t)
(b – a) G(t, s). (.)

When t > s, by (.),

�(v)G′′
tt(t, s) = –(v – )(v – )(t – s)v– ≤ ,

which means that G(t, s) is concave about t on [s, b]. Thus, for any t ∈ [s, t], by the con-
cavity of G(t, s), we have

G(t, s) ≥ G(t, s) – G(s, s)
t – s

(t – s) + G(s, s)

=
G(t, s)
t – s

(t – s) +
t – t
t – s

G(s, s)

≥ G(t, s)
t – s

(t – s) +
(t – t)
(t – s)

(s – a)
(b – a)

G(t, s)

≥ (t – a)
(b – a)

G(t, s) ≥ (t – a)(b – t)
(b – a) G(t, s). (.)

For any t ∈ [t, ], by the concavity of G(t, s), we have

G(t, s) ≥ G(t, s) – G(b, s)
t – b

(t – b) + G(b, s)

=
G(t, s)
b – t

(b – t)

≥ (b – t)
(b – a)

G(t, s) ≥ (t – a)(b – t)
(b – a) G(t, s). (.)

(.), (.), and (.) tell us (iii) is correct.
In the end, we prove (iv). It is easy to see that ( (v–)v–(b–s)

(v–)v–(b–a) ) 
v– ≤ , so

max
s∈[a,b]

G(t, s) = max
s∈[a,b]

{
(s – a)(b – s)v–

(b – a)�(v)
+

(v – )(b – s)
(v–)

v–

(v – ) v–
v– (b – a) v–

v– �(v)

}

=


(b – a)�(v)
max
s∈[a,b]

[
(s – a)(b – s)v– +

(
(v – )v–(b – s)
(v – )v–(b – a)

) 
v–

(b – s)v
]

≤ 
�(v)

max
s∈[a,b]

(b – s)v– =
(b – a)v–

�(v)
. �
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Remark . In Lemma ., we give an accurate bound for Green’s function G(t, s), not only
an upper bound but also a lower bound, and coincidentally, the only difference between
the two bounds is a function factor whose value is in [, ], which leads to Lyapunov-
type inverse inequalities; see Theorem . and Corollary .. In [–] and [–], only
an upper bound of corresponding Green’s function was given and thus only a one-side
Lyapunov inequality could be obtained.

Let E = C[a, b] be endowed with the norm ‖y‖ = maxt∈[a,b] |y(t)|. Let E+ = {y ∈ E, y(t) ≥
 for any t ∈ [a, b] and ‖y‖ 	= }.

Lemma . Assume that y ∈ E+ is a solution for (.), then

(t – a)(b – t)
(b – a) ‖y‖ ≤ y(t) ≤ ‖y‖, ∀t ∈ [a, b].

Proof Suppose y is a positive solution of (.), then from Lemma . we know

y(t) =
∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds.

Then by (iii) of Lemma .,

y(t) ≥
∫ b

a

(t – a)(b – t)
(b – a) G(t, s)q(s)f

(
y(s)

)
ds

=
(t – a)(b – t)

(b – a)

∫ b

a
max
t∈[a,b]

G(t, s)q(s)f
(
y(s)

)
ds

≥ (t – a)(b – t)
(b – a) max

t∈[a,b]

∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds =

(t – a)(b – t)
(b – a) ‖y‖. �

3 Main results
A Lyapunov inequality and two Lyapunov-type inequalities are given in this section.

Theorem . Assume that f is controlled by two lines, i.e., there exist two positive constants
M and N satisfying Ny ≤ f (y) ≤ My for any y ∈ R

+. If (.) has a solution in E+, then the
following Lyapunov inequality (.), Lyapunov-type inequalities (.) and (.) hold:

∫ b

a
q(s) ds >

�(v)
M(b – a)v– , (.)

∫ b

a
(s – a)(b – s)vq(s) ds ≤ �(v)(b – a)

N
, (.)

∫ b

a
(s – a)(b – s)

v–v–
v– q(s) ds ≤ �(v)(b – a) v–

v– (v – ) v–
v–

(v – )N
. (.)

