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Abstract
In the article, we discuss the monotonicity properties of the function
x → (1 – e–ax

p
)1/p/

∫ x
0 e

–tp dt for a,p > 0 with p �= 1 on (0,∞) and prove that the double
inequality �(1 + 1/p)(1 – e–ax

p
)1/p <

∫ x
0 e

–tp dt <�(1 + 1/p)(1 – e–bx
p
)1/p holds for all

x > 0 if and only if a ≤min{1,�–p(1 + 1/p)} and b ≥max{1,�–p(1 + 1/p)}.
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1 Introduction
Let a >  and x > . Then the classical gamma function �(x), incomplete gamma function
�(a, x), and psi function ψ(x) are defined by

�(x) =
∫ ∞


tx–e–t dt, �(a, x) =

∫ ∞

x
ta–e–t dt,

ψ(x) =
�′(x)
�(x)

,

respectively. It is well known that the identity

∫ x


e–tp

dt =

p
�

(

p

)

–

p
�

(

p

, xp
)

(.)

holds for all x, p > .
Recently, the bounds for the integral

∫ x
 e–tp dt have attracted the interest of many re-

searchers. In particular, many remarkable inequalities for the integral
∫ x

 e–tp dt can be
found in the literature [–]. Let

Ip(x) =
∫ x


e–tp

dt. (.)

Then we clearly see that I(x) =  – e–t and that Ip(x) diverges if p ≤ . The functions I(x)
and I(x) can be used to study the heat transfer problem [] and electrical discharge in
gases [], respectively.
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Komatu [] and Pollak [] proved the double inequality

�

(

 +

p

)

–
e–x

√
x + 

π
+ x

< I(x) < �

(

 +

p

)

–
e–x

√
x +  + x

for all x > .
Gautschi [] proved that the double inequality

�

(

 +

p

)

–
e–xp

b
[(

xp + b
)/p – x

]
< Ip(x) < �

(

 +

p

)

–
e–xp

a
[(

xp + a
)/p – x

]
(.)

holds for all x >  and p >  if and only if a ≥  and b ≤ �p/(–p)( + /p).
An application of inequality (.) in radio propagation mode was given in [].
Alzer [] proved that a = min{,�–p( + /p)} and b = max{,�–p( + /p)} are the best

possible parameters such that the double inequality

�

(

 +

p

)
(
 – e–axp)/p < Ip(x) < �

(

 +

p

)
(
 – e–bxp)/p (.)

holds for all x >  and p >  with p �= .
Motivated by the Alzer’s inequality (.), in this paper, we discuss the monotonicity of

the function

x → R(a, p; x) =
( – e–axp )/p
∫ x

 e–tp dt
(.)

and provide an alternative proof of Alzer’s inequality (.).

2 Lemmas
In order to prove our main results, we first introduce an auxiliary function. Let –∞ ≤ a <
b ≤ ∞, f and g be differentiable on (a, b), and g ′ �=  on (a, b). Then the function Hf ,g [,
] is defined by

Hf ,g(x) =
f ′(x)
g ′(x)

g(x) – f (x). (.)

Lemma . (See [], Theorem ) Let ∞ ≤ a < b ≤ ∞, f and g be differentiable on (a, b)
with f (a+) = g(a+) =  and g ′(x) >  on (a, b), and Hf ,g be defined by (.). Then the following
statements are true:

() If Hf ,g(b–) >  and there exists λ ∈ (a, b) such that f ′(x)/g ′(x) is strictly decreasing on
(a,λ) and strictly increasing on (λ, b), then there exists μ ∈ (a, b) such that f (x)/g(x) is
strictly decreasing on (a,μ) and strictly increasing on (μ, b);

() If Hf ,g(b–) <  and there exists λ∗ ∈ (a, b) such that f ′(x)/g ′(x) is strictly increasing on
(a,λ∗) and strictly decreasing on (λ∗, b), then there exists μ∗ ∈ (a, b) such that
f (x)/g(x) is strictly increasing on (a,μ∗) and strictly decreasing on (μ∗, b).