Proof Suppose y ∈ E+ is a solution for (.), then ‖y‖ 	= . From Lemma . and Lemma .,
we know that

y(t) =
∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds, t ∈ [a, b], (.)
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(s – a)(b – s)
(b – a) ‖y‖ ≤ y(s), ∀s ∈ [a, b], (.)

respectively. For any t ∈ [a, b], by (.) and (iv) of Lemma ., we have

 ≤ y(t) ≤
∫ b

a
G(t, s)q(s)My(s) ds

<
∫ b

a
max
s∈[a,b]

G(t, s)q(s) dsM‖y‖

≤
∫ b

a

(b – a)v–

�(v)
q(s) dsM‖y‖,

which yields

∫ b

a
q(s) ds >

�(v)
M(b – a)v– . (.)

On the other hand, by (.), we get

f
(
y(s)

) ≥ Ny(s) ≥ N‖y‖ (s – a)(b – s)
(b – a) , ∀s ∈ [a, b]. (.)

From (.) and (.), together with (iii) of Lemma ., we get

y
(

a + b


)
=

∫ b

a
G

(
a + b


, s

)
q(s)f

(
y(s)

)
ds

≥ 


∫ b

a
G(t, s)q(s)f

(
y(s)

)
ds

≥ 


∫ b

a
G(t, s)

(s – a)(b – s)
(b – a) q(s) dsN‖y‖

=



∫ b

a

(s – a)(b – s)v

(b – a)�(v)
q(s) dsN‖y‖

+



∫ b

a

(v – )(s – a)(b – s)
(v–v–)

v–

(v – ) v–
v– (b – a) v–

v– �(v)
q(s) dsN‖y‖,

which yields

‖y‖ ≥ 


∫ b

a

(s – a)(b – s)v

(b – a)�(v)
q(s) dsN‖y‖ (.)

and

‖y‖ ≥ 


∫ b

a

(v – )(s – a)(b – s)
(v–v–)

v–

(v – ) v–
v– (b – a) v–

v– �(v)
q(s) dsN‖y‖. (.)

(.) and (.) follow easily from (.) and (.), respectively.
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In fact, the condition that f is controlled by two lines in Theorem . is very common.
For example, for the piecewise continuous function

f (y) =

⎧⎪⎨
⎪⎩

y,  ≤ y ≤ ,
 – y,  ≤ y ≤ ,

 y,  ≤ y ≤ +∞,

we may choose M =  and N = 
 in Theorem ..

Let f (y) = y in (.), we get a fractional BVP with a linear term as follows:

{
(C
a Dvy)(t) + q(t)y(t) = , a < t < b,  < v ≤ ,

y(a) = y(b) = y′′(a) = .
(.)

By choosing M = N =  in Theorem ., we obtain the following result. �

Corollary . If (.) has a solution y ∈ E+, then

∫ b

a
q(s) ds >

�(v)
(b – a)v– , (.)

∫ b

a
(s – a)(b – s)vq(s) ds ≤ �(v)(b – a), (.)

∫ b

a
(s – a)(b – s)

v–v–
v– q(s) ds ≤ �(v)(b – a) v–

v– (v – ) v–
v–

(v – )
. (.)

4 Applications
4.1 Eigenvalue problems
Let a =  and b =  in (.), we now discuss the eigenvalue problem (.).

{
(C
a Dv)(t) + λy(t) = ,  < t < ,  < v ≤ ,

y() = y() = y′′() = .
(.)

By Corollary ., we obtain the following result.

Corollary . For any λ ∈ [,�(v)] ∪ ( �(v)
B(,v+) , +∞), where

B(x, y) =
∫ 


sx–( – s)y– ds, x > , y > ,

eigenvalue problem (.) has no corresponding eigenfunction y ∈ E+.