Lemma . (See [], Theorem .) Let –∞ < a < b < ∞, f , g : [a, b] → R be continu-
ous on [a, b] and differentiable on (a, b), and g ′(x) �=  on (a, b). If f ′(x)/g ′(x) is increasing
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(decreasing) on (a, b), then so are the functions

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

.

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma . We have

�/x( + x) >
 + x



for all x ∈ (, ), and the above inequality is reversed for all x ∈ (,∞).

Proof Let x > , γ = . · · · be the Euler-Mascheroni constant, and

f (x) = log�(x + ) – x log( + x) + x log . (.)

Then simple computations lead to

f () = f () = , (.)

f ′(x) = ψ( + x) – log( + x) –
x

 + x
+ log ,

f ′() = ψ() +



= –γ +



< , (.)

f ′′(x) = ψ ′( + x) –


 + x
–


( + x) . (.)

It follows from the identity

ψ ′(x) =

x

+


x +


x –
θ

x ( < θ < ),

given in [], and (.) that

f ′′(x) <


x + 
+


(x + ) +


(x + ) –


x + 

–


(x + ) = –
x + 

(x + ) <  (.)

for all x > .
Inequality (.) implies that f (x) is strictly concave and f ′(x) is strictly decreasing on the

interval (,∞).
From the concavity of f (x) and monotonicity of f ′(x) on the interval (,∞), together

with (.) and (.), we clearly see that

f (x) > ( – x)f () + xf () =  (.)

for all x ∈ (, ) and

f (x) <  (.)

for all x ∈ (,∞).
Therefore, Lemma . follows easily from (.), (.), and (.). �
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Lemma . Let a, p > , Ip(x) and Hf ,g be respectively defined by (.) and (.), and

f (x) =
(
 – e–axp)/p. (.)

Then the following statements are true:
() Hf ,Ip (∞) = ∞ if a < ;
() Hf ,Ip (∞) = – if a > .

Proof From (.), (.), and (.) we get

Hf ,Ip (x) =
f ′(x)
I ′

p(x)
Ip(x) – f (x)

= axp–e(–a)xp(
 – e–axp)/p–

∫ x


e–tp

dt –
(
 – e–axp)/p,

Hf ,Ip (∞) = a�

(

 +

p

)

lim
x→∞

[
xp–e(–a)xp] –  =

⎧
⎨

⎩

∞, a < ,

–, a > . �

3 Main results
Theorem . Let a, p >  with p �= , and R(a, p; x) be defined by (.). Then the following
statements are true:

() if a ≤ min{, p/(p + )}, then the function x → R(a, p; x) is strictly increasing on
(,∞);

() if a ≥ max{, p/(p + )}, then the function x → R(a, p; x) is strictly decreasing on
(,∞);

() if min{, p/(p + )} < a < max{, p/(p + )} and p <  (p > ), then there exists
x ∈ (,∞) such that the function x → R(a, p; x) is strictly decreasing (increasing) on
(, x) and strictly increasing (decreasing) on (x,∞).

Proof Let x > , u = xp > , Ip(x) and f (x) be respectively defined by (.) and (.), and

h(u) = a( – a)pueau + a(p – )eau + a(a – p)u + a( – p). (.)

Then it follows from (.), (.), (.), and (.) that

R(a, p; x) =
f (x)
Ip(x)

, (.)

f () = Ip() = , I ′
p(x) = e–xp > , (.)

f ′(x)
I ′

p(x)
= axp–e(–a)xp(

 – e–axp)/p– = au–/pe(–a)u( – e–au)/p–, (.)

[
f ′(x)
I ′

p(x)

]′
= a

d
du

[
u–/pe(–a)u( – e–au)/p–]du

dx

= u–/pe(–a)u( – e–au)/p–h(u), (.)

h() = , (.)

h′(u) = a
[
(a – p)

(
 – eau) + a( – a)pueau], (.)
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h′() = , (.)

h′′(u) = a[a( – a)pu + p – a(p + )
]
eau = a( – a)peau

[

u –
a(p + ) – p

a( – a)p

]

. (.)