Proof Assume that y ∈ E+ is an eigenfunction of (.) corresponding to an eigenvalue
λ ∈ [,�(v)] ∪ ( �(v)

B(,v+) , +∞). By (.), (.), and (.) in Corollary ., we have

λ > �(v), λ

∫ 


s( – s)v ds ≤ �(v),

λ

∫ 


s( – s)

v–v–
v– ds ≤ �(v)(v – ) v–

v–

(v – )
,
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and thus

�(v) < λ ≤ min

{
�(v)

B(, v + )
,

�(v)(v – ) v–
v–

(v – )B(, v–
v– )

}
=

�(v)
B(, v + )

, (.)

which is a contradiction. �

Remark . We supplement the proof for the minimum value in (.).  < v ≤  leads to
v–
v– ≥ . Considering B(x, y) = �(x)�(y)

�(x+y) , we get


B(, v + )

=
�( + v)

�()�(v + )
=

( + v)( + v)( + v)


,

(v – ) v–
v–

(v – )B(, v–
v– )

≥ (v – )�( + v–
v– )

(v – )�()�( v–
v– )

=
(v – )(v + v – )(v – )

(v – ) .

Obviously,

(v – )(v + v – )(v – )
(v – ) >

( + v)( + v)( + v)


,

which means min{ �(v)
B(,v+) , �(v)(v–)

v–
v–

(v–)B(, v–
v– )

} = �(v)
B(,v+) .

4.2 Real zeros for Mittag-Leffler function
We consider the two-parameter Mittag-Leffler function

Ev,β (z) =
∞∑

k=

zk

�(kv + β)
, v > ,β > , z ∈ R. (.)

Obviously, Ev,β (z) >  for all z ≥ . Hence, the real zeros of Ev,β (z), if they exist, must be
negative real numbers. In the following, we will use Corollary . to obtain an interval in
which the Mittag-Leffler function (.) with β = ,  < v ≤  has no real zeros.

Corollary . Let  < v ≤ . Then the Mittag-Leffler function Ev,(z) has no real zeros for
z ∈ (–∞, – �(v)

B(,v+) ) ∪ [–�(v), +∞).

Proof We first of all recall some elementary knowledge as regards the eigenvalue problem
(.). By Theorem  in [], the general solution y(t) satisfying the fractional differential
equation in (.) is

y(t) = AEv,
(
–λtv) + BtEv,

(
–λtv) + CtEv,

(
–λtv).

Using the boundary conditions in (.), we get

A = , BEv,(–λ) = , C = .

Thus, if there exists a positive real number λ satisfying Ev,(–λ) = , then λ must be a
positive eigenvalue of (.) and the corresponding eigenfunction is given by

y(t) = tEv,
(
–λtv).
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Now, suppose λ ∈ (–∞, – �(v)
B(,v+) ) ∪ [–�(v), +∞) is a real zero of Ev,(z), then λ < , and

thus –λ must be a positive eigenvalue of (.). From Corollary ., we know

�(v) < –λ ≤ �(v)
B(, v + )

,

and thus

–�(v) > λ ≥ –
�(v)

B(, v + )
,

which is a contradiction.
Therefore, the Mittag-Leffler function Ev,(z) has no real zeros on (–∞, – �(v)

B(,v+) ) ∪
[–�(v), +∞). �

5 Conclusions
We obtain a Lyapunov inequality (.), two Lyapunov-type inequalities (.) and (.) for
the following higher-order fractional boundary value problem with a nonlinear term:

{
(C
a Dvy)(t) + q(t)f (y) = , a < t < b,  < v ≤ ,

y(a) = y(b) = y′′(a) = .

We get these inequalities when the nonlinear term f is controllable. Accurate properties
of the Green’s function in Lemma . are important.

As applications, on the one hand, we conclude that, for any λ ∈ [,�(v)] ∪ ( �(v)
B(,v+) , +∞),

the following eigenvalue problem:

{
(C
a Dv)(t) + λy(t) = ,  < t < ,  < v ≤ ,

y() = y() = y′′() = 
(.)

has no corresponding eigenfunction y ∈ E+; On the other hand, we prove that the Mittag-
Leffler function Ev,(z) =

∑∞
k=

zk

�(kv+) has no real zeros on (–∞, – �(v)
B(,v+) ) ∪ [–�(v), +∞)

for v ∈ (, ].
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