We divide the proof into four cases.
Case : a ≤ min{, p/(p + )}. From p �=  and (.) we know that h′(u) is strictly increas-

ing on (,∞). Then (.), (.), and (.) lead to the conclusion that f ′(x)/I ′
p(x) is strictly

increasing on (,∞). Therefore, R(a, p; x) is strictly increasing on (,∞), as follows from
Lemma ., (.), and (.) together with the monotonicity of f ′(x)/I ′

p(x).
Case : a ≥ max{, p/(p+)}. From p �=  and (.) we know that h′(u) is strictly decreas-

ing on (,∞). Then (.), (.), and (.) lead to the conclusion that f ′(x)/I ′
p(x) is strictly

decreasing on (,∞). Therefore, R(a, p; x) is strictly decreasing on (,∞), as follows from
Lemma ., (.), and (.) together with the monotonicity of f ′(x)/I ′

p(x).
Case : min{, p/(p + )} < a < max{, p/(p + )} and p < . Then we clearly see that

p/(p + ) < a < , and (.) and (.) lead to

h(∞) = ∞, (.)

h′(∞) = ∞. (.)

Let

u =
a(p + ) – p

a( – a)p
. (.)

Then we clearly see that u ∈ (,∞), and (.) leads to the conclusion that h′(u) is strictly
decreasing on (, u) and strictly increasing on (u,∞).

It follows from (.) and (.) together with the piecewise monotonicity of h′(u) that
there exists u ∈ (,∞) such that h(u) is strictly decreasing on (, u) and strictly increasing
on (u,∞). From (.), (.), and (.) together with the piecewise monotonicity of h(u)
we know that there exists λ ∈ (,∞) such that f ′(x)/I ′

p(x) is strictly decreasing on (,λ)
and strictly increasing on (λ,∞).

Therefore, there exists x ∈ (,∞) such that the function x → R(a, p; x) is strictly de-
creasing on (, x) and strictly increasing on (x,∞), as follows from Lemma .(),
Lemma .(), (.), (.), and the piecewise monotonicity of f ′(x)/I ′

p(x).
Case : min{, p/(p + )} < a < max{, p/(p + )} and p > . Then we clearly see that

 < a < p/(p + ), and (.) and (.) lead to

h(∞) = –∞, (.)

h′(∞) = –∞. (.)

Let u ∈ (,∞) be defined by (.). Then from (.) we clearly see that h′(u) is strictly
increasing on (, u) and strictly decreasing on (u,∞). It follows from (.), (.), (.),
(.), (.), and the piecewise monotonicity of h′(u) that there exists μ ∈ (,∞) such
that f ′(x)/I ′

p(x) is strictly increasing on (,μ) and strictly decreasing on (μ,∞).
Therefore, there exists x ∈ (,∞) such that the function x → R(a, p; x) is strictly in-

creasing on (, x) and strictly decreasing on (x,∞), as follows from Lemma .(),
Lemma .(), (.), (.), and the piecewise monotonicity of f ′(x)/I ′

p(x). �
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Remark . Let R(a, p; x) be defined by (.). Then from (.), (.), and (.)-(.) we
clearly see that

R(a, p;∞) =


�( + 
p )

,

R
(
a, p; +)

= lim
x→+

f ′(x)
I ′

p(x)
= a lim

u→+

(
 – e–au

u

)/p–

= a/p.

From Theorem . and Remark . we immediately get Corollary ..

Corollary . Let a, p >  with p �= , Ip(x) and R(a, p; x) be respectively defined by (.)
and (.), and x be the unique solution of the equation d[R(a, p; x)]/dx =  on the interval
(,∞) in the case of min{, p/(p+)} < a < max{, p/(p+)}. Then the following statements
are true:

() if a ≤ min{, p/(p + )}, then we have the double inequality

�

(

 +

p

)
(
 – e–axp)/p < Ip(x) <


a/p

(
 – e–axp)/p

for all x > ;
() if a ≥ max{, p/(p + )}, then we have the double inequality


a/p

(
 – e–axp)/p < Ip(x) < �

(

 +

p

)
(
 – e–axp)/p

for all x > ;
() if min{, p/(p + )} < a < max{, p/(p + )} and p < , then we have the double in-

equality

min

{

�

(

 +

p

)

,


a/p

}
(
 – e–axp)/p < Ip(x) ≤ 

R(a, p; x)
(
 – e–axp)/p

for all x > ;
() if min{, p/(p + )} < a < max{, p/(p + )} and p > , then we have the double in-

equality


R(a, p; x)

(
 – e–axp)/p ≤ Ip(x) < max

{

�

(

 +

p

)

,


a/p

}
(
 – e–axp)/p

for all x > .

Next, we prove Alzer’s inequality (.) by using Theorem ., Remark ., and Corol-
lary ..

Theorem . Let a, b, p >  with p �= , a = min{,�–p( + /p)}, b = max{,�–p( + /p)},
and Ip(x) be defined by (.). Then the double inequality

�

(

 +

p

)
(
 – e–axp)/p < Ip(x) < �

(

 +

p

)
(
 – e–bxp)/p

holds for all x >  if and only if a ≤ a and b ≥ b.
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Proof Let R(a, p; x) be defined by (.). Then we divide the proof into four steps.
Step : p < . We prove that the inequality

Ip(x) > �

(

 +

p

)
(
 – e–axp)/p (.)

holds for all x >  if and only if a ≤ a.
From p ∈ (, ) and Lemma . we clearly see that

p
 + p

< �–p
(

 +

p

)

= a < . (.)

If inequality (.) holds for all x > , then (.) and Remark ., together with (.),
lead to the conclusion that

R(a, p; x) < �–
(

 +

p

)

, a/p = R
(
a, p; +) ≤ �–

(

 +

p

)

,

a ≤ �–p
(

 +

p

)

= a.

Next, we prove inequality (.) for all x >  if a ≤ a. We divide the proof into two cases.
Case .: a ≤ p/( + p). Then from (.) and Corollary .() we clearly see that a ≤

min{, p/( + p)} and inequality (.) holds for all x > .
Case .: p/( + p) < a ≤ a = �–p( + /p). Then (.) and Corollary .() lead to the

conclusion that min{, p/( + p)} < a < max{, p/( + p)} and

Ip(x) > min

{

�

(

 +

p

)

,


a/p

}
(
 – e–axp)/p = �

(

 +

p

)
(
 – e–axp)/p

for all x > .
Step : p > . We prove that inequality (.) holds for all x >  if and only if a ≤ a.
From p ∈ (, ) and Lemma . we clearly see that

 = a < �–p
(

 +

p

)

<
p

 + p
. (.)

If a ≤ a, then inequality (.) and Corollary .() lead to the conclusion that a ≤
min{, p/( + p)} and inequality (.) holds for all x > .

Next, we prove by contradiction that a ≤ a if inequality (.) holds for all x > . We
divide the proof into two cases.

Case .: a ≥ p/(p + ). Then (.) and Corollary .() lead to the conclusion that
a ≥ max{, p/(p + )} and the opposite direction inequality of (.) holds for all x > .

Case .:  = a < a < p/(p + ). Then inequality (.) and Theorem .(), together
with Remark ., lead to the conclusion that min{, p/(p + )} < a < max{, p/(p + )} and
there exists x ∈ (,∞) such that

Ip(x) < �

(

 +

p

)
(
 – e–axp)/p

for x ∈ (x,∞), which contradicts with (.).
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Step : p < . We prove that the inequality

Ip(x) < �

(

 +

p

)
(
 – e–axp)/p (.)

holds for all x >  if and only if a ≥ b.
From p <  and Lemma . we clearly see that

p
p + 

< �–p
(

 +

p

)

<  = b. (.)

If a ≥ b, then (.) and Corollary .() lead to the conclusion that a ≥ max{, p/
(p + )} and inequality (.) holds for all x > .

Next, we prove by contradiction that a ≥ b if inequality (.) holds for all x > . We
divide the proof into two cases.

Case .: a ≤ p/( + p). Then (.) and Corollary .() lead to the conclusion that
a ≤ min{, p/(p + )} and the opposite direction inequality of (.) holds for all x > .

Case .: p/(p + ) < a < b = . Then (.) and Theorem .(), together with Re-
mark ., lead to the conclusion that min{, p/(p + )} < a < max{, p/(p + )} and there
exists x such that the opposite direction inequality of (.) holds for x ∈ (x,∞).

Step : p > . We prove that inequality (.) holds for all x >  if and only if a ≥ b.
From p >  and Lemma . we clearly see that

 < �–p
(

 +

p

)

= b <
p

p + 
. (.)

If inequality (.) holds for all x > , then (.), (.), Remark ., and (.) lead to

�

(

 +

p

)

R(a, p; x) > , �

(

 +

p

)

R
(
a, p; +)

= a/p�

(

 +

p

)

≥ ,

a ≥ �–p
(

 +

p

)

= b.

Next, we prove that inequality (.) holds for all x >  if a ≥ b. We divide the proof
into two cases.

Case .: a ≥ p/(p + ). Then (.) and Corollary .() lead to the conclusion that
a ≥ max{, p/(p + )} and inequality (.) holds for all x > .

Case .: b ≤ a < p/(p + ). Then (.) and Corollary .() lead to the conclusion
that min{, p/(p + )} < a < max{, p/(p + )} and

Ip(x) < max

{


a/p ,�
(

 +

p

)}
(
 – e–axp)/p = �

(

 +

p

)
(
 – e–axp)/p

for all x > . �

Let q = /p, and u = xp. Then (.) and (.), together with Corollary ., lead to Corol-
lary ..
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Corollary . Let a > , q >  with q �= , and u be the unique solution of the equation

d
du

[
( – e–au)q

�(q) – �(q, u)

]

= 

on the interval (,∞) in the case of min{, /(q + )} < a < max{, /(q + )}. Then the fol-
lowing statements are true:

() if a ≤ min{, /(q + )}, then we have the double inequality

 –
( – e–au)q

aq�( + q)
<

�(q, u)
�(q)

<  –
(
 – e–au)q

for all u > ;
() if a ≥ max{, /(q + )}, then we have the double inequality

 –
(
 – e–au)q <

�(q, u)
�(q)

<  –
( – e–au)q

aq�( + q)

for all u > ;
() if min{, /(q + )} < a < max{, /(q + )} and q > , then we have the double inequality

 –
�(q) – �(q, u)
�(q)( – e–au )q

(
 – e–au)q ≤ �(q, u)

�(q)
<  – min

{


aq�( + q)
, 

}
(
 – e–au)q

for all u > ;
() if min{, /(q + )} < a < max{, /(q + )} and q < , then we have the double inequality

 – max

{


aq�( + q)
, 

}
(
 – e–au)q <

�(q, u)
�(q)

≤  –
�(q) – �(q, u)
�(q)( – e–au )q

(
 – e–au)q

for all u > .

Note that

lim
q→+

[
�(q)

(
 –

(
 – e–au)q)] = – log

(
 – e–au), (.)

lim
q→+

[

�(q)
(

 –
( – e–au)q

aq�( + q)

)]

= log a – γ – log
(
 – e–au). (.)

Let Ei(u) = �(, u) be the exponential integral. Then Corollary .() and (), together
with (.) and (.), immediately lead to Corollary ..

Corollary . We have the double inequality

log a – γ – log
(
 – e–au) < Ei(u) < – log

(
 – e–au) (.)

for all u >  and  < a ≤ , and inequality (.) is reversed for all u >  if a ≥ .
